
User’s Manual

Software Version: 1.8.2b
Date: 2003/10/22

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Copyright c© 1998 The Regents of the University of California.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

This work was produced at the University of California, Lawrence Livermore National Laboratory
(UC LLNL) under contract no. W-7405-ENG-48 (Contract 48) between the U.S. Department of
Energy (DOE) and The Regents of the University of California (University) for the operation of
UC LLNL. The rights of the Federal Government are reserved under Contract 48 subject to the
restrictions agreed upon by the DOE and University as allowed under DOE Acquisition Letter 97-1.

This work was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of
their employees, makes any warranty, express or implied, or assumes any liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately-owned rights. Reference herein to
any specific commercial products, process, or service by trade name, trademark, manufacturer or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or the
University of California, and shall not be used for advertising or product endorsement purposes.

UCRL-MA-137155 DR

Contents

1 Introduction 1

1.1 Features . 1

1.2 Assumptions and Limitations . 2

2 Getting Started 3

2.1 A Simple Example . 4

2.2 What are conceptual interfaces? . 6

2.3 Which conceptual interface should I use? . 7

3 Structured-Grid System Interface (Struct) 9

3.1 Setting Up the Struct Grid . 10

3.2 Setting Up the Struct Stencil . 11

3.3 Setting Up the Struct Matrix . 11

3.4 Setting Up the Struct Right-Hand-Side Vector . 13

3.5 Symmetric Matrices . 14

4 Semi-Structured-Grid System Interface (SStruct) 15

4.1 Setting Up the SStruct Grid . 16

4.2 Setting Up the SStruct Stencil . 17

4.3 Setting Up the SStruct Graph . 18

4.4 Setting Up the SStruct Matrix . 18

4.5 Setting Up the SStruct Right-Hand-Side Vector . 20

5 Finite Element Interface (FEI) 21

5.1 Iterative methods and preconditioners available . 22

5.1.1 Iterative methods . 22

5.1.2 Preconditioners . 22

6 Linear-Algebraic System Interface (IJ) 25

6.1 IJ Matrix Interface . 25

6.2 IJ Vector Interface . 27

i

ii CONTENTS

7 Solvers and Preconditioners 29
7.1 SMG . 30
7.2 PFMG . 31
7.3 BoomerAMG . 31

7.3.1 Synopsis . 31
7.3.2 Interface functions . 32

7.4 ParaSails . 34
7.4.1 Synopsis . 34
7.4.2 Interface functions . 35
7.4.3 Preconditioning nearly symmetric matrices 36

7.5 Euclid . 36
7.5.1 Synopsis . 37
7.5.2 Setting options: examples . 38
7.5.3 Options summary . 39

7.6 PILUT: Parallel Incomplete Factorization . 40

8 Additional Information 41
8.1 Building the Library . 41

8.1.1 Library configuration . 41
8.1.2 Linking to the Library . 42

8.2 Calling from Fortran . 42
8.3 Bug Reporting . 43

Chapter 1

Introduction

hypre is a software library for solving large, sparse linear systems of equations on massively parallel
computers. The library was created with the primary goal of providing users with advanced parallel
preconditioners. Issues of robustness, ease of use, flexibility, and interoperability also play an
important role.

1.1 Features

• Scalable preconditioners provide efficient solution on today’s and tomorrow’s sys-
tems: hypre contains several families of preconditioner algorithms focused on the scalable
solution of very large sparse linear systems. hypre includes “grey-box” algorithms that use
more than just the matrix to solve certain classes of problems more efficiently than general-
purpose libraries. This includes algorithms such as structured multigrid.

• Suite of common iterative methods provides options for a spectrum of problems:
hypre provides several of the most commonly used Krylov-based iterative methods to be used
in conjunction with its scalable preconditioners. This includes methods for nonsymmetric
systems such as GMRES and methods for symmetric matrices such as Conjugate Gradient.

• Intuitive grid-centric interfaces obviate need for complicated data structures and
provide access to advanced solvers: hypre has made a major step forward in usability
from earlier generations of sparse linear solver libraries in that users do not have to learn
complicated sparse matrix data structures. Instead, hypre does the work of building these
data structures for the user through a variety of interfaces, each appropriate to different classes
of users. These include stencil-based structured/semi-structured interfaces most appropriate
for finite-difference applications; a finite-element based unstructured interface; and a linear-
algebra based interface. Each interface provides access to several solvers without the need to
write new interface code.

• User options accommodate beginners through experts: hypre allows a spectrum of
expertise to be applied by users. The beginning user can get up and running with a minimal

1

2 CHAPTER 1. INTRODUCTION

amount of effort. More expert users can take further control of the solution process through
various parameters.

• Configuration options to suit your computing system: hypre utilizes the GNU Auto-
conf package to allow simple and flexible installation on a wide variety of computing systems.
Users can tailor the installation to match their computing system. Options include debug and
optimized modes, the ability to change required libraries such as MPI and BLAS, a sequential
mode, and modes enabling threads for certain solvers. On most systems, however, hypre can
be built by simply typing configure followed by make.

• Interfaces in multiple languages provide greater flexibility for applications: hypre
contains interfaces for both Fortran and C users.

1.2 Assumptions and Limitations

• hypre is designed for large, sparse, linear systems on parallel computers. Small
linear systems, systems that are solvable on a sequential computer, and dense systems are all
better addressed by other libraries that are designed specifically for them.

• To run in parallel, hypre requires an installation of MPI.

• Configuration of hypre with threads requires an implementation of OpenMP. Cur-
rently, only a subset of hypre is threaded.

• hypre currently does not support complex-valued systems.

Chapter 2

Getting Started

Before writing any code:

1. Choose a conceptual interface (see Sections 2.2 and 2.3). Generally, the choice is
fairly obvious. A structured-grid interface is clearly inappropriate for an unstructured-grid
application. It is desirable to use a more specific interface if appropriate, e.g., the linear-
algebraic interface is usable from any type of grid but will involve much more user work and
prevent access to some grid-type-specific preconditioners.

2. Choose your desired solver strategy. For the typical user, this will mean a single Krylov
method and a single preconditioner.

3. Look up matrix requirements for each solver and preconditioner. Each specific solver
and preconditioner has requirements from the input matrix. This information is provided in
several places: Chapter 7, the hypre Reference Manual, and the hypre header files.

4. Choose a matrix class that is compatible with your solvers and preconditioners
and your conceptual interface. Note that some of the interfaces currently only support
one matrix class choice.

Once the previous decisions have been made, it is time to code your application to call hypre:

1. Build any necessary auxiliary structures for your chosen conceptual interface.
This includes, e.g., the grid and stencil structures for the structured-grid interface.

2. Build the matrix, solution vector, and right-hand-side vector through your chosen
conceptual interface. Each conceptual interface provides a series of calls for entering
information about your problem into hypre.

3. Build solvers and preconditioners and set solver parameters (optional). Some
parameters like convergence tolerance are the same across solvers, while others are solver
specific.

3

4 CHAPTER 2. GETTING STARTED

4. Call the solve function for the solver.

5. Retrieve desired information from solver. Depending on your application, there may be
different things you may want to do with the solution vector. Also, performance information
such as number of iterations is typically available, though it may differ from solver to solver.

2.1 A Simple Example

The following code serves as a simple example of the usage of hypre. In this example, the structured-
grid interface (discussed in Chapter 3) is used to enter the problem into hypre, and the PFMG

Multigrid solver is used to solve the system. Since the structured-grid interface currently only
supports one underlying matrix class, there are no choices to make here. If we were using the
semi-structured grid interface instead, then we would have to choose between the SStruct and
ParCSR matrix classes, depending on the solver we want to use.
This example and all other examples in this manual are written in C, but hypre also supports

Fortran. See Section 8.2 for details.

/*---

* Set up the grid and stencil

---/

HYPRE_StructGridCreate(MPI_COMM_WORLD, dim, &grid);

HYPRE_StructGridSetExtents(grid, ilower, iupper);

...

HYPRE_StructGridAssemble(grid);

HYPRE_StructStencilCreate(dim, stencil_size, &stencil);

HYPRE_StructStencilSetElement(stencil, 0, offset0);

...

/*---

* Set up the matrix, right-hand side, and initial guess

---/

HYPRE_StructMatrixCreate(MPI_COMM_WORLD, grid, stencil, &A);

HYPRE_StructMatrixInitialize(A);

HYPRE_StructMatrixSetBoxValues(A, ilower, iupper, nelts, elts, Avalues);

...

HYPRE_StructMatrixAssemble(A);

HYPRE_StructVectorCreate(MPI_COMM_WORLD, grid, &b);

HYPRE_StructVectorInitialize(b);

2.2. WHAT ARE CONCEPTUAL INTERFACES? 5

HYPRE_StructVectorSetBoxValues(b, ilower, iupper, bvalues);

...

HYPRE_StructVectorAssemble(b);

HYPRE_StructVectorCreate(MPI_COMM_WORLD, grid, &x);

HYPRE_StructVectorInitialize(x);

HYPRE_StructVectorSetBoxValues(x, ilower, iupper, xvalues);

...

HYPRE_StructVectorAssemble(x);

/*---

* Set up the solver

---/

HYPRE_StructPFMGCreate(MPI_COMM_WORLD, &solver);

HYPRE_StructPFMGSetMaxIter(solver, 50); /* optional */

HYPRE_StructPFMGSetTol(solver, 1.0e-06); /* optional */

HYPRE_StructPFMGSetup(solver, A, b, x);

/*---

* Solve the linear system

---/

HYPRE_StructPFMGSolve(solver, A, b, x);

/*---

* Get solution info and free up memory

---/

HYPRE_StructVectorGetBoxValues(x, ilower, iupper, xvalues);

...

