1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
/**
 * MOAB, a Mesh-Oriented datABase, is a software component for creating,
 * storing and accessing finite element mesh data.
 *
 * Copyright 2004 Sandia Corporation.  Under the terms of Contract
 * DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government
 * retains certain rights in this software.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 */

/** TSTT Mesh Interface brick mesh performance test
 *
 * This program tests TSTT mesh interface functions used to create a square structured
 * mesh.  Boilerplate taken from tstt mesh interface test in MOAB and performance test in MOAB
 *
 */

// Different platforms follow different conventions for usage
#if !defined( _NT ) && !defined( _MSC_VER ) && !defined( __MINGW32__ )
#include <sys/resource.h>
#endif
#ifdef SOLARIS
extern "C" int getrusage( int, struct rusage* );
#ifndef RUSAGE_SELF
#include </usr/ucbinclude/sys/rusage.h>
#endif
#endif

#include <cstdlib>
#include <cstdio>
#include <iostream>

//-------------------------------------------------------
// CHANGE THESE DEFINITIONS TO SUIT YOUR IMPLEMENTATION

// #include here any files with declarations needed to instantiate your
// implementation instance
#include "TSTT_MOAB.hh"

// define IMPLEMENTATION_CLASS to be the namespace::class of your implementation
#define IMPLEMENTATION_CLASS TSTT_MOAB::MoabMesh
//-------------------------------------------------------

#define CAST_INTERFACE( var_in, var_out, iface )                           \
    TSTT::iface var_out;                                                   \
    try                                                                    \
    {                                                                      \
        ( var_out ) = var_in;                                              \
    }                                                                      \
    catch( TSTT::Error )                                                   \
    {                                                                      \
        cerr << "Error: current interface doesn't support iface." << endl; \
        return;                                                            \
    }

#define CAST_MINTERFACE( var_in, var_out, iface )                          \
    TSTTM::iface var_out;                                                  \
    try                                                                    \
    {                                                                      \
        ( var_out ) = var_in;                                              \
    }                                                                      \
    catch( TSTT::Error )                                                   \
    {                                                                      \
        cerr << "Error: current interface doesn't support iface." << endl; \
        return;                                                            \
    }

#include <iostream>
#include "TSTT.hh"
#include "TSTTM.hh"

// needed to get the proper size for handles
typedef void* Entity_Handle;

using namespace std;

#define ARRAY_PTR( array, type )  ( reinterpret_cast< ( type )* >( ( array )._get_ior()->d_firstElement ) )
#define HANDLE_ARRAY_PTR( array ) ( reinterpret_cast< Entity_Handle* >( ( array )._get_ior()->d_firstElement ) )
#define ARRAY_SIZE( array )       ( ( array )._is_nil() ? 0 : ( array ).upper( 0 ) - ( array ).lower( 0 ) + 1 )
#define CHECK_SIZE( array, size )                                     \
    if( ( array )._is_nil() || ARRAY_SIZE( array ) == 0 )             \
        ( array ) = ( array ).create1d( size );                       \
    else if( ARRAY_SIZE( array ) < ( size ) )                         \
    {                                                                 \
        cerr << "Array passed in is non-zero but too short." << endl; \
        assert( false );                                              \
    }

double LENGTH = 1.0;

// forward declare some functions
void query_vert_to_elem( TSTTM::Mesh& mesh );
void query_elem_to_vert( TSTTM::Mesh& mesh );
void print_time( const bool print_em, double& tot_time, double& utime, double& stime );
void build_connect( const int nelem, const int vstart, int*& connect );
void testB( TSTTM::Mesh& mesh, const int nelem, sidl::array< double >& coords, const int* connect );
void testC( TSTTM::Mesh& mesh, const int nelem, sidl::array< double >& coords );
void compute_edge( double* start, const int nelem, const double xint, const int stride );
void compute_face( double* a, const int nelem, const double xint, const int stride1, const int stride2 );
void build_coords( const int nelem, sidl::array< double >& coords );
void build_connect( const int nelem, const int vstart, int*& connect );

