
Mercury: Enabling Remote Procedure Call for

High-Performance Computing

J. Soumagne, D. Kimpe, J. Zounmevo, M. Chaarawi, Q.Koziol, A. Afsahi, and R. Ross

The HDF Group, Argonne National Laboratory, Queen’s University

September 24, 2013



RPC and High-Performance Computing

⬛ Remote Procedure Call (RPC)
⬛ Allow local calls to be transparently executed on remote resources
⬛ Already widely used to support distributed services

⬛ Google Protocol Buffers, Facebook Thrift, CORBA, Java RMI, etc

⬛ Typical HPC workflow

1. Compute and produce data
2. Store data
3. Analyze data
4. Visualize data

⬛ Distributed HPC workflow
⬛ Nodes/systems dedicated to specific task

⬛ More important at Exascale for processing data
⬛ Compute nodes with minimal environment
⬛ I/O, analysis, visualization libraries only available on remote resources

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 2



RPC and High-Performance Computing

⬛ Remote Procedure Call (RPC)
⬛ Allow local calls to be transparently executed on remote resources
⬛ Already widely used to support distributed services

⬛ Google Protocol Buffers, Facebook Thrift, CORBA, Java RMI, etc

⬛ Typical HPC workflow

1. Compute and produce data
2. Store data
3. Analyze data
4. Visualize data

⬛ Distributed HPC workflow
⬛ Nodes/systems dedicated to specific task

⬛ More important at Exascale for processing data
⬛ Compute nodes with minimal environment
⬛ I/O, analysis, visualization libraries only available on remote resources

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 2



RPC and High-Performance Computing

⬛ Remote Procedure Call (RPC)
⬛ Allow local calls to be transparently executed on remote resources
⬛ Already widely used to support distributed services

⬛ Google Protocol Buffers, Facebook Thrift, CORBA, Java RMI, etc

⬛ Typical HPC workflow

1. Compute and produce data
2. Store data
3. Analyze data
4. Visualize data

⬛ Distributed HPC workflow
⬛ Nodes/systems dedicated to specific task

⬛ More important at Exascale for processing data
⬛ Compute nodes with minimal environment
⬛ I/O, analysis, visualization libraries only available on remote resources

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 2



RPC and High-Performance Computing

⬛ Remote Procedure Call (RPC)
⬛ Allow local calls to be transparently executed on remote resources
⬛ Already widely used to support distributed services

⬛ Google Protocol Buffers, Facebook Thrift, CORBA, Java RMI, etc

⬛ Typical HPC workflow

1. Compute and produce data
2. Store data
3. Analyze data
4. Visualize data

⬛ Distributed HPC workflow
⬛ Nodes/systems dedicated to specific task

⬛ More important at Exascale for processing data
⬛ Compute nodes with minimal environment
⬛ I/O, analysis, visualization libraries only available on remote resources

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 2



RPC and High-Performance Computing

⬛ Remote Procedure Call (RPC)
⬛ Allow local calls to be transparently executed on remote resources
⬛ Already widely used to support distributed services

⬛ Google Protocol Buffers, Facebook Thrift, CORBA, Java RMI, etc

⬛ Typical HPC workflow

1. Compute and produce data
2. Store data
3. Analyze data
4. Visualize data

⬛ Distributed HPC workflow
⬛ Nodes/systems dedicated to specific task

⬛ More important at Exascale for processing data
⬛ Compute nodes with minimal environment
⬛ I/O, analysis, visualization libraries only available on remote resources

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 2



Mercury

⬛ Objective: create a layer that can serve as a basis for storage systems,
I/O forwarders or analysis frameworks

⬛ Cannot re-use common RPC frameworks as-is
⬛ Do not support large data transfers
⬛ Mostly built on top of TCP/IP protocols

⬛ Use in HPC systems means that it must support
⬛ Non-blocking transfers
⬛ Large data arguments
⬛ Native transport protocols

⬛ Similar approaches with some differences
⬛ I/O Forwarding Scalability Layer (IOFSL)
⬛ NEtwork Scalable Service Interface (Nessie)
⬛ Lustre RPC

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 3



Mercury

⬛ Objective: create a layer that can serve as a basis for storage systems,
I/O forwarders or analysis frameworks