HYPRE_StructPFMGDestroy(solver);

HYPRE_StructGridDestroy(grid);

HYPRE_StructStencilDestroy(stencil);

HYPRE_StructMatrixDestroy(A);

HYPRE_StructVectorDestroy(b);

HYPRE_StructVectorDestroy(x);

6 CHAPTER 2. GETTING STARTED

Data Layout

structured composite block-struc unstruc CSR

Linear Solvers

GMG, ... FAC, ... Hybrid, ... AMGe, ... ILU, ...

Linear System Interfaces

Figure 2.1: Graphic illustrating the notion of conceptual interfaces. All of these elements are not
necessarily in hypre.

2.2 What are conceptual interfaces?

The top row of Figure 2.1 illustrates a number of conceptual interfaces. Generally, the conceptual
interfaces are denoted by different types of computational grids, but other application features
might also be used, such as geometrical information. These conceptual interfaces are intended to
represent the way that applications developers naturally think of their linear problem, and provide
natural interfaces for them to pass the data that defines their linear system into hypre. Essentially,
these conceptual interfaces can be considered convenient utilities for helping a user build a matrix
data structure for hypre solvers and preconditioners. For example, applications that use structured
grids (such as in the left-most interface in the Figure 2.1) typically view their linear problems in
terms of stencils and grids. On the other hand, applications that use unstructured grids and finite
elements typically view their linear problems in terms of elements and element stiffness matrices.
Finally, the right-most interface is the standard linear-algebraic (matrix rows/columns) way of
viewing the linear problem.

The second row of Figure 2.1 is a set of linear solver algorithms. Each linear solver group
requires different information from the user through the conceptual interfaces. So, the geometric
multigrid algorithm (GMG) listed in the left-most box, for example, can only be used with the
left-most conceptual interface. On the other hand, the ILU algorithm in the right-most box may
be used with any conceptual interface.

The third row of Figure 2.1 is a list of data layouts or matrix/vector storage schemes. The
relationship between linear solver and storage scheme is similar to that of interface and linear
solver.

2.3. WHICH CONCEPTUAL INTERFACE SHOULD I USE? 7

2.3 Which conceptual interface should I use?

hypre currently supports four conceptual interfaces:

• Structured-Grid System Interface (Struct): This interface is appropriate for applica-
tions whose grids consist of unions of logically rectangular grids with a fixed stencil pattern
of nonzeros at each grid point. This interface supports only a single unknown per grid point.
See Chapter 3 for details.

• Semi-Structured-Grid System Interface (SStruct): This interface is appropriate for
applications whose grids are mostly structured, but with some unstructured features. Exam-
ples include block-structured grids, composite grids in structured adaptive mesh refinement
(AMR) applications, and overset grids. This interface supports multiple unknowns per cell.
See Chapter 4 for details.

• Finite Element Interface (FEI): This is appropriate for users who form their linear sys-
tems from a finite element discretization. The interface mirrors typical finite element data
structures, including element stiffness matrices. Though this interface is provided in hypre,
its definition was determined elsewhere (www.z.ca.sandia.gov/fei). See Chapter 5 for details.

• Linear-Algebraic System Interface (IJ): This is the traditional linear-algebraic inter-
face. It can be used as a last resort by users for whom the other grid-based interfaces are
not appropriate. It requires more work on the user’s part, though still less than building par-
allel sparse data structures. General solvers and preconditioners are available through this
interface, but not specialized solvers which need more information. Our experience is that
users with legacy codes, in which they already have code for building matrices in particular
formats, find the IJ interface relatively easy to use. See Chapter 6 for details.

Generally, a user should choose the most specific interface that matches their application, be-
cause this will allow them to use specialized and more efficient solvers and preconditioners without
losing access to more general solvers.

8 CHAPTER 2. GETTING STARTED

Chapter 3

Structured-Grid System Interface
(Struct)

In order to get access to the most efficient and scalable solvers for scalar structured-grid applications,
users should use the Struct interface described in this chapter. This interface will also provide
access (this is not yet supported) to solvers in hypre that were designed for unstructured-grid
applications and sparse linear systems in general. These additional solvers are usually provided via
the unstructured-grid interface (FEI) or the linear-algebraic interface (IJ) described in Chapters 5
and 6.

Figure 3.1 gives an example of the type of grid currently supported by the Struct interface.
The interface uses a finite-difference or finite-volume style, and currently supports only scalar PDEs
(i.e., one unknown per gridpoint). There are four basic steps involved in setting up the linear system
to be solved:

1. set up the grid,

2. set up the stencil,

3. set up the matrix,

4. set up the right-hand-side vector.

To describe each of these steps in more detail, consider solving the 2D Laplacian problem

{

∇2u = f, in the domain,
u = 0, on the boundary.

(3.1)

Assume (3.1) is discretized using standard 5-pt finite-volumes on the uniform grid pictured in 3.1,
and assume that the problem data is distributed across two processes as depicted.

9

10 CHAPTER 3. STRUCTURED-GRID SYSTEM INTERFACE (STRUCT)

P0 P1

(-3,1)

(6,4)

Figure 3.1: An example 2D structured grid, distributed accross two processors.

3.1 Setting Up the Struct Grid

The grid is described via a global index space, i.e., via integer tuples (triples in 3D). The integers
may have any value, negative or positive. The global indexes allow hypre to discern how data is
related spatially, and how it is distributed across the parallel machine. Each process describes that
portion of the grid that it “owns”, one box at a time. For example, in the figure, the global grid
can be described in terms of three boxes, two owned by process 0, and one owned by process 1. A
box is described in terms of a lower and upper index.

On process 0, the following code will set up the grid shown in the figure (the code for process
1 is similar).

HYPRE_StructGrid grid;

int ilower[2][2] = {{-3, 1}, {0, 1}};

int iupper[2][2] = {{-1, 2}, {2, 4}};

HYPRE_StructGridCreate(MPI_COMM_WORLD, 2, &grid);

HYPRE_StructGridSetExtents(grid, ilower[0], iupper[0]);

HYPRE_StructGridSetExtents(grid, ilower[1], iupper[1]);

HYPRE_StructGridAssemble(grid);

The Create() routine creates an empty 2D grid object that lives on the MPI_COMM_WORLD com-
municator. The SetExtents() routine adds a new box to the grid. The Assemble() routine is
a collective call (i.e., must be called on all processes from a common synchronization point), and
finalizes the grid assembly, making the grid “ready to use”.

3.2. SETTING UP THE STRUCT STENCIL 11

3.2 Setting Up the Struct Stencil

The geometry of the discretization stencil is described by an array of integer tuples in 2D (triples in
3D), each representing a relative offset (in index space) from some gridpoint on the grid. For exam-
ple, the geometry of the 5-pt stencil for the example problem being considered can be represented
in the following way:

(0, 1)
(−1, 0) (0, 0) (1, 0)

(0,−1)

≡

S4

S1 S0 S2

S3

. (3.2)

In (3.2), the (0, 0) entry represents the “center” coefficient, and is the 0th entry in the array (S0).
The (0,−1) entry represents the “south” coefficient, and is the 3rd entry in the array (S3). And so
on.

On process 0 or 1, the following code will set up the stencil in (3.2). The stencil must be the
same on all processes.

HYPRE_StructStencil stencil;

int offsets[5][2] = {{0,0}, {-1,0}, {1,0}, {0,-1}, {0,1}};

int s;

HYPRE_StructStencilCreate(2, 5, &stencil);

for (s = 0; s < 5; s++)

{

HYPRE_StructStencilSetElement(stencil, s, offsets[s]);

}

The Create() routine creates an empty 2D, 5-pt stencil object. The SetElement() routine defines
the geometry of the stencil and assigns the array numbers for each of the stencil entries. None of
the calls are collective calls.

3.3 Setting Up the Struct Matrix

The matrix is set up in terms of the grid and stencil objects described in Sections 3.1 and 3.2.
The coefficients associated with each stencil entry will typically vary from gridpoint to gridpoint,
but in the example problem being considered, they are as follows over the entire grid (except at
boundaries; see below):

−1
−1 4 −1

−1

. (3.3)

12 CHAPTER 3. STRUCTURED-GRID SYSTEM INTERFACE (STRUCT)

On process 0, the following code will set up matrix values associated with the center (S0) and
south (S3) stencil entries in (3.2) / (3.3) (boundaries are ignored here temporarily).

HYPRE_StructMatrix A;

double values[36];

int stencil_indices[2] = {0,3};

int i;

HYPRE_StructMatrixCreate(MPI_COMM_WORLD, grid, stencil, &A);

HYPRE_StructMatrixInitialize(A);

for (i = 0; i < 36; i += 2)

{

values[i] = 4.0;

values[i+1] = -1.0;

}

HYPRE_StructMatrixSetBoxValues(A, ilower[0], iupper[0], 2,

stencil_indices, values);

HYPRE_StructMatrixSetBoxValues(A, ilower[1], iupper[1], 2,

stencil_indices, values);

/* set boundary conditions */

...