int main( int argc, char* argv[] )
{
    int nelem = 20;
    if( argc < 3 )
    {
        std::cout << "Usage: " << argv[0] << " <ints_per_side> <A|B|C>" << std::endl;
        return 1;
    }

    char which_test = '\0';

    sscanf( argv[1], "%d", &nelem );
    sscanf( argv[2], "%c", &which_test );

    if( which_test != 'B' && which_test != 'C' )
    {
        std::cout << "Must indicate B or C for test." << std::endl;
        return 1;
    }

    std::cout << "number of elements: " << nelem << "; test " << which_test << std::endl;

    // pre-build the coords array
    sidl::array< double > coords;
    build_coords( nelem, coords );
    assert( NULL != coords );

    int* connect = NULL;
    build_connect( nelem, 1, connect );

    // create an implementation
    TSTTM::Mesh mesh = IMPLEMENTATION_CLASS::_create();

    switch( which_test )
    {
        case 'B':
            // test B: create mesh using bulk interface
            testB( mesh, nelem, coords, connect );
            break;

        case 'C':
            // test C: create mesh using individual interface
            testC( mesh, nelem, coords );
            break;
    }

    return 0;
}

void testB( TSTTM::Mesh& mesh, const int nelem, sidl::array< double >& coords, const int* connect )
{
    double utime, stime, ttime0, ttime1, ttime2, ttime3;

    print_time( false, ttime0, utime, stime );
    int num_verts = ( nelem + 1 ) * ( nelem + 1 ) * ( nelem + 1 );
    int num_elems = nelem * nelem * nelem;

    // create vertices as a block
    CAST_MINTERFACE( mesh, mesh_arrmod, ArrMod );
    sidl::array< Entity_Handle > sidl_vertices, dum_handles;
    CHECK_SIZE( dum_handles, num_verts );
    int sidl_vertices_size;

    try
    {
        mesh_arrmod.createVtxArr( num_verts, TSTTM::StorageOrder_BLOCKED, coords, 3 * num_verts, sidl_vertices,
                                  sidl_vertices_size );
    }
    catch( TSTT::Error& /* err */ )
    {
        cerr << "Couldn't create vertices in bulk call" << endl;
        return;
    }

    // need to explicitly fill connectivity array, since we don't know
    // the format of entity handles
    sidl::array< Entity_Handle > sidl_connect;
    int sidl_connect_size = 8 * num_elems;
    CHECK_SIZE( sidl_connect, 8 * num_elems );
    Entity_Handle* sidl_connect_ptr = HANDLE_ARRAY_PTR( sidl_connect );

    Entity_Handle* sidl_vertices_ptr = HANDLE_ARRAY_PTR( sidl_vertices );
    for( int i = 0; i < sidl_connect_size; i++ )
    {
        // use connect[i]-1 because we used starting vertex index (vstart) of 1
        assert( connect[i] - 1 < num_verts );
        sidl_connect_ptr[i] = sidl_vertices_ptr[connect[i] - 1];
    }

    // create the entities
    sidl::array< Entity_Handle > new_hexes;
    int new_hexes_size;
    sidl::array< TSTTM::CreationStatus > status;
    int status_size;

    try
    {
        mesh_arrmod.createEntArr( TSTTM::EntityTopology_HEXAHEDRON, sidl_connect, sidl_connect_size, new_hexes,
                                  new_hexes_size, status, status_size );
    }
    catch( TSTT::Error& /* err */ )
    {
        cerr << "Couldn't create hex elements in bulk call" << endl;
        return;
    }

    print_time( false, ttime1, utime, stime );