⬛ Cannot re-use common RPC frameworks as-is
⬛ Do not support large data transfers
⬛ Mostly built on top of TCP/IP protocols

⬛ Use in HPC systems means that it must support
⬛ Non-blocking transfers
⬛ Large data arguments
⬛ Native transport protocols

⬛ Similar approaches with some differences
⬛ I/O Forwarding Scalability Layer (IOFSL)
⬛ NEtwork Scalable Service Interface (Nessie)
⬛ Lustre RPC

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 3



Mercury

⬛ Objective: create a layer that can serve as a basis for storage systems,
I/O forwarders or analysis frameworks

⬛ Cannot re-use common RPC frameworks as-is
⬛ Do not support large data transfers
⬛ Mostly built on top of TCP/IP protocols

⬛ Use in HPC systems means that it must support
⬛ Non-blocking transfers
⬛ Large data arguments
⬛ Native transport protocols

⬛ Similar approaches with some differences
⬛ I/O Forwarding Scalability Layer (IOFSL)
⬛ NEtwork Scalable Service Interface (Nessie)
⬛ Lustre RPC

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 3



Mercury

⬛ Objective: create a layer that can serve as a basis for storage systems,
I/O forwarders or analysis frameworks

⬛ Cannot re-use common RPC frameworks as-is
⬛ Do not support large data transfers
⬛ Mostly built on top of TCP/IP protocols

⬛ Use in HPC systems means that it must support
⬛ Non-blocking transfers
⬛ Large data arguments
⬛ Native transport protocols

⬛ Similar approaches with some differences
⬛ I/O Forwarding Scalability Layer (IOFSL)
⬛ NEtwork Scalable Service Interface (Nessie)
⬛ Lustre RPC

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 3



Overview

⬛ Function arguments / metadata transferred with RPC request
⬛ Two-sided model with unexpected / expected messaging
⬛ Message size limited to a few kilobytes

⬛ Bulk data transferred using separate and dedicated API
⬛ One-sided model that exposes RMA semantics

⬛ Network Abstraction Layer
⬛ Allows definition of multiple network plugins
⬛ Two functional plugins MPI (MPI2) and BMI but implement one-sided over

two-sided
⬛ More plugins to come

Client Server

RPC proc

Network Abstraction Layer

RPC proc

Metadata (unexpected
+ expected messaging)

Bulk Data (RMA transfer)

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 4



Overview
⬛ Function arguments / metadata transferred with RPC request

⬛ Two-sided model with unexpected / expected messaging
⬛ Message size limited to a few kilobytes

⬛ Bulk data transferred using separate and dedicated API
⬛ One-sided model that exposes RMA semantics

⬛ Network Abstraction Layer
⬛ Allows definition of multiple network plugins
⬛ Two functional plugins MPI (MPI2) and BMI but implement one-sided over

two-sided
⬛ More plugins to come

Client Server

RPC proc

Network Abstraction Layer

RPC proc

Metadata (unexpected
+ expected messaging)

Bulk Data (RMA transfer)

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 4



Overview
⬛ Function arguments / metadata transferred with RPC request

⬛ Two-sided model with unexpected / expected messaging
⬛ Message size limited to a few kilobytes

⬛ Bulk data transferred using separate and dedicated API
⬛ One-sided model that exposes RMA semantics

⬛ Network Abstraction Layer
⬛ Allows definition of multiple network plugins
⬛ Two functional plugins MPI (MPI2) and BMI but implement one-sided over

two-sided
⬛ More plugins to come

Client Server

RPC proc

Network Abstraction Layer

RPC proc

Metadata (unexpected
+ expected messaging)

Bulk Data (RMA transfer)

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 4



Overview
⬛ Function arguments / metadata transferred with RPC request

⬛ Two-sided model with unexpected / expected messaging
⬛ Message size limited to a few kilobytes

⬛ Bulk data transferred using separate and dedicated API
⬛ One-sided model that exposes RMA semantics

⬛ Network Abstraction Layer
⬛ Allows definition of multiple network plugins
⬛ Two functional plugins MPI (MPI2) and BMI but implement one-sided over

two-sided
⬛ More plugins to come

Client Server

RPC proc

Network Abstraction Layer

RPC proc

Metadata (unexpected
+ expected messaging)