HYPRE_StructMatrixAssemble(A);

The Create() routine creates an empty matrix object. The Initialize() routine indicates that
the matrix coefficients (or values) are ready to be set. This routine may or may not involve the
allocation of memory for the coefficient data, depending on the implementation. The optional Set
routines mentioned later in this chapter and in the Reference Manual, should be called before this
step. The SetBoxValues() routine sets the matrix coefficients for some set of stencil entries over
the gridpoints in some box. Note that the box need not correspond to any of the boxes used to
create the grid, but values should be set for all gridpoints that this process “owns”. The Assemble()
routine is a collective call, and finalizes the matrix assembly, making the matrix “ready to use”.

Matrix coefficients that reach outside of the boundary should be set to zero. For efficiency
reasons, hypre does not do this automatically. The most natural time to insure this is when the
boundary conditions are being set, and this is most naturally done after the coefficients on the
grid’s interior have been set. For example, during the implementation of the Dirichlet boundary
condition on the lower boundary of the grid in Figure 3.1, the “south” coefficient must be set to
zero. To do this on process 0, the following code could be used:

3.4. SETTING UP THE STRUCT RIGHT-HAND-SIDE VECTOR 13

int ilower[2] = {-3, 1};

int iupper[2] = { 2, 1};

/* create matrix and set interior coefficients */

...

/* implement boundary conditions */

...

for (i = 0; i < 12; i++)

{

values[i] = 0.0;

}

i = 3;

HYPRE_StructMatrixSetBoxValues(A, ilower, iupper, 1, &i, values);

/* complete implementation of boundary conditions */

...

3.4 Setting Up the Struct Right-Hand-Side Vector

The right-hand-side vector is set up similarly to the matrix set up described in Section 3.3 above.
The main difference is that there is no stencil (note that a stencil currently does appear in the
interface, but this will eventually be removed).
On process 0, the following code will set up the right-hand-side vector values.

HYPRE_StructVector b;

double values[18];

int i;

HYPRE_StructVectorCreate(MPI_COMM_WORLD, grid, &b);

HYPRE_StructVectorInitialize(b);

for (i = 0; i < 18; i++)

{

values[i] = 0.0;

}

HYPRE_StructVectorSetBoxValues(b, ilower[0], iupper[0], values);

14 CHAPTER 3. STRUCTURED-GRID SYSTEM INTERFACE (STRUCT)

HYPRE_StructVectorSetBoxValues(b, ilower[1], iupper[1], values);

HYPRE_StructVectorAssemble(b);

The Create() routine creates an empty vector object. The Initialize() routine indicates
that the vector coefficients (or values) are ready to be set. This routine follows the same rules as
its corresponding Matrix routine. The SetBoxValues() routine sets the vector coefficients over
the gridpoints in some box, and again, follows the same rules as its corresponding Matrix routine.
The Assemble() routine is a collective call, and finalizes the vector assembly, making the vector
“ready to use”.

3.5 Symmetric Matrices

Some solvers and matrix storage schemes provide capabilities for significantly reducing memory
usage when the coefficient matrix is symmetric. In this situation, each off-diagonal coefficient
appears twice in the matrix, but only one copy needs to be stored. The Struct interface provides
support for matrix and solver implementations that use symmetric storage via the SetSymmetric()
routine.
To describe this in more detail, consider again the 5-pt finite-volume discretization of (3.1) on

the grid pictured in Figure 3.1. Because the discretization is symmetric, only half of the off-diagonal
coefficients need to be stored. To turn symmetric storage on, the following line of code needs to be
inserted somewhere between the Create() and Initialize() calls.

HYPRE_StructMatrixSetSymmetric(A, 1);

Note that symmetric storage may or may not actually be used, depending on the underlying storage
scheme. Currently in hypre, symmetric storage is always used when indicated.
To most efficiently utilize the Struct interface for symmetric matrices, notice that only half of

the off-diagonal coefficients need to be set. To do this for the example being considered, we simply
need to redefine the 5-pt stencil of Section 3.2 to an “appropriate” 3-pt stencil, then set matrix
coefficients (as in Section 3.3) for these three stencil elements only. For example, we could use the
following stencil

(0, 1)
(0, 0) (1, 0)

≡

S2

S0 S1

. (3.4)

This 3-pt stencil provides enough information to recover the full 5-pt stencil geometry and associated
matrix coefficients.

Chapter 4

Semi-Structured-Grid System
Interface (SStruct)

In order to get access to the most efficient and scalable solvers for semi-structured-grid applications
(applications with grids that are mostly structured, but with some unstructured features), users
should use the SStruct interface described in this chapter. This interface also provides access to
solvers in hypre that were designed for unstructured-grid applications and sparse linear systems in
general. These additional solvers are usually provided via the unstructured-grid interface (FEI) or
the linear-algebraic interface (IJ) described in Chapters 5 and 6.
Figure 4.1 gives an example of the type of grid currently supported by the SStruct interface.

The grid is composed of three “parts”. There is a single cell-centered variable across the entire
grid, except at the grid cell marked with a square, which has one additional cell-centered variable.
There are five basic steps involved in setting up the linear system to be solved:

1. set up the grid,

2. set up the stencils,

3. set up the graph,

4. set up the matrix,

5. set up the right-hand-side vector.

To describe each of these steps in more detail, consider solving the 2D Laplacian problem
{

∇2u = f, in the domain,
u = 0, on the boundary.

(4.1)

Assume (3.1) is discretized using standard 9-pt finite-volumes on the grid pictured in 4.1, and
assume that the problem data is distributed across three processes as depicted. In the figure, each
grid part is distributed onto a different process, but this need not be the case; each grid part may
also be distributed across several processes. Assume for simplicity and illustration that there is a

15

16 CHAPTER 4. SEMI-STRUCTURED-GRID SYSTEM INTERFACE (SSTRUCT)

Process 0

Part 2
Process 2

Part 0

Process 1
Part 1

(-1,0)

(-1,0)

(9,9)

Figure 4.1: An example 2D block-structured grid, distributed accross three processes.

single coupling between the first and second variables in grid part 0 at index (1,2). In general, this
variable may also be coupled to variables at neighboring indices.

4.1 Setting Up the SStruct Grid

On process 0, the following code will set up the grid shown in the figure (the code for processes 1
and 2 is similar).

HYPRE_SStructGrid grid;

int ilower[2][2] = {{-1, 0}, {1, 0}};

int iupper[2][2] = {{ 0, 3}, {2, 3}};

HYPRE_SStructVariable vars[1] = {HYPRE_SSTRUCT_VARIABLE_CELL};

int addindex[2] = {1,2};

HYPRE_SStructVariable addvars[1] = {HYPRE_SSTRUCT_VARIABLE_CELL};

HYPRE_SStructGridCreate(MPI_COMM_WORLD, 2, 3, &grid);

HYPRE_SStructGridSetExtents(grid, 0, ilower[0], iupper[0]);

4.2. SETTING UP THE SSTRUCT STENCIL 17

HYPRE_SStructGridSetExtents(grid, 0, ilower[1], iupper[1]);

HYPRE_SStructGridSetVariables(grid, 0, 1, vars);

HYPRE_SStructGridAddVariables(grid, 0, addindex, 1, addvars);

HYPRE_SStructGridAssemble(grid);

The Create() routine creates an empty 2D grid object that lives on the MPI_COMM_WORLD com-
municator. The SetExtents() routine adds a new box to the grid. The SetVariables() routine
sets the variables on a grid part, and the AddVariables() routine adds variables to a grid part
index (in the above example, there are two cell-centered variables at index (1,2)). The Assemble()
routine is a collective call (i.e., must be called on all processes from a common synchronization
point), and finalizes the grid assembly, making the grid “ready to use”.

4.2 Setting Up the SStruct Stencil

The geometry of the discretization stencil is described by an array of integer tuples in 2D (triples in
3D), each representing a relative offset (in index space) from some gridpoint on the grid. For exam-
ple, the geometry of the 9-pt stencil for the example problem being considered can be represented
in the following way:

(−1, 1) (0, 1) (1, 1)
(−1, 0) (0, 0) (1, 0)
(−1,−1) (0,−1) (1,−1)

≡

S7 S4 S8

S1 S0 S2

S5 S3 S6

. (4.2)

In (3.2), the (0, 0) entry represents the “center” coefficient, and is the 0th entry in the array (S0).
The (0,−1) entry represents the “south” coefficient, and is the 3rd entry in the array (S3). And so
on.

On process 0, 1, or 2, the following code will set up the stencil in (3.2).

HYPRE_SStructStencil stencil;

int s;

int offsets[9][2] = {{0,0},

{-1, 0}, { 1, 0}, { 0,-1}, { 0, 1}};

{-1,-1}, { 1,-1}, {-1, 1}, { 1, 1}};

HYPRE_SStructStencilCreate(2, 9, &stencil);

for (s = 0; s < 9; s++)

HYPRE_SStructStencilSetEntry(stencil, s, offsets[s], 0);

18 CHAPTER 4. SEMI-STRUCTURED-GRID SYSTEM INTERFACE (SSTRUCT)

The Create() routine creates an empty 2D, 9-pt stencil object. The SetEntry() routine defines
the geometry of the stencil, and assigns the array numbers for each of the stencil entries. None of
the calls are collective calls.

4.3 Setting Up the SStruct Graph

The graph will represent the nonzero structure of the matrix in Section 4.4 below. It is defined in
terms of the grid and stencil objects described in Sections 4.1 and 4.2 above.
On process 0, the following code will set up the graph for the example problem.