    // query the mesh 2 ways
    query_elem_to_vert( mesh );

    print_time( false, ttime2, utime, stime );

    query_vert_to_elem( mesh );

    print_time( false, ttime3, utime, stime );

    std::cout << "TSTT/MOAB ucd blocked: nelem, construct, e_to_v query, v_to_e query = " << nelem << ", "
              << ttime1 - ttime0 << ", " << ttime2 - ttime1 << ", " << ttime3 - ttime2 << " seconds" << std::endl;
}

void testC( TSTTM::Mesh& mesh, const int nelem, sidl::array< double >& coords )
{
    double utime, stime, ttime0, ttime1, ttime2, ttime3;
    print_time( false, ttime0, utime, stime );

    CAST_MINTERFACE( mesh, mesh_arrmod, ArrMod );

    // need some dimensions
    int numv      = nelem + 1;
    int numv_sq   = numv * numv;
    int num_verts = numv * numv * numv;
#define VINDEX( i, j, k ) ( ( i ) + ( (j)*numv ) + ( (k)*numv_sq ) )

    // array to hold vertices created individually
    sidl::array< Entity_Handle > sidl_vertices;
    // int sidl_vertices_size = num_verts;
    CHECK_SIZE( sidl_vertices, num_verts );

    // temporary array to hold vertex positions for single vertex
    sidl::array< double > tmp_coords;
    int tmp_coords_size = 3;
    CHECK_SIZE( tmp_coords, 3 );
    double* dum_coords = ARRAY_PTR( tmp_coords, double );

    // get direct pointer to coordinate array
    double* coords_ptr = ARRAY_PTR( coords, double );

    for( int i = 0; i < num_verts; i++ )
    {

        // temporary array to hold (single) vertices
        sidl::array< Entity_Handle > tmp_vertices;
        int tmp_vertices_size = 0;

        // create the vertex
        dum_coords[0] = coords_ptr[i];
        dum_coords[1] = coords_ptr[num_verts + i];
        dum_coords[2] = coords_ptr[2 * num_verts + i];
        try
        {
            mesh_arrmod.createVtxArr( 1, TSTTM::StorageOrder_BLOCKED, tmp_coords, tmp_coords_size, tmp_vertices,
                                      tmp_vertices_size );
        }
        catch( TSTT::Error& /* err */ )
        {
            cerr << "Couldn't create vertex in individual call" << endl;
            return;
        }

        // assign into permanent vertex array
        sidl_vertices.set( i, tmp_vertices.get( 0 ) );
    }

    // get vertex array pointer for reading into tmp_conn
    Entity_Handle* tmp_sidl_vertices = HANDLE_ARRAY_PTR( sidl_vertices );

    for( int i = 0; i < nelem; i++ )
    {
        for( int j = 0; j < nelem; j++ )
        {
            for( int k = 0; k < nelem; k++ )
            {

                sidl::array< Entity_Handle > tmp_conn;
                int tmp_conn_size = 8;
                CHECK_SIZE( tmp_conn, 8 );

                int vijk = VINDEX( i, j, k );
                tmp_conn.set( 0, tmp_sidl_vertices[vijk] );
                tmp_conn.set( 1, tmp_sidl_vertices[vijk + 1] );
                tmp_conn.set( 2, tmp_sidl_vertices[vijk + 1 + numv] );
                tmp_conn.set( 3, tmp_sidl_vertices[vijk + numv] );
                tmp_conn.set( 4, tmp_sidl_vertices[vijk + numv * numv] );
                tmp_conn.set( 5, tmp_sidl_vertices[vijk + 1 + numv * numv] );
                tmp_conn.set( 6, tmp_sidl_vertices[vijk + 1 + numv + numv * numv] );
                tmp_conn.set( 7, tmp_sidl_vertices[vijk + numv + numv * numv] );