Bulk Data (RMA transfer)

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 4



Remote Procedure Call

⬛ Mechanism used to send an RPC request

Client Server

id1 ... id𝑁 id1 ... id𝑁

1. Register call
and get request id

1. Register call
and get request id

2. Post unexpected send
with request id and serial-
ized parameters + Pre-post
receive for server response

2. Post receive for
unexpected request

3. Execute call4. Test completion of
send / receive requests

4. Post send with
serialized response

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 5



Remote Procedure Call

⬛ Mechanism used to send an RPC request

Client Server

id1 ... id𝑁 id1 ... id𝑁

1. Register call
and get request id

1. Register call
and get request id

2. Post unexpected send
with request id and serial-
ized parameters + Pre-post
receive for server response

2. Post receive for
unexpected request

3. Execute call4. Test completion of
send / receive requests

4. Post send with
serialized response

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 5



Remote Procedure Call

⬛ Mechanism used to send an RPC request

Client Server

id1 ... id𝑁 id1 ... id𝑁

1. Register call
and get request id

1. Register call
and get request id

2. Post unexpected send
with request id and serial-
ized parameters + Pre-post
receive for server response

2. Post receive for
unexpected request

3. Execute call4. Test completion of
send / receive requests

4. Post send with
serialized response

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 5



Remote Procedure Call

⬛ Mechanism used to send an RPC request

Client Server

id1 ... id𝑁 id1 ... id𝑁

1. Register call
and get request id

1. Register call
and get request id

2. Post unexpected send
with request id and serial-
ized parameters + Pre-post
receive for server response

2. Post receive for
unexpected request

3. Execute call

4. Test completion of
send / receive requests

4. Post send with
serialized response

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 5



Remote Procedure Call

⬛ Mechanism used to send an RPC request

Client Server

id1 ... id𝑁 id1 ... id𝑁

1. Register call
and get request id

1. Register call
and get request id

2. Post unexpected send
with request id and serial-
ized parameters + Pre-post
receive for server response

2. Post receive for
unexpected request

3. Execute call

4. Test completion of
send / receive requests

4. Post send with
serialized response

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 5



Remote Procedure Call: Example

⬛ Client snippet:

open_in_t in_struct;
open_out_t out_struct;

/* Initialize the interface */
[...]
NA_Addr_lookup(network_class, server_name, &server_addr);

/* Register RPC call */
rpc_id = HG_REGISTER(”open”, open_in_t, open_out_t);

/* Fill input parameters */
[...]
in_struct.in_param0 = in_param0;

/* Send RPC request */
HG_Forward(server_addr, rpc_id, &in_struct, &out_struct,

&rpc_request);

/* Wait for completion */
HG_Wait(rpc_request, HG_MAX_IDLE_TIME, HG_STATUS_IGNORE);

/* Get output parameters */
[...]
out_param0 = out_struct.out_param0;

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 6



Remote Procedure Call: Example

⬛ Server snippet (main loop):

int main(int argc, void *argv[])
{
/* Initialize the interface */
[...]

/* Register RPC call */
HG_HANDLER_REGISTER(”open”, open_rpc, open_in_t, open_out_t);

/* Process RPC calls */
while (!finalized) {
HG_Handler_process(timeout, HG_STATUS_IGNORE);

}

/* Finalize the interface */
[...]

}

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 7



Remote Procedure Call: Example

⬛ Server snippet (RPC callback):

int open_rpc(hg_handle_t handle)
{
open_in_t in_struct;
open_out_t out_struct;

/* Get input parameters and bulk handle */
HG_Handler_get_input(handle, &in_struct);
[...]
in_param0 = in_struct.in_param0;

/* Execute call */
out_param0 = open(in_param0, ...);

/* Fill output structure */
open_out_struct.out_param0 = out_param0;

/* Send response back */
HG_Handler_start_output(handle, &out_struct);

return HG_SUCCESS;
}

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 8



Bulk Data Transfers

⬛ Mechanism used to transfer bulk data
⬛ Transfer controlled by server
⬛ Memory buffer abstracted by memory handle
⬛ Client memory handle must be serialized and sent to the server