HYPRE_SStructGraph graph;

int addindex[9][2] = {{ 2,0},{2,1},{2,2},{2,3},

{-1,3},{0,3},{1,3},{2,3},

{ 1,2}};

int addentries[9][2] = {{-1,0},{-1,1},{-1,2},{-1,3},

{ 9,9},{10,9},{11,9},{12,9},

{ 1,2}};

HYPRE_SStructGraphCreate(MPI_COMM_WORLD, grid, &graph);

HYPRE_SStructGraphSetStencil(graph, 0, 0, stencil);

/* Add graph edge entries at grid part boundaries */

HYPRE_SStructGraphAddEntries(graph, 0, addindex[0], 0, 2, addentries[0], 0);

HYPRE_SStructGraphAddEntries(graph, 0, addindex[0], 0, 2, addentries[1], 0);

HYPRE_SStructGraphAddEntries(graph, 0, addindex[1], 0, 2, addentries[0], 0);

...

/* Add graph edge entries at index (1,2) */

HYPRE_SStructGraphAddEntries(graph, 0, addindex[8], 0, 0, addentries[8], 1);

HYPRE_SStructGraphAddEntries(graph, 0, addindex[8], 1, 0, addentries[8], 0);

4.4 Setting Up the SStruct Matrix

The matrix is set up in terms of the graph object described in Section 4.3 above. The coefficients
associated with each graph entry will typically vary from gridpoint to gridpoint, but in the example
problem being considered, they are as follows over the entire grid (except at boundaries; see below):

−1 −1 −1
−1 8 −1
−1 −1 −1

. (4.3)

4.4. SETTING UP THE SSTRUCT MATRIX 19

On process 0, the following code will set up matrix values associated with the center (S0) and
south (S3) stencil entries in (3.2) / (3.3). Matrix values associated with the non-stencil graph
entries are also set up.

HYPRE_SStructMatrix A;

double values[32];

int sindices[2] = {0,3};

int gindices[4] = {9,10,11,0};

int i;

HYPRE_SStructMatrixCreate(MPI_COMM_WORLD, graph, &A);

HYPRE_SStructMatrixInitialize(A);

for (i = 0; i < 32; i += 2)

{

values[i] = 8.0;

values[i+1] = -1.0;

}

HYPRE_SStructMatrixSetBoxValues(A, 0, ilower[0], iupper[0], 0,

2, sindices, values);

/* set values at non-stencil graph entries */

for (i = 0; i < 3; i++)

{

values[i] = -1.0;

}

HYPRE_SStructMatrixSetValues(A, 0, addindex[0], 0, 2, gindices, values);

HYPRE_SStructMatrixSetValues(A, 0, addindex[1], 0, 3, gindices, values);

HYPRE_SStructMatrixSetValues(A, 0, addindex[2], 0, 3, gindices, values);

...

HYPRE_SStructMatrixSetValues(A, 0, addindex[7], 0, 1, gindices, values);

HYPRE_SStructMatrixSetValues(A, 0, addindex[7], 1, 1, &gindices[3], values);

/* zero out coefficients that reach outside of the domain or grid part */

...

/* set boundary conditions at domain boundaries, */

...

HYPRE_SStructMatrixAssemble(A);

20 CHAPTER 4. SEMI-STRUCTURED-GRID SYSTEM INTERFACE (SSTRUCT)

4.5 Setting Up the SStruct Right-Hand-Side Vector

The right-hand-side vector is set up similarly to the matrix set up described in Section 4.4 above.
The main difference is that there is no graph.

Chapter 5

Finite Element Interface (FEI)

The finite element interface (FEI) defines a linear solver interface for finite element applications.
For information on how to use this interface, see [4]. This chapter describes the iterative methods
and preconditioners in the hypre implementation of this interface.

Solving a linear system from a finite element problem consists of four steps in the FEI:

1. Initialize the structure of the finite-element data, including loading the element connectivity
data

2. Load the element or super-element stiffness matrices and forcing terms

3. Set solver parameters and solve the linear system

4. Retrieve the solution to the linear system

Parameters to the hypre solvers are specified by calling

void FEI_parameters(int sysHandle, int numParams, char **paramStrings);

where sysHandle is an identifier for the linear system being solved, numParams is the number
of parameter strings, and paramStrings is an array of null-terminated strings with the format:
“parameter name value”. For example, setting the preconditioner can be accomplished by:

char **paramStrings[1];

paramStrings[0] = (char *) malloc(64*sizeof(char));

strcpy(paramStrings[0], "preconditioner parasails");

FEI_parameters(sysHandle, 1, paramStrings);

All possible parameters are listed in Table 5.1.

A linear system is then solved by calling

void FEI_iterateToSolve(int sysHandle);

21

22 CHAPTER 5. FINITE ELEMENT INTERFACE (FEI)

5.1 Iterative methods and preconditioners available

5.1.1 Iterative methods

1. Krylov solvers (conjugate gradient, GMRES, TFQMR, BiCGSTAB)

2. BoomerAMG (a parallel algebraic multigrid solver)

3. SuperLU direct solver (sequential)

4. SuperLU direct solver with iterative refinement (sequential)

5.1.2 Preconditioners

1. diagonal

2. parallel incomplete LU with threshold (PILUT)

3. another parallel incomplete LU (Euclid)

4. parallel algebraic multigrid (BoomerAMG)

5. parallel sparse approximate inverse (ParaSails)

5.1. ITERATIVE METHODS AND PRECONDITIONERS AVAILABLE 23

Parameter Name Parameter Values

solver cg, gmres (default), bicgstab, tfqmr, boomeramg, superlu,
superlux

preconditioner diagonal (default), pilut, parasails, boomeramg, euclid
gmresDim an integer specifying the value of m in restarted GMRES(m). The

default value is 50.
maxIterations an integer specifying the maximum number of iterations permitted

for CG or GMRES. The default value is 1000.
tolerance a floating point number specifying the termination criterion for CG

or GMRES. The default value is 1.0E-10.
pilutFillin an integer specifying the maximum number of nonzeros kept in the

formation of incomplete L and U. If this is not called, a value will be
selected based on the sparsity of the matrix.

pilutDropTol a floating point number specifying the threshold to drop small entries
in L and U. The default value is 0.0.

euclidNlevels a non-negative integer specifying the desired sparsity of the incom-
plete factors. The default value is 0.

euclidThreshold a floating point number specifying the threshold used to sparsify the
incomplete factors. The default value is 0.0.

superluOrdering natural (default) or mmd (minimum degree ordering). This ordering
is used to minimize the number of nonzeros generated in the LU
decomposition. The default is natural ordering.

superluScale y (yes; perform row and column scalings before decomposition) or n
(no; default).

amgCoarsenType falgout, ruge, or default (CLJP) coarsening for BoomerAMG.
amgNumSweeps an integer specifying the number of pre- and post-smoothing at

each level of BoomerAMG. The default is one pre- and one post-
smoothings.

amgRelaxType jacobi (Damped Jacobi), gs-slow (sequential Gauss-Seidel),
gs-fast (Gauss-Seidel on interior nodes), hybrid, or direct. The
default is hybrid.

amgRelaxWeight a floating point number between 0 and 1 specifying the damping fac-
tor for BoomerAMG’s damped Jacobi smoother. The default value
is 0.5.

amgStrongThreshold a floating point number between 0 and 1 specifying the threshold
used to determine strong coupling in BoomerAMG’s coasening. The
default value is 0.25.

parasailsThreshold a floating point number between 0 and 1 specifying the threshold
used to prune small entries in setting up the sparse approximate
inverse. The default value is 0.0.

parasailsNlevels an integer larger than 0 specifying the desired sparsity of the approx-
imate inverse. The default value is 1.

parasailsFilter a floating point number between 0 and 1 defining the threshold used
to prune small entries in A. The default is 0.0.

parasailsLoadbal a floating point number between 0 and 1 specifying how load balanc-
ing has to be done. The default is 0.0.

parasailsSymmetric set ParaSails to take A as symmetric.
parasailsUnSymmetric set ParaSails to take A as nonsymmetric (default).
parasailsReuse set ParaSails to reuse the sparsity pattern of A.

Table 5.1: Parameters.

24 CHAPTER 5. FINITE ELEMENT INTERFACE (FEI)

Chapter 6

Linear-Algebraic System Interface
(IJ)

The IJ interface described in this chapter is the lowest common denominator for specifying linear
systems in hypre. This interface provides access to general sparse-matrix solvers in hypre, not to
the specialized solvers that require more problem information.

6.1 IJ Matrix Interface

As with the other interfaces in hypre, the IJ interface expects to get data in distributed form because
this is the only scalable approach for assembling matrices on thousands of processes. Matrices are
assumed to be distributed by blocks of rows as follows:

A0

A1
...

AP−1

(6.1)

In the above example, the matrix is distributed accross the P processes, 0, 1, ..., P − 1 by blocks
of rows. Each submatrix Ap is “owned” by a single process and its first and last row numbers are
given by the global indices ilower and iupper in the Create() call below.

The following example code illustrates the basic usage of the IJ interface for building matrices:

MPI_Comm comm;

HYPRE_IJMatrix ij_matrix;

HYPRE_ParCSRMatrix parcsr_matrix;

int ilower, iupper;

int jlower, jupper;

int nrows;

25

26 CHAPTER 6. LINEAR-ALGEBRAIC SYSTEM INTERFACE (IJ)

int *ncols;

int *rows;

int *cols;

double *values;

HYPRE_IJMatrixCreate(comm, ilower, iupper, jlower, jupper, &ij_matrix);

HYPRE_IJMatrixSetObjectType(ij_matrix, HYPRE_PARCSR);

HYPRE_IJMatrixInitialize(ij_matrix);

/* set matrix coefficients */

HYPRE_IJMatrixSetValues(ij_matrix, nrows, ncols, rows, cols, values);

...

