1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/**\file jacobi_1.cpp
 *\brief simple convergence test for Jacobi optimization
 *\author Jason Kraftcheck <[email protected]>
 *
 *Create simple quad mesh and test for convergence.
 */

#include "ArrayMesh.hpp"
#include "PlanarDomain.hpp"
#include "IdealShapeTarget.hpp"
#include "TShapeB1.hpp"
#include "TQualityMetric.hpp"
#include "PMeanPTemplate.hpp"
#include "SteepestDescent.hpp"
#include "TerminationCriterion.hpp"
#include "InstructionQueue.hpp"
#include "MsqError.hpp"
#include "QualityAssessor.hpp"
#include "MeshWriter.hpp"

#include <cstdio>
#include <cstring>
#include <cstdlib>

using namespace MBMesquite;

/* Mesh:

  12---13---14---15
  |    |    |    |
  |    |    |    |
  8----9----10---11
  |    |    |    |
  |    |    |    |
  4----5----6----7
  |    |    |    |
  |    |    |    |
  0----1----2----3

*/

double dist( double* p1, double* p2 )
{
    double d1 = p1[0] - p2[0];
    double d2 = p1[1] - p2[1];
    double d3 = p1[2] - p2[2];
    return sqrt( d1 * d2 * d3 );
}

void usage( const char* argv0 )
{
    fprintf( stderr, "Usage: %s [-i <init_vtk_file>] [-f <final_vtk_file>]\n", argv0 );
    exit( 1 );
}

int main( int argc, char* argv[] )
{
    const char* initial_mesh_file = 0;
    const char* final_mesh_file   = 0;
    for( int i = 1; i < argc; ++i )
    {
        if( !strcmp( argv[i], "-f" ) )
        {
            ++i;
            if( i == argc ) usage( argv[0] );
            final_mesh_file = argv[i];
        }
        else if( !strcmp( argv[i], "-i" ) )
        {
            ++i;
            if( i == argc ) usage( argv[0] );
            initial_mesh_file = argv[i];
        }
        else
            usage( argv[i] );
    }

    // create mesh
    const int intervals  = 3;
    const double perturb = 0.3;
    const int nvtx       = ( intervals + 1 ) * ( intervals + 1 );
    double coords[nvtx * 3];
    double exp_coords[nvtx * 3];
    int fixed[nvtx];
    for( int i = 0; i < nvtx; ++i )
    {
        double* c = coords + 3 * i;
        double* e = exp_coords + 3 * i;
        int row   = i / ( intervals + 1 );
        int col   = i % ( intervals + 1 );
        double xdelta, ydelta;
        if( row > 0 && row < intervals && col > 0 && col < intervals )
        {
            fixed[i] = 0;
            xdelta   = row % 2 ? -perturb : 0;
            ydelta   = col % 2 ? perturb : -perturb;
        }
        else
        {
            fixed[i] = 1;
            xdelta = ydelta = 0.0;
        }
        c[0] = col + xdelta;
        c[1] = row + ydelta;
        c[2] = 0.0;
        e[0] = col;
        e[1] = row;
        e[2] = 0.0;
    }
    const int nquad = intervals * intervals;
    unsigned long conn[nquad * 4];
    for( int i = 0; i < nquad; ++i )
    {
        unsigned long* c = conn + 4 * i;
        int row          = i / intervals;
        int col          = i % intervals;
        int n0           = ( intervals + 1 ) * row + col;
        c[0]             = n0;
        c[1]             = n0 + 1;
        c[2]             = n0 + intervals + 2;
        c[3]             = n0 + intervals + 1;
    }
    MsqPrintError err( std::cerr );
    ArrayMesh mesh( 3, nvtx, coords, fixed, nquad, QUADRILATERAL, conn );
    PlanarDomain zplane( PlanarDomain::XY );
    if( initial_mesh_file )
    {
        MeshWriter::write_vtk( &mesh, initial_mesh_file, err );
        if( err )
        {
            fprintf( stderr, "%s: failed to write file\n", initial_mesh_file );
            return 1;
        }
    }

    // do optimization
    const double eps = 0.01;
    IdealShapeTarget w;
    TShapeB1 mu;
    TQualityMetric metric( &w, &mu );
    PMeanPTemplate func( 1.0, &metric );
    SteepestDescent solver( &func );
    solver.use_element_on_vertex_patch();
    solver.do_jacobi_optimization();
    TerminationCriterion inner, outer;
    inner.add_absolute_vertex_movement( 0.5 * eps );
    outer.add_absolute_vertex_movement( 0.5 * eps );
    QualityAssessor qa( &metric );
    InstructionQueue q;
    q.add_quality_assessor( &qa, err );
    q.set_master_quality_improver( &solver, err );
    q.add_quality_assessor( &qa, err );
    MeshDomainAssoc mesh_and_domain = MeshDomainAssoc( &mesh, &zplane );
    q.run_instructions( &mesh_and_domain, err );
    if( err ) return 2;
    if( final_mesh_file )
    {
        MeshWriter::write_vtk( &mesh, final_mesh_file, err );
        if( err )
        {
            fprintf( stderr, "%s: failed to write file\n", final_mesh_file );
            return 1;
        }
    }

    // check final vertex positions
    int invalid = 0;
    for( int i = 0; i < nvtx; ++i )
    {
        if( dist( coords + 3 * i, exp_coords + 3 * i ) > eps )
        {
            ++invalid;
            printf( "Vertex %d at (%f,%f,%f), expected at (%f,%f,%f)\n", i, coords[3 * i], coords[3 * i + 1],
                    coords[3 * i + 2], exp_coords[3 * i], exp_coords[3 * i + 1], exp_coords[3 * i + 2] );
        }
    }

    return invalid ? 2 : 0;
}