Client Server

1. Register local memory
segment and get handle

1. Register local memory
segment and get handle

2. Send serialized
memory handle

3. Post put/get opera-
tion using local/deseri-
alized remote handles 4. Test completion

of remote put/get

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 9



Bulk Data Transfers

⬛ Mechanism used to transfer bulk data
⬛ Transfer controlled by server
⬛ Memory buffer abstracted by memory handle
⬛ Client memory handle must be serialized and sent to the server

Client Server

1. Register local memory
segment and get handle

1. Register local memory
segment and get handle

2. Send serialized
memory handle

3. Post put/get opera-
tion using local/deseri-
alized remote handles 4. Test completion

of remote put/get

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 9



Bulk Data Transfers

⬛ Mechanism used to transfer bulk data
⬛ Transfer controlled by server
⬛ Memory buffer abstracted by memory handle
⬛ Client memory handle must be serialized and sent to the server

Client Server

1. Register local memory
segment and get handle

1. Register local memory
segment and get handle

2. Send serialized
memory handle

3. Post put/get opera-
tion using local/deseri-
alized remote handles 4. Test completion

of remote put/get

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 9



Bulk Data Transfers

⬛ Mechanism used to transfer bulk data
⬛ Transfer controlled by server
⬛ Memory buffer abstracted by memory handle
⬛ Client memory handle must be serialized and sent to the server

Client Server

1. Register local memory
segment and get handle

1. Register local memory
segment and get handle

2. Send serialized
memory handle

3. Post put/get opera-
tion using local/deseri-
alized remote handles

4. Test completion
of remote put/get

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 9



Bulk Data Transfers

⬛ Mechanism used to transfer bulk data
⬛ Transfer controlled by server
⬛ Memory buffer abstracted by memory handle
⬛ Client memory handle must be serialized and sent to the server

Client Server

1. Register local memory
segment and get handle

1. Register local memory
segment and get handle

2. Send serialized
memory handle

3. Post put/get opera-
tion using local/deseri-
alized remote handles 4. Test completion

of remote put/get

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 9



Bulk Data Transfers: Example

⬛ Client snippet (contiguous):

/* Initialize the interface */
[...]
/* Register RPC call */
rpc_id = HG_REGISTER(”write”, write_in_t, write_out_t);

/* Create bulk handle */
HG_Bulk_handle_create(buf, buf_size,

HG_BULK_READ_ONLY, &bulk_handle);

/* Attach bulk handle to input parameters */
[...]
in_struct.bulk_handle = bulk_handle;

/* Send RPC request */
HG_Forward(server_addr, rpc_id, &in_struct, &out_struct,

&rpc_request);

/* Wait for completion */
HG_Wait(rpc_request, HG_MAX_IDLE_TIME, HG_STATUS_IGNORE);

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 10



Bulk Data Transfers: Example

⬛ Server snippet (RPC callback):

/* Get input parameters and bulk handle */
HG_Handler_get_input(handle, &in_struct);
[...]
bulk_handle = in_struct.bulk_handle;

/* Get size of data and allocate buffer */
nbytes = HG_Bulk_handle_get_size(bulk_handle);
buf = malloc(nbytes);

/* Create block handle to read data */
HG_Bulk_block_handle_create(buf, nbytes,

HG_BULK_READWRITE, &bulk_block_handle);

/* Start reading bulk data */
HG_Bulk_read_all(client_addr, bulk_handle,

bulk_block_handle, &bulk_request);

/* Wait for completion */
HG_Bulk_wait(bulk_request,

HG_MAX_IDLE_TIME, HG_STATUS_IGNORE);

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 11



Non-contiguous Bulk Data Transfers

⬛ Non contiguous memory is registered through bulk data interface...

int HG_Bulk_handle_create_segments(
hg_bulk_segment_t *bulk_segments,
size_t segment_count,
unsigned long flags,
hg_bulk_t *handle);

⬛ ...which maps to network abstraction layer if plugin supports it...

int NA_Mem_register_segments(na_class_t *network_class,
na_segment_t *segments,
na_size_t segment_count,
unsigned long flags,
na_mem_handle_t *mem_handle);