/* add-to matrix cofficients, if desired */

HYPRE_IJMatrixAddToValues(ij_matrix, nrows, ncols, rows, cols, values);

...

HYPRE_IJMatrixAssemble(ij_matrix);

HYPRE_IJMatrixGetObject(ij_matrix, (void **) &parcsr_matrix);

The Create() routine creates an empty matrix object that lives on the comm communicator. This
is a collective call (i.e., must be called on all processes from a common synchronization point),
with each process passing its own row extents, ilower and iupper. The row partitioning must be
contiguous, i.e., iupper for process i must equal ilower−1 for process i+1. Note that this allows
matrices to have 0- or 1-based indexing. The parameters jlower and jupper define a column
partitioning, and should match ilower and iupper when solving square linear systems. See the
Reference Manual for more information.
The SetObjectType() routine sets the underlying matrix object type to HYPRE_PARCSR (this

is the only object type currently supported). The Initialize() routine indicates that the matrix
coefficients (or values) are ready to be set. This routine may or may not involve the allocation of
memory for the coefficient data, depending on the implementation. The optional SetRowSizes()
and SetDiagOffdSizes() routines mentioned later in this chapter and in the Reference Manual,
should be called before this step.
The SetValues() routine sets matrix values for some number of rows (nrows) and some number

of columns in each row (ncols). The actual row and column numbers of the matrix values to be
set are given by rows and cols. After the coefficients are set, they can be added to with an AddTo()
routine. Each process should set only those matrix values that it “owns” in the data distribution.
The Assemble() routine is a collective call, and finalizes the matrix assembly, making the

matrix “ready to use”. The GetObject() routine retrieves the built matrix object so that it can
be passed on to hypre solvers that use the ParCSR internal storage format. Note that this is not
an expensive routine; the matrix already exists in ParCSR storage format, and the routine simply
returns a “handle” or pointer to it. Although we currently only support one underlying data storage
format, in the future several different formats may be supported.

6.2. IJ VECTOR INTERFACE 27

One can preset the row sizes of the matrix in order to reduce the execution time for the
matrix specification. One can specify the total number of coefficients for each row, the number of
coefficients in the row that couple the diagonal unknown to (Diag) unknowns in the same processor
domain, and the number of coefficients in the row that couple the diagonal unknown to (Offd)
unknowns in other processor domains:

HYPRE_IJMatrixSetRowSizes(ij_matrix, sizes);

HYPRE_IJMatrixSetDiagOffdSizes(matrix, diag_sizes, offdiag_sizes);

Once the matrix has been assembled, the sparsity pattern cannot be altered without completely
destroying the matrix object and starting from scratch. However, one can modify the matrix values
of an already assembled matrix. To do this, first call the Initialize() routine to re-initialize the
matrix, then set or add-to values as before, and call the Assemble() routine to re-assemble before
using the matrix. Re-initialization and re-assembly are very cheap, essentially a no-op in the current
implementation of the code.

6.2 IJ Vector Interface

The following example code illustrates the basic usage of the IJ interface for building vectors:

MPI_Comm comm;

HYPRE_IJVector ij_vector;

HYPRE_ParVector par_vector;

int jlower, jupper;

int nvalues;

int *indices;

double *values;

HYPRE_IJVectorCreate(comm, jlower, jupper, &ij_vector);

HYPRE_IJVectorSetObjectType(ij_vector, HYPRE_PARCSR);

HYPRE_IJVectorInitialize(ij_vector);

/* set vector values */

HYPRE_IJVectorSetValues(ij_vector, nvalues, indices, values);

...

HYPRE_IJVectorAssemble(ij_vector);

HYPRE_IJVectorGetObject(ij_vector, (void **) &par_vector);

The Create() routine creates an empty vector object that lives on the comm communicator. This is
a collective call, with each process passing its own index extents, jlower and jupper. The names

28 CHAPTER 6. LINEAR-ALGEBRAIC SYSTEM INTERFACE (IJ)

of these extent parameters begin with a j because we typically think of matrix-vector multiplies
as the fundamental operation involving both matrices and vectors. For matrix-vector multiplies,
the vector partitioning should match the column partitioning of the matrix (which also uses the j
notation). For linear system solves, these extents will typically match the row partitioning of the
matrix as well.
The SetObjectType() routine sets the underlying vector storage type to HYPRE_PARCSR (this

is the only storage type currently supported). The Initialize() routine indicates that the vector
coefficients (or values) are ready to be set. This routine may or may not involve the allocation of
memory for the coefficient data, depending on the implementation.
The SetValues() routine sets the vector values for some number (nvalues) of indices. Each

process should set only those vector values that it “owns” in the data distribution.
The Assemble() routine is a trivial collective call, and finalizes the vector assembly, making

the vector “ready to use”. The GetObject() routine retrieves the built vector object so that it can
be passed on to hypre solvers that use the ParVector internal storage format.
Vector values can be modified in much the same way as with matrices by first re-initializing the

vector with the Initialize() routine.

Chapter 7

Solvers and Preconditioners

There are several solvers available in hypre via different conceptual interfaces (see Table 7.1). The
procedure for setup and use of solvers and preconditioners is largely the same. We will refer to them
both as solvers in the sequel except when noted. In normal usage, the preconditioner is chosen
and constructed before the solver, and then handed to the solver as part of the solver’s setup. In
the following, we assume the most common usage pattern in which a single linear system is set up
and then solved with a single righthand side. We comment later on considerations for other usage
patterns.

System Interfaces
Solvers Struct SStruct FEI IJ

Jacobi X
SMG X
PFMG X
BoomerAMG X X X
ParaSails X X X
Euclid X X X
PILUT X X X
PCG X X X X
GMRES X X X X

Table 7.1: Current solver availability via hypre conceptual interfaces.

Setup:

1. Pass to the solver the information defining the problem. In the typical user cycle, the
user has passed this information into a matrix through one of the conceptual interfaces prior
to setting up the solver. In this situation, the problem definition information is then passed
to the solver by passing the constructed matrix into the solver. As described before, the

29

30 CHAPTER 7. SOLVERS AND PRECONDITIONERS

matrix and solver must be compatible, in that the matrix must provide the services needed
by the solver. Krylov solvers, for example, need only a matrix-vector multiplication. Most
preconditioners, on the other hand, have additional requirements such as access to the matrix
coefficients.

2. Choose parameters for the preconditioner and/or solver. Parameters are chosen
through the Set() calls provided by the solver. As is true throughout hypre, all parameters
have reasonable defaults if not chosen. Note that in hypre, convergence criteria can be chosen
after the preconditioner/solver has been setup.

3. Pass the preconditioner to the solver. For solvers that are not preconditioned, this step
is omitted. The preconditioner is passed through the SetPreconditioner() call.

4. Set up the solver. This is just the Setup() routine.

At this point, the solver/preconditioner is fully constructed and ready for use.

Use:

1. Set convergence criteria. Convergence can be controlled by the number of iterations,
as well as various tolerances such as relative residual, preconditioned residual, etc. Like all
parameters, reasonable defaults are used. Users are free to change these, though care must be
taken. For example, if an iterative method is used as a preconditioner for a Krylov method,
a constant number of iterations is usually required.

2. Solve the system. This is just the Solve() routine.

7.1 SMG

SMG is a parallel semicoarsening multigrid solver for the linear systems arising from finite difference,
finite volume, or finite element discretizations of the diffusion equation,

∇ · (D∇u) + σu = f (7.1)

on logically rectangular grids. The code solves both 2D and 3D problems with discretization stencils
of up to 9-point in 2D and up to 27-point in 3D. See [10, 2, 5] for details on the algorithm and its
parallel implementation/performance.

SMG is a particularly robust method. The algorithm semicoarsens in the z-direction and uses
plane smoothing. The xy plane-solves are effected by one V-cycle of the 2D SMG algorithm, which
semicoarsens in the y-direction and uses line smoothing.

7.2. PFMG 31

7.2 PFMG

PFMG is a parallel semicoarsening multigrid solver similar to SMG. See [1, 5] for details on the
algorithm and its parallel implementation/performance.
The main difference between the two methods is in the smoother: PFMG uses simple pointwise

smoothing. As a result, PFMG is not as robust as SMG, but is much more efficient per V-cycle.

7.3 BoomerAMG

BoomerAMG is a parallel implementation of algebraic multigrid. It can be used both as a solver
or as a preconditioner. The user can choose between various different parallel coarsening tech-
niques and relaxation schemes. See [6] for a detailed description of the coarsening algorithms, the
interpolation and nueemerical results. The following coarsening techniques are available:

• the Cleary-Luby-Jones-Plassman (CLJP) coarsening,

• various variants of the classical Ruge-Stueben (RS) coarsening algorithm, and

• the Falgout coarsening which is a combination of CLJP and the classical RS coarsening
algorithm.

The following relaxation techniques are available:

• weighted Jacobi relaxation,

• a hybrid Gauss-Seidel / Jacobi relaxation scheme,

• a symmetric hybrid Gauss-Seidel / Jacobi relaxation scheme, and

• sequential Gauss-Seidel relaxation.

7.3.1 Synopsis

The solver is set up and run using the following routines, where A is the matrix, b the right hand
side and x the solution vector of the linear system to be solved:

#include "HYPRE_parcsr_ls.h"

int HYPRE_BoomerAMGCreate(HYPRE_Solver *solver);

<set certain parameters if desired >

int HYPRE_BoomerAMGSetup(HYPRE_Solver solver, HYPRE_ParCSRMatrix A,

HYPRE_ParVector b, HYPRE_ParVector x);

int HYPRE_BoomerAMGSolve(HYPRE_Solver solver, HYPRE_ParCSRMatrix A,

HYPRE_ParVector b, HYPRE_ParVector x);

int HYPRE_BoomerAMGDestroy(HYPRE_Solver solver);

32 CHAPTER 7. SOLVERS AND PRECONDITIONERS

7.3.2 Interface functions

Parameters for setting up the code are specified using the following routines:

HYPRE BoomerAMGSetMaxLevels

int HYPRE_BoomerAMGSetMaxLevels(HYPRE_Solver solver, int max_levels);

max levels defines the maximal number of multigrid levels allowed. The default is 25.

HYPRE BoomerAMGSetMaxIter

int HYPRE_BoomerAMGSetMaxIter(HYPRE_Solver solver, int max_iter);

max iter defines the maximal number of iterations allowed. The default is 20.

HYPRE BoomerAMGSetTol

int HYPRE_BoomerAMGSetTol(HYPRE_Solver solver, double tol);

tol defines the tolerance needed for the stopping criterion ‖b − Ax(n)‖2/‖b‖2 ≤ tol. The default
for tol is 10−7.

HYPRE BoomerAMGSetStrongThreshold

int HYPRE_BoomerAMGSetStrongThreshold(HYPRE_Solver solver,

double strong_threshold);

A point i is strongly connected to j, if −ai,j ≥ θmaxj 6=i aij , where the strong threshold θ is a
value between 0 and 1. Weak connections are usually ignored when determining the next lower
level. Consequently, choosing a larger strong threshold leads in general to smaller coarse grids, but
worse convergence rates. The default value for θ is 0.25, which appears to be a good choice for 2-
dimensional problems. A better choice for 3-dimensional problems appears to be 0.5. However, the
choice of the strength threshold is problem dependent and therefore there could be better choices
than the two suggested ones.

HYPRE BoomerAMGSetMaxRowSum

int HYPRE_BoomerAMGSetMaxRowSum(HYPRE_Solver solver, double max_row_sum);

This feature leads to a more efficient treatment of very diagonally dominant portions of the matrix.
If the absolute row sum of row i weighted by the diagonal is greater than max row sum all depen-
dencies of variable i are set to be weak. This feature can be switched off by setting max row sum
to 1.0. The default is 0.9.

7.3. BOOMERAMG 33

HYPRE BoomerAMGSetCoarsenType

int HYPRE_BoomerAMGSetCoarsenType(HYPRE_Solver solver, int coarsen_type);

coarsen type defines the coarsening used. The following options are possible:
0 CLJP-coarsening
1 Ruge-Stueben coarsening without boundary treatment
3 Ruge-Stueben coarsening with a 3rd ’second’ pass on the boundaries
6 Falgout coarsening (default)

HYPRE BoomerAMGSetMeasureType

int HYPRE_BoomerAMGSetMeasureType(HYPRE_Solver solver, int measure_type);

measure type defines whether local (measure type = 0, default) or global measures (measure type
= 1) are used within the coarsening algorithm. This feature is ignored for the CLJP and the Falgout
coarsening.

HYPRE BoomerAMGSetNumGridSweeps

int HYPRE_BoomerAMGSetNumGridSweeps(HYPRE_Solver solver, int* num_grid_sweeps);

num grid sweeps[k] defines the number of sweeps over the grid on the fine grid (k=0), the down
cycle (k=1), the up cycle (k=2) and the coarse grid (k=3).

HYPRE BoomerAMGSetGridRelaxType

int HYPRE_BoomerAMGSetGridRelaxType(HYPRE_Solver solver, int* grid_relax_type);

grid relax type[k] defines the relaxation used on the fine grid (k=0), the down cycle (k=1), the up
cycle (k=2) and the coarse grid (k=3). The following options are possible for grid relax type[k]:

0 weighted Jacobi
1 sequential Gauss-Seidel (very slow!)
3 Gauss-Seidel / Jacobi hybrid method (default)
6 symmetric Gauss-Seidel / Jacobi hybrid method
9 Gaussian elimination (only for the coarsest level (k=3), not recommended
if the system on the coarsest level is large)

HYPRE BoomerAMGSetGridRelaxPoints

int HYPRE_BoomerAMGSetGridRelaxPoints(HYPRE_Solver solver,

int** grid_relax_points);

grid relax points[i][j] defines which points are to be relaxed during the (j+1)-th sweep on the
fine grid (i=0), the down cycle (i=1), the up cycle (i=2) and the coarse grid (i=3), e.g. if

34 CHAPTER 7. SOLVERS AND PRECONDITIONERS

grid relax points[1][0] is -1, all points marked -1 (which are in general fine points) are relaxed
on the first sweep of the down cycle. Note: grid relax points[3][j] needs to be 0 always, since the
concept of coarse and fine points does not exist on the coarsest grid. If the user sets it to another
value, it will be automatically set to 0 and a warning printed, unless the direct solver is used.

HYPRE BoomerAMGSetRelaxWeight

int HYPRE_BoomerAMGSetRelaxWeight(HYPRE_Solver solver, double* relax_weight);

defines the relaxation weights used on each level, if weighted Jacobi is used as relaxation method.
The default relaxation weight is 1.0 on each level.

HYPRE BoomerAMGSetPrintLevel

int HYPRE_BoomerAMGSetPrintLevel(HYPRE_Solver solver, int print_level);

where ioutdat determines whether statistics information is generated and printed. The information
is printed to standard output. The following options are possible:

0 no output (default)
1 matrix statistics (includes information on interpolation operators and
matrices generated on each level)

2 cycle statistics (includes residuals generated during solve phase)
3 matrix and cycle statistics

7.4 ParaSails

ParaSails is a parallel implementation of a sparse approximate inverse preconditioner, using a

priori sparsity patterns and least-squares (Frobenius norm) minimization. Symmetric positive
definite (SPD) problems are handled using a factored SPD sparse approximate inverse. General
(nonsymmetric and/or indefinite) problems are handled with an unfactored sparse approximate
inverse. It is also possible to precondition nonsymmetric but definite matrices with a factored,
SPD preconditioner.
ParaSails uses a priori sparsity patterns that are patterns of powers of sparsified matrices.

ParaSails also uses a post-filtering technique to reduce the cost of applying the preconditioner. In
advanced usage not described here, the pattern of the preconditioner can also be reused to generate
preconditioners for different matrices in a sequence of linear solves.
For more details about the ParaSails algorithm, see [3].

7.4.1 Synopsis

#include "HYPRE_parcsr_ls.h"

int HYPRE_ParaSailsCreate(MPI_Comm comm, HYPRE_Solver *solver,

int symmetry);

7.4. PARASAILS 35

int HYPRE_ParaSailsSetParams(HYPRE_Solver solver,

double thresh, int nlevel, double filter);

int HYPRE_ParaSailsSetup(HYPRE_Solver solver, HYPRE_ParCSRMatrix A,

HYPRE_ParVector b, HYPRE_ParVector x);

int HYPRE_ParaSailsSolve(HYPRE_Solver solver, HYPRE_ParCSRMatrix A,

HYPRE_ParVector b, HYPRE_ParVector x);

int HYPRE_ParaSailsStats(HYPRE_Solver solver);

int HYPRE_ParaSailsDestroy(HYPRE_Solver solver);

The accuracy and cost of ParaSails are parameterized by the real thresh and integer nlevels

parameters, 0 ≤ thresh ≤ 1, 0 ≤ nlevels. Lower values of thresh and higher values of nlevels lead to
more accurate, but more expensive preconditioners. More accurate preconditioners are also more
expensive per iteration. The default values are thresh = 0.1 and nlevels = 1. The parameters are
set using HYPRE ParaSailsSetParams.
Mathematically, given a symmetric matrix A, the pattern of the approximate inverse is the

pattern of Ãm where Ã is a matrix that has been sparsified from A. The sparsification is performed
by dropping all entries in a symmetrically diagonally scaled A whose values are less than thresh in
magnitude. The parameter nlevel is equivalent to m+1. Filtering is a post-thresholding procedure.
For more details about the algorithm, see [3].
The storage required for the ParaSails preconditioner depends on the parameters thresh and

nlevels. The default parameters often produce a preconditioner that can be stored in less than the
space required to store the original matrix. ParaSails does not need a large amount of intermediate
storage in order to construct the preconditioner.

7.4.2 Interface functions

A ParaSails solver solver is returned with

int HYPRE_ParaSailsCreate(MPI_Comm comm, HYPRE_Solver *solver,

int symmetry);

where comm is the MPI communicator.
The value of symmetry has the following meanings, to indicate the symmetry and definiteness

of the problem, and to specify the type of preconditioner to construct:

value meaning

0 nonsymmetric and/or indefinite problem, and nonsymmetric preconditioner
1 SPD problem, and SPD (factored) preconditioner
2 nonsymmetric, definite problem, and SPD (factored) preconditioner

For more information about the final case, see section 7.4.3.
Parameters for setting up the preconditioner are specified using

int HYPRE_ParaSailsSetParams(HYPRE_Solver solver,

double thresh, int nlevel, double filter);

36 CHAPTER 7. SOLVERS AND PRECONDITIONERS

The parameters are used to specify the sparsity pattern and filtering value (see above), and are
described with suggested values as follows:

parameter type range sug. values default meaning

nlevel integer nlevel ≥ 0 0, 1, 2 1 m = nlevel+ 1

thresh real thresh ≥ 0 0, 0.1, 0.01 0.1 thresh = thresh

thresh < 0 -0.75, -0.90 thresh selected automatically

filter real filter ≥ 0 0, 0.05, 0.001 0.05 filter value = filter

filter < 0 -0.90 filter value selected automatically

When thresh < 0, then a threshold is selected such that −thresh represents the fraction
of the nonzero elements that are dropped. For example, if thresh = −0.9 then Ã will contain
approximately ten percent of the nonzeros in A.