⬛ ...otherwise several na_mem_handle_t created and hg_bulk_tmay
therefore have a variable size
⬛ If serialized hg_bulk_t too large, use bulk data API to register memory

and pull memory descriptors from server

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 12



Non-contiguous Bulk Data Transfers: API

⬛ Non-blocking read

int HG_Bulk_read(na_addr_t addr,
hg_bulk_t bulk_handle,
size_t bulk_offset,
hg_bulk_block_t block_handle,
size_t block_offset,
size_t block_size,
hg_bulk_request_t *bulk_request);

⬛ Non-blocking write

int HG_Bulk_write(na_addr_t addr,
hg_bulk_t bulk_handle,
size_t bulk_offset,
hg_bulk_block_t block_handle,
size_t block_offset,
size_t block_size,
hg_bulk_request_t *bulk_request);

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 13



Non-contiguous Bulk Data Transfers: Example

⬛ Client snippet:

/* Initialize the interface */
[...]
/* Register RPC call */
rpc_id = HG_REGISTER(”write”, write_in_t, write_out_t);

/* Provide data layout information */
for (i = 0; i < BULK_NX ; i++) {
segments[i].address = buf[i];
segments[i].size = BULK_NY * sizeof(int);

}

/* Create bulk handle with segment info */
HG_Bulk_handle_create_segments(segments, BULK_NX,

HG_BULK_READ_ONLY, &bulk_handle);

/* Attach bulk handle to input parameters */
[...]
in_struct.bulk_handle = bulk_handle;

/* Send RPC request */
HG_Forward(server_addr, rpc_id, &in_struct, &out_struct,

&rpc_request);

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 14



Non-contiguous Bulk Data Transfers: Example

⬛ Server snippet:

/* Get input parameters and bulk handle */
HG_Handler_get_input(handle, &in_struct);
[...]
bulk_handle = in_struct.bulk_handle;

/* Get size of data and allocate buffer */
nbytes = HG_Bulk_handle_get_size(bulk_handle);
buf = malloc(nbytes);

/* Create block handle to read data */
HG_Bulk_block_handle_create(buf, nbytes,

HG_BULK_READWRITE, &bulk_block_handle);

/* Start reading bulk data */
HG_Bulk_read_all(client_addr, bulk_handle,

bulk_block_handle, &bulk_request);

/* Wait for completion */
HG_Bulk_wait(bulk_request,

HG_MAX_IDLE_TIME, HG_STATUS_IGNORE);

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 15



Fine-grained Transfers

⬛ Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

⬛ Makes us pay the latency of an entire RMA read

⬛ Solution

⬛ Pipeline transfers and overlap communication / execution
⬛ Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 16



Fine-grained Transfers

⬛ Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

⬛ Makes us pay the latency of an entire RMA read

⬛ Solution

⬛ Pipeline transfers and overlap communication / execution
⬛ Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 16



Fine-grained Transfers

⬛ Two issues with previous example

1. Server memory size is limited

2. Server waits for all the data to arrive before writing
⬛ Makes us pay the latency of an entire RMA read

⬛ Solution

⬛ Pipeline transfers and overlap communication / execution
⬛ Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 16



Fine-grained Transfers

⬛ Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

⬛ Makes us pay the latency of an entire RMA read

⬛ Solution

⬛ Pipeline transfers and overlap communication / execution
⬛ Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 16



Fine-grained Transfers

⬛ Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

⬛ Makes us pay the latency of an entire RMA read

⬛ Solution

⬛ Pipeline transfers and overlap communication / execution
⬛ Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 16