When filter < 0, then a filter value is selected such that −filter represents the fraction of
the nonzero elements that are dropped. For example, if filter = −0.9 then approximately 90
percent of the entries in the computed approximate inverse are dropped.

7.4.3 Preconditioning nearly symmetric matrices

A nonsymmetric, but definite and nearly symmetric matrix A may be preconditioned with a sym-
metric preconditioner M . Using a symmetric preconditioner has a few advantages, such as guar-
anteeing positive definiteness of the preconditioner, as well as being less expensive to construct.

The nonsymmetric matrix A must be definite, i.e., (A+AT)/2 is SPD, and the a priori sparsity
pattern to be used must be symmetric. The latter may be guaranteed by 1) constructing the sparsity
pattern with a symmetric matrix, or 2) if the matrix is structurally symmetric (has symmetric
pattern), then thresholding to construct the pattern is not used (i.e., zero value of the thresh

parameter is used).

7.5 Euclid

The Euclid library is a scalable implementation of the Parallel ILU algorithm that was presented
at SC99 [7], and published in expanded form in the SIAM Journal on Scientific Computing [8]. By
scalable we mean that the factorization (setup) and application (triangular solve) timings remain
nearly constant when the global problem size is scaled in proportion to the number of processors.
As with all ILU preconditioning methods, the number of iterations is expected to increase with
global problem size.

Experimental results have shown that PILU preconditioning is in general more effective than
Block Jacobi preconditioning for minimizing total solution time. For scaled problems, the relative
advantage appears to increase as the number of processors is scaled upwards. Euclid may also be
used to good advantage as a smoother within multigrid methods.

7.5. EUCLID 37

7.5.1 Synopsis

Euclid is best thought of as an “extensible ILU preconditioning framework.” Extensible means
that Euclid can (and eventually will, time and contributing agencies permitting) support many
variants of ILU(k) and ILUT preconditioning. (The current release includes Block Jacobi ILU(k)
and Parallel ILU(k) methods.) Due to this extensibility, and also because Euclid was developed
independently of the hypre project, the methods by which one passes runtime parameters to Euclid
preconditioners differ in some respects from the hypre norm. While users can directly set options
within their code, options can also be passed to Euclid preconditioners via command line switches
and/or small text-based configuration files. The latter strategies have the advantage that users will
not need to alter their codes as Euclid’s capabilities are extended.

The following fragment illustrates the minimum coding required to invoke Euclid precondition-
ing within hypre application contexts. The next subsection provides examples of the various ways
in which Euclid’s options can be set. The final subsection lists the options, and provides guidance
as to the settings that (in our experience) will likely prove effective for minimizing execution time.

#include "HYPRE_parcsr_ls.h"

HYPRE_Solver eu;

HYPRE_Solver pcg_solver;

HYPRE_ParVector b, x;

HYPRE_ParCSRMatrix A;

//Instantiate the preconditioner.

HYPRE_EuclidCreate(comm, &eu);

//Optionally use the following two calls to set runtime options.

// 1. pass options from command line or string array.

HYPRE_EuclidSetParams(eu, argc, argv);

// 2. pass options from a configuration file.

HYPRE_EuclidSetParamsFromFile(eu, "filename");

//Set Euclid as the preconditioning method for some

//other solver, using the function calls HYPRE_EuclidSetup

//and HYPRE_EuclidSolve. We assume that the pcg_solver

//has been properly initialized.

HYPRE_PCGSetPrecond(pcg_solver,

(HYPRE_PtrToSolverFcn) HYPRE_EuclidSolve,

(HYPRE_PtrToSolverFcn) HYPRE_EuclidSetup,

eu);

//Solve the system by calling the Setup and Solve methods for,

38 CHAPTER 7. SOLVERS AND PRECONDITIONERS

//in this case, the HYPRE_PCG solver. We assume that A, b, and x

//have been properly initialized.

HYPRE_PCGSetup(pcg_solver, (HYPRE_Matrix)A, (HYPRE_Vector)b, (HYPRE_Vector)x);

HYPRE_PCGSolve(pcg_solver, (HYPRE_Matrix)parcsr_A, (HYPRE_Vector)b, (HYPRE_Vector)x);

//Destroy the Euclid preconditioning object.

HYPRE_EuclidDestroy(eu);

7.5.2 Setting options: examples

For expositional purposes, assume you wish to set the ILU(k) factorization level to the value k = 3.
There are several methods of accomplishing this. Internal to Euclid, options are stored in a simple
database that contains (name, value) pairs. Various of Euclid’s internal (private) functions query
this database to determine, at runtime, what action the user has requested. If you enter the option
“-eu stats 1”, a report will be printed when Euclid’s destructor is called; this report lists (among
other statistics) the options that were in effect during the factorization phase.
Method 1. By default, Euclid always looks for a file titled “database” in the working directory.

If it finds such a file, it opens it and attempts to parse it as a configuration file. Configuration files
should be formatted as follows.

>cat database

#this is an optional comment

-level 3

Any line in a configuration file that contains a “#” character in the first column is ignored. All
other lines should begin with an option name, followed by one or more blanks, followed by the
option value. Note that option names always begin with a “-” character. If you include an option
name that is not recognized by Euclid, no harm should ensue.
Method 2. To pass options on the command line, call

HYPRE_EuclidSetParams(HYPRE_Solver solver, int argc, char *argv[]);

where argc and argv carry the usual connotation: main(int argc, char *argv[]). If your
hypre application is called phoo, you can then pass options on the command line per the following
example.

mpirun -np 2 phoo -level 3

Since Euclid looks for the “database” file when HYPRE EuclidCreate is called, and parses the
command line when HYPRE EuclidSetParams is called, option values passed on the command line
will override any similar settings that may be contained in the “database” file. Also, if same option
name appears more than once on the command line, the final appearance determines the setting.
Some options, such as “-bj” (see next subsection) are boolean. Euclid always treats these

options as the value “1” (true) or “0” (false). When passing boolean options from the command

7.5. EUCLID 39

line the value may be committed, in which case it assumed to be “1.” Note, however, that when
boolean options are contained in a configuration file, either the “1” or “0” must stated explicitly.
Method 3. There are two ways in which you can read in options from a file whose name is other

than “database.” First, you can call HYPRE EuclidSetParamsFromFile to specify a configuration
filename. Second, if you have passed the command line arguments as described above in Method
2, you can then specify the configuration filename on the command line using the -db filename
filename option, e.g.,

mpirun -np 2 phoo -db_filename ../myConfigFile

7.5.3 Options summary

-level 〈int〉 Factorization level for ILU(k). Default: 1. Guidance: for 2D convection-diffusion and
similar problems, fastest solution time is typically obtained with levels 4 through 8. For 3D
problems fastest solution time is typically obtained with level 1.

-bj Use Block Jacobi ILU preconditioning instead of PILU. Default: 0 (false). Guidance: if sub-
domains contain relatively few nodes (less than 1,000), or the problem is not well partitioned,
Block Jacobi ILU may give faster solution time than PILU.

-eu stats When Euclid’s destructor is called a summary of runtime settings and timing information
is printed to stdout. Default: 0 (false). The timing marks in the report are the maximum
over all processors in the MPI communicator.

-eu mem When Euclid’s destructor is called a summary of Euclid’s memory usage is printed to std-
out. Default: 0 (false). The statistics are for the processor whose rank in MPI COMM WORLD
is 0.

-printTestData This option is used in our autotest procedures, and should not normally be
invoked by users.

The following options are partially implemented, but not yet fully functional (i.e, don’t use
them until further notice).

-sparseA 〈float〉 Drop-tolerance for ILU(k) factorization. Default: 0 (no dropping). Entries are
treated as zero if their absolute value is less than (sparseA * max), where “max” is the largest
absolute value of any entry in the row. Guidance: try this in conjunction with -rowScale.
CAUTION: If the coefficient matrix A is symmetric, this setting is likely to cause the filled
matrix, F = L+U−I, to be unsymmetric. This setting has no effect when ILUT factorization
is selected.

-rowScale Scale values prior to factorization such that the largest value in any row is +1 or -1.
Default: 0 (false). CAUTION: If the coefficient matrix A is symmetric, this setting is likely
to cause the filled matrix, F = L + U − I, to be unsymmetric. Guidance: if the matrix is
poorly scaled, turning on row scaling may help convergence.

40 CHAPTER 7. SOLVERS AND PRECONDITIONERS

-ilut 〈float〉 Use ILUT factorization instead of the default, ILU(k). Here, 〈float〉 is the drop
tolerance, which is relative to the largest absolute value of any entry in the row being factored.
CAUTION: If the coefficient matrix A is symmetric, this setting is likely to cause the filled
matrix, F = L+ U − I, to be unsymmetric.

-maxNzPerRow 〈int〉 This sets the maximum number of nonzeros that is permitted in any row of
F , in addition to the number that would result from an ILU(0) factorization. A negative value
indicates infinity (no limit). This setting is effective for both ILU(k) and ILUT factorization
methods. Default: infinity, for ILU(k); 5, for ILUT.