Fine-grained Transfers

⬛ Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

⬛ Makes us pay the latency of an entire RMA read

⬛ Solution
⬛ Pipeline transfers and overlap communication / execution

⬛ Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 16



Fine-grained Transfers

⬛ Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

⬛ Makes us pay the latency of an entire RMA read

⬛ Solution
⬛ Pipeline transfers and overlap communication / execution

⬛ Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 16



Fine-grained Transfers

⬛ Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

⬛ Makes us pay the latency of an entire RMA read

⬛ Solution
⬛ Pipeline transfers and overlap communication / execution

⬛ Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 16



Fine-grained Transfers

⬛ Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

⬛ Makes us pay the latency of an entire RMA read

⬛ Solution
⬛ Pipeline transfers and overlap communication / execution

⬛ Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 16



Fine-grained Transfers

⬛ Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

⬛ Makes us pay the latency of an entire RMA read

⬛ Solution
⬛ Pipeline transfers and overlap communication / execution

⬛ Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 16



Fine-grained Transfers

⬛ Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

⬛ Makes us pay the latency of an entire RMA read

⬛ Solution
⬛ Pipeline transfers and overlap communication / execution

⬛ Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 3

1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 16



Fine-grained Transfers

⬛ Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

⬛ Makes us pay the latency of an entire RMA read

⬛ Solution
⬛ Pipeline transfers and overlap communication / execution

⬛ Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 3

1 2 3W

1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 16



Fine-grained Transfers

⬛ Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

⬛ Makes us pay the latency of an entire RMA read

⬛ Solution
⬛ Pipeline transfers and overlap communication / execution

⬛ Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W

1 2 3E

1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 16



Fine-grained Transfers

⬛ Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

⬛ Makes us pay the latency of an entire RMA read

⬛ Solution
⬛ Pipeline transfers and overlap communication / execution

⬛ Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E

1 2 3W

1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 16



Fine-grained Transfers

⬛ Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

⬛ Makes us pay the latency of an entire RMA read

⬛ Solution
⬛ Pipeline transfers and overlap communication / execution

⬛ Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W

1 2 3E

1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 16



Fine-grained Transfers

⬛ Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

⬛ Makes us pay the latency of an entire RMA read

⬛ Solution
⬛ Pipeline transfers and overlap communication / execution

⬛ Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E

1 2 3W

1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 16



Fine-grained Transfers

⬛ Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

⬛ Makes us pay the latency of an entire RMA read

⬛ Solution
⬛ Pipeline transfers and overlap communication / execution

⬛ Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W

1 2 3E

1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 16



Fine-grained Transfers

⬛ Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

⬛ Makes us pay the latency of an entire RMA read

⬛ Solution
⬛ Pipeline transfers and overlap communication / execution

⬛ Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E

1 2 3E

1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 16



Fine-grained Transfers

⬛ Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

⬛ Makes us pay the latency of an entire RMA read

⬛ Solution
⬛ Pipeline transfers and overlap communication / execution

⬛ Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E

1 2 3E

1 2 3E 1 2 3E 1 2E 1E E

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 16



Fine-grained Transfers

⬛ Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

⬛ Makes us pay the latency of an entire RMA read

⬛ Solution
⬛ Pipeline transfers and overlap communication / execution

⬛ Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E

1 2 3E

1 2 3E 1 2E 1E E

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 16



Fine-grained Transfers

⬛ Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

⬛ Makes us pay the latency of an entire RMA read

⬛ Solution
⬛ Pipeline transfers and overlap communication / execution

⬛ Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E

1 2 3E

1 2E 1E E

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 16



Fine-grained Transfers

⬛ Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

⬛ Makes us pay the latency of an entire RMA read

⬛ Solution
⬛ Pipeline transfers and overlap communication / execution

⬛ Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E

1 2E

1E E

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 16



Fine-grained Transfers

⬛ Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

⬛ Makes us pay the latency of an entire RMA read

⬛ Solution
⬛ Pipeline transfers and overlap communication / execution

⬛ Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E

1E

E

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 16



Fine-grained Transfers

⬛ Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

⬛ Makes us pay the latency of an entire RMA read

⬛ Solution
⬛ Pipeline transfers and overlap communication / execution

⬛ Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E

E

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 16



Fine-grained Transfers

⬛ Two issues with previous example

1. Server memory size is limited
2. Server waits for all the data to arrive before writing

⬛ Makes us pay the latency of an entire RMA read

⬛ Solution
⬛ Pipeline transfers and overlap communication / execution

⬛ Transfers can complete while writing / executing the RPC call

Data buffer (nbytes)

0 1 2 31 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3W 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2 3E 1 2E 1E E

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 16



Performance Evaluation

⬛ Scalability / aggregate bandwidth of RPC requests to single server with
bulk data transfer (QDR 4X Infiniband cluster)

0

1000

2000

3000

4000

5000

6000

2 4 8 16 32 64 128 256

A
g
g
re
g
a
te
b
a
n
d
w
id
th

(M
B
/s
)

Number of client processes

mercury w/ pipelining

mercury w/o pipelining

osu_bwmax

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 17



Performance Evaluation

⬛ Scalability / aggregate bandwidth of RPC requests to single server with
bulk data transfer (QDR 4X Infiniband cluster)

0

1000

2000

3000

4000

5000

6000

2 4 8 16 32 64 128 256

A
g
g
re
g
a
te
b
a
n
d
w
id
th

(M
B
/s
)

Number of client processes

mercury w/ pipelining

mercury w/o pipelining

osu_bwmax

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 17



Performance Evaluation

⬛ Scalability / aggregate bandwidth of RPC requests to single server with
bulk data transfer (Cray XE6)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2 4 8 16 32 64 128 256

A
g
g
re
g
a
te
b
a
n
d
w
id
th

(M
B
/s
)

Number of client processes

mercury w/ pipelining

mercury w/o pipelining

osu_bwmax

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 18



Performance Evaluation

⬛ Scalability / aggregate bandwidth of RPC requests to single server with
bulk data transfer (Cray XE6)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2 4 8 16 32 64 128 256

A
g
g
re
g
a
te
b
a
n
d
w
id
th

(M
B
/s
)

Number of client processes

mercury w/ pipelining

mercury w/o pipelining

osu_bwmax

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 18



Performance Evaluation

⬛ NULL RPC request execution on Cray XE6

⬛ With XDR encoding: 𝟤𝟥µs
⬛ Without XDR encoding: 𝟤𝟢µs

⬛ About 𝟧𝟢 𝟢𝟢𝟢 calls /s
⬛ Still working on improving that result
⬛ Can depend on server side CPU affinity etc

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 19



Performance Evaluation

⬛ NULL RPC request execution on Cray XE6
⬛ With XDR encoding: 𝟤𝟥µs

⬛ Without XDR encoding: 𝟤𝟢µs
⬛ About 𝟧𝟢 𝟢𝟢𝟢 calls /s
⬛ Still working on improving that result
⬛ Can depend on server side CPU affinity etc

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 19



Performance Evaluation

⬛ NULL RPC request execution on Cray XE6
⬛ With XDR encoding: 𝟤𝟥µs
⬛ Without XDR encoding: 𝟤𝟢µs

⬛ About 𝟧𝟢 𝟢𝟢𝟢 calls /s
⬛ Still working on improving that result
⬛ Can depend on server side CPU affinity etc

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 19



Performance Evaluation

⬛ NULL RPC request execution on Cray XE6
⬛ With XDR encoding: 𝟤𝟥µs
⬛ Without XDR encoding: 𝟤𝟢µs

⬛ About 𝟧𝟢 𝟢𝟢𝟢 calls /s
⬛ Still working on improving that result
⬛ Can depend on server side CPU affinity etc

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 19



Macros

⬛ Generate as much boilerplate code as possible for

⬛ Serialization / deserialization of parameters
⬛ Sending / executing RPC

⬛ Single include header file shared between client and server
⬛ Make use of BOOST preprocessor for macro definition

⬛ Generate serialization / deserialization functions and structure that
contains parameters

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 20



Macros

⬛ Generate as much boilerplate code as possible for
⬛ Serialization / deserialization of parameters

⬛ Sending / executing RPC

⬛ Single include header file shared between client and server
⬛ Make use of BOOST preprocessor for macro definition

⬛ Generate serialization / deserialization functions and structure that
contains parameters

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 20



Macros

⬛ Generate as much boilerplate code as possible for
⬛ Serialization / deserialization of parameters
⬛ Sending / executing RPC

⬛ Single include header file shared between client and server
⬛ Make use of BOOST preprocessor for macro definition

⬛ Generate serialization / deserialization functions and structure that
contains parameters

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 20



Macros

⬛ Generate as much boilerplate code as possible for
⬛ Serialization / deserialization of parameters
⬛ Sending / executing RPC

⬛ Single include header file shared between client and server

⬛ Make use of BOOST preprocessor for macro definition

⬛ Generate serialization / deserialization functions and structure that
contains parameters

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 20



Macros

⬛ Generate as much boilerplate code as possible for
⬛ Serialization / deserialization of parameters
⬛ Sending / executing RPC

⬛ Single include header file shared between client and server
⬛ Make use of BOOST preprocessor for macro definition

⬛ Generate serialization / deserialization functions and structure that
contains parameters

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 20



Macros

⬛ Generate as much boilerplate code as possible for
⬛ Serialization / deserialization of parameters
⬛ Sending / executing RPC

⬛ Single include header file shared between client and server
⬛ Make use of BOOST preprocessor for macro definition