7.6 PILUT: Parallel Incomplete Factorization

PILUT is a parallel preconditioner based on Saad’s dual-threshold incomplete factorization algo-
rithm. The original version of PILUT was done by Karypis and Kumar [9] in terms of the Cray
SHMEM library. The code was subsequently modified by the hypre team: SHMEM was replaced by
MPI; some algorithmic changes were made; and it was software engineered to be interoperable with
several matrix implementations, including hypre’s ParCSR format, PETSc’s matrices, and ISIS++
RowMatrix. The algorithm produces an approximate factorization LU , with the preconditioner M
defined by M = LU .
Note: PILUT produces a nonsymmetric preconditioner even when the original matrix is sym-

metric. Thus, it is generally inappropriate for preconditioning symmetric methods such as Conju-
gate Gradient.

Parameters:

• SetMaxNonzerosPerRow(int LFIL); (Default: 20) Set the maximum number of nonze-
ros to be retained in each row of L and U . This parameter can be used to control the amount
of memory that L and U occupy. Generally, the larger the value of LFIL, the longer it takes
to calculate the preconditioner and to apply the preconditioner and the larger the storage re-
quirements, but this trades off versus a higher quality preconditioner that reduces the number
of iterations.

• SetDropTolerance(double tol); (Default: 0.0001) Set the tolerance (relative to the
2-norm of the row) below which entries in L and U are automatically dropped. PILUT first
drops entries based on the drop tolerance, and then retains the largest LFIL elements in each
row that remain. Smaller values of tol lead to more accurate preconditioners, but can also
lead to increases in the time to calculate the preconditioner.

Chapter 8

Additional Information

8.1 Building the Library

Usually, hypre can be built by simply typing configure followed by make in the top-level source
directory.

8.1.1 Library configuration

To automatically generate machine specific makefiles, type configure in the top level directory.
The configure script is a portable script generated by GNU Autoconf. It runs a series of tests
to determine characteristics of the machine on which it is running, and it uses the results of the
these tests to produce the machine specific makefiles, called ‘Makefile’, from template files called
‘Makefile.in’ in each directory. Once the makefiles are produced you can run make as you would
with any other makefile.
The configure script primarily does the following things:

• selects a compiler

• provides either optimization or debugging options for the compiler

• finds the headers and libraries for MPI

The configure script makes these decisions based on a hierarchical check. First, it attempts to
identify the machine on which it is running as a specific supported machine. Next it will try to
identify the architecture as a supported architecture. If both of these fail, generic default decisions
are made by the script. However, the script does have some command-line options that can give
you control over the choices it will make. You can type configure --help to see the list of all
of the command-line options to configure. This is the best resource for information on configure
options. Below is some additional helpful information. Be aware that not all command line options
have been tested on all machines and architectures, even supported machines and architectures.

–with- options Each --with- option that is listed in configure --help also was a --without-
option (usually the default, but not always). Additionally, all --with- options have a

41

42 CHAPTER 8. ADDITIONAL INFORMATION

--with-option=pathname. This is not a supported feature for all --with- options however
and may have no effect on configuration.

Compilers If you want to choose a compiler then is it recommended that you choose all (C, C++,
Fortran) compilers.

Compiler Flags To choose optimization or debug, use --enable-opt (default) or --enable-debug.
For other compiler flags use the --with-CFLAGS option.

BLAS By default, configure attempts to find the systems native optimized BLAS library. The
path for this library must be in the user’s PATH. To specify another BLAS library available, use
--with-BLAS=pathname or --with-BLAS=link list. To configure and compile without BLAS
use the --without-BLAS option.

Configure automatically generates a file HYPRE_config.h that includes all the header files found
to be necessary by configure. This file may be used to see how a compiled version of the library
was configured and may also be included by the user in his/her own code.

8.1.2 Linking to the Library

A program linking with hypre must be compiled with -I$HYPRE_DIR/include and linked with
-L$HYPRE_DIR/lib -lhypre library name... -lhypre library name..., where $HYPRE_DIR is the di-
rectory where hypre is installed. Additionally, any other libraries to which hypre is linked must also
be linked to by the users application. For example, the BLAS library or PETSc library are often
(but not always) linked in by hypre and would also need to be linked in by the users application.
It may be useful to reference the Makefile in the test subdirectory. This makefile is designed

to build test applications that link with and call hypre. All include and linking flags that are used
by hypre and needed by these test applications get exported to this file by the configure script.

8.2 Calling from Fortran

Although hypre is written in C, a Fortran interface is provided. The Fortran interface is very
similar to the C interface, and can be determined from the C interface by a few simple conversion
rules. These conversion rules are described below.
Let us start out with a simple example. Consider the following hypre prototype:

int HYPRE_IJMatrixSetValues(HYPRE_IJMatrix matrix,

int nrows, int *ncols,

const int *rows, const int *cols,

const double *values);

The corresponding Fortran code for calling this routine is as follows:

integer*8 matrix,

integer nrows, ncols(MAX_NCOLS)

8.3. BUG REPORTING 43

C parameter Fortran argument

int i integer i

double d double precision d

int *array integer array(*)

double *array double precision array(*)

char *string character string(*)

HYPRE_Type object integer*8 object

HYPRE_Type *object integer*8 object

Table 8.1: Conversion from C parameters to Fortran arguments

integer rows(MAX_ROWS), cols(MAX_COLS)

double precision values(MAX_COLS)

integer ierr

call HYPRE_IJMatrixSetValues(matrix, nrows, ncols, rows, cols,

& values, ierr)

The Fortran subroutine name is the same, unless the name is longer than 31 characters. In these
situations, the name is condensed to 31 characters, usually by simple truncation. For now, users
should look at the Fortran drivers in the test directory for the correct condensed names. In the
future, this aspect of the interface conversion will be made consistent and straightforward.
The Fortran subroutine argument list is always the same as the corresponding C routine, except

that the error return code ierr is always last. Conversion from C parameter types to Fortran
argument type is summarized in Table 8.1. Arrays arguments in hypre are always of type (int *)

or (double *), and the corresponding Fortran types are simply integer or double precision

arrays. Note that the Fortran arrays may be indexed in any manner. For example, an integer array
of length N may be declared in fortran as either of the following:

integer array(N)

integer array(0:N-1)

hypre objects can usually be declared as in the table because integer*8 usually corresponds to
the length of a pointer. However, there may be some machines where this is not the case (although
we are not aware of any at this time). On such machines, the Fortran type for a hypre object
should be an integer of the appropriate length.

8.3 Bug Reporting

hypre has an automated bug reporting mechanism in place that may be used as a resource for
submitting bugs, desired features, and documentation problems, as well as querying the status of
previous reports. Access http://www-casc.llnl.gov/bugs for full bug tracking details or to submit
or query a bug report. When using the CASC bug reporting site for the first time, click on “Open
a new Bugzilla account” under the “User login account management” heading.

44 CHAPTER 8. ADDITIONAL INFORMATION

Bibliography

[1] S. F. Ashby and R. D. Falgout. A parallel multigrid preconditioned conjugate gradient al-
gorithm for groundwater flow simulations. Nuclear Science and Engineering, 124(1):145–159,
September 1996. Also available as LLNL Technical Report UCRL-JC-122359.

[2] P. N. Brown, R. D. Falgout, and J. E. Jones. Semicoarsening multigrid on distributed memory
machines. SIAM J. Sci. Comput., 21(5):1823–1834, 2000. Special issue on the Fifth Copper
Mountain Conference on Iterative Methods. Also available as LLNL technical report UCRL-
JC-130720.

[3] E. Chow. A priori sparsity patterns for parallel sparse approximate inverse preconditioners.
SIAM J. Sci. Comput., 21:1804–1822, 2000.

[4] R. L. Clay et al. An annotated reference guide to the Finite Element Interface (FEI) specifica-
tion, Version 1.0. Technical Report SAND99-8229, Sandia National Laboratories, Livermore,
CA, 1999.

[5] R. D. Falgout and J. E. Jones. Multigrid on massively parallel architectures. In E. Dick,
K. Riemslagh, and J. Vierendeels, editors, Multigrid Methods VI, volume 14 of Lecture Notes

in Computational Science and Engineering, pages 101–107, Berlin, 2000. Springer. Proc. of
the Sixth European Multigrid Conference held in Gent, Belgium, September 27-30, 1999. Also
available as LLNL technical report UCRL-JC-133948.

[6] V. E. Henson and U. M. Yang. BoomerAMG: a parallel algebraic multigrid solver and pre-
conditioner. Applied Numerical Mathematics. , to appear. Also available as LLNL technical
report UCRL-JC-141495.

[7] D. Hysom and A. Pothen. Efficient parallel computation of ILU(k) preconditioners. SC99,
ACM, November 1999. published on CDROM, ISBN #1-58113-091-0, ACM Order #415990,
IEEE Computer Society Press Order # RS00197.

[8] D. Hysom and A. Pothen. A scalable parallel algorithm for incomplete factor preconditioning.
SIAM J. Sci. Comput., 22(6):2194–2215, 2001.

[9] G. Karpis and V. Kumar. Parallel threshold-based ILU factorization. Technical Report 061,
University of Minnesota, Department of Computer Science/Army HPC Research Center, Min-
neapolis, MN 5455, 1998.

45

46 BIBLIOGRAPHY

[10] S. Schaffer. A semi-coarsening multigrid method for elliptic partial differential equations with
highly discontinuous and anisotropic coefficients. SIAM J. Sci. Comput., 20(1):228–242, 1998.