⬛ Generate serialization / deserialization functions and structure that
contains parameters

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 20



Macros: Serialization / Deserialization

MERCURY_GEN_PROC(
open_in_t,
((hg_string_t)(path))
((int32_t)(flags))
((uint32_t)(mode))

)

Macro

MERCURY_GEN_PROC(
struct_type_name,
fields

)

/* Define open_in_t */
typedef struct {

hg_string_t path;
int32_t flags;
uint32_t mode;

} open_in_t;

/* Define hg_proc_open_in_t */
static inline
int
hg_proc_open_in_t(hg_proc_t proc, void *data)
{

int ret = HG_SUCCESS;
open_in_t *struct_data = (open_in_t *) data;

ret = hg_proc_hg_string_t(proc, &struct_data->path);
if (ret != HG_SUCCESS) {

HG_ERROR_DEFAULT(”Proc error”);
ret = HG_FAIL;
return ret;

}

ret = hg_proc_int32_t(proc, &struct_data->flags);
if (ret != HG_SUCCESS) {

HG_ERROR_DEFAULT(”Proc error”);
ret = HG_FAIL;
return ret;

}

ret = hg_proc_uint32_t(proc, &struct_data->mode);
if (ret != HG_SUCCESS) {

HG_ERROR_DEFAULT(”Proc error”);
ret = HG_FAIL;
return ret;

}

return ret;
}

Generated Code

Generates proc
and struct

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 21



Current and Future Work

⬛ Implement plugins that makes use of true RMA capability
⬛ ibverbs
⬛ SSM
⬛ etc

⬛ Checksum parameters for data integrity
⬛ Support cancel operations of ongoing RPC calls
⬛ Integrate Mercury into other projects

⬛ Mercury POSIX: Forward POSIX calls using dynamic linking
⬛ Triton
⬛ IOFSL
⬛ HDF5 virtual object plugins

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 22



Current and Future Work

⬛ Implement plugins that makes use of true RMA capability
⬛ ibverbs
⬛ SSM
⬛ etc

⬛ Checksum parameters for data integrity
⬛ Support cancel operations of ongoing RPC calls
⬛ Integrate Mercury into other projects

⬛ Mercury POSIX: Forward POSIX calls using dynamic linking
⬛ Triton
⬛ IOFSL
⬛ HDF5 virtual object plugins

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 22



Current and Future Work

⬛ Implement plugins that makes use of true RMA capability
⬛ ibverbs
⬛ SSM
⬛ etc

⬛ Checksum parameters for data integrity

⬛ Support cancel operations of ongoing RPC calls
⬛ Integrate Mercury into other projects

⬛ Mercury POSIX: Forward POSIX calls using dynamic linking
⬛ Triton
⬛ IOFSL
⬛ HDF5 virtual object plugins

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 22



Current and Future Work

⬛ Implement plugins that makes use of true RMA capability
⬛ ibverbs
⬛ SSM
⬛ etc

⬛ Checksum parameters for data integrity
⬛ Support cancel operations of ongoing RPC calls

⬛ Integrate Mercury into other projects
⬛ Mercury POSIX: Forward POSIX calls using dynamic linking
⬛ Triton
⬛ IOFSL
⬛ HDF5 virtual object plugins

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 22



Current and Future Work

⬛ Implement plugins that makes use of true RMA capability
⬛ ibverbs
⬛ SSM
⬛ etc

⬛ Checksum parameters for data integrity
⬛ Support cancel operations of ongoing RPC calls
⬛ Integrate Mercury into other projects

⬛ Mercury POSIX: Forward POSIX calls using dynamic linking
⬛ Triton
⬛ IOFSL
⬛ HDF5 virtual object plugins

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 22



Questions

⬛ Mercury project page
⬛ http://www.mcs.anl.gov/projects/mercury
⬛ Download / Documentation / Source / Mailing-lists

⬛ Work supported by
⬛ The Exascale FastForward project, LLNS subcontract no. B599860
⬛ The Office of Advanced Scientific Computer Research, Office of Science,

U.S. Department of Energy, under Contract DE-AC02-06CH11357

September 24, 2013 Mercury: Enabling Remote Procedure Call for High-Performance Computing 23

http://www.mcs.anl.gov/projects/mercury