                // create the entity

                sidl::array< Entity_Handle > new_hex;
                int new_hex_size = 0;
                sidl::array< TSTTM::CreationStatus > status;
                int status_size = 0;

                try
                {
                    mesh_arrmod.createEntArr( TSTTM::EntityTopology_HEXAHEDRON, tmp_conn, tmp_conn_size, new_hex,
                                              new_hex_size, status, status_size );
                }
                catch( TSTT::Error& /* err */ )
                {
                    cerr << "Couldn't create hex element in individual call" << endl;
                    return;
                }
            }
        }
    }

    print_time( false, ttime1, utime, stime );

    // query the mesh 2 ways
    query_elem_to_vert( mesh );

    print_time( false, ttime2, utime, stime );

    query_vert_to_elem( mesh );

    print_time( false, ttime3, utime, stime );

    std::cout << "TSTT/MOAB ucd indiv: nelem, construct, e_to_v query, v_to_e query = " << nelem << ", "
              << ttime1 - ttime0 << ", " << ttime2 - ttime1 << ", " << ttime3 - ttime2 << " seconds" << std::endl;
}

void query_elem_to_vert( TSTTM::Mesh& mesh )
{
    sidl::array< Entity_Handle > all_hexes;
    int all_hexes_size;
    CAST_MINTERFACE( mesh, mesh_ent, Entity );

    // get all the hex elements
    try
    {
        mesh.getEntities( 0, TSTTM::EntityType_REGION, TSTTM::EntityTopology_HEXAHEDRON, all_hexes, all_hexes_size );
    }
    catch( TSTT::Error& /* err */ )
    {
        cerr << "Couldn't get all hex elements in query_mesh" << endl;
        return;
    }

    try
    {
        // set up some tmp arrays and array ptrs
        Entity_Handle* all_hexes_ptr = HANDLE_ARRAY_PTR( all_hexes );

        // now loop over elements
        for( int i = 0; i < all_hexes_size; i++ )
        {
            sidl::array< int > dum_offsets;
            sidl::array< Entity_Handle > dum_connect;
            int dum_connect_size = 0;
            // get the connectivity of this element; will allocate space on 1st iteration,
            // but will have correct size on subsequent ones
            mesh_ent.getEntAdj( all_hexes_ptr[i], TSTTM::EntityType_VERTEX, dum_connect, dum_connect_size );

            // get vertex coordinates; ; will allocate space on 1st iteration,
            // but will have correct size on subsequent ones
            sidl::array< double > dum_coords;
            int dum_coords_size       = 0;
            TSTTM::StorageOrder order = TSTTM::StorageOrder_UNDETERMINED;
            mesh.getVtxArrCoords( dum_connect, dum_connect_size, order, dum_coords, dum_coords_size );

            assert( 24 == dum_coords_size && ARRAY_SIZE( dum_coords ) == 24 );
            double* dum_coords_ptr = ARRAY_PTR( dum_coords, double );
            double centroid[3]     = { 0.0, 0.0, 0.0 };
            if( order == TSTTM::StorageOrder_BLOCKED )
            {
                for( int j = 0; j < 8; j++ )
                {
                    centroid[0] += dum_coords_ptr[j];
                    centroid[1] += dum_coords_ptr[8 + j];
                    centroid[2] += dum_coords_ptr[16 + j];
                    centroid[0] += dum_coords.get( j );
                    centroid[1] += dum_coords.get( 8 + j );
                    centroid[2] += dum_coords.get( 16 + j );
                }
            }
            else
            {
                for( int j = 0; j < 8; j++ )
                {
                    centroid[0] += dum_coords_ptr[3 * j];
                    centroid[1] += dum_coords_ptr[3 * j + 1];
                    centroid[2] += dum_coords_ptr[3 * j + 2];
                }
            }
        }
    }
    catch( TSTT::Error& /* err */ )
    {
        cerr << "Problem getting connectivity or vertex coords." << endl;
        return;
    }
}

void query_vert_to_elem( TSTTM::Mesh& mesh )
{
    sidl::array< Entity_Handle > all_verts;
    int all_verts_size;
    CAST_MINTERFACE( mesh, mesh_ent, Entity );

    // get all the vertices elements
    try
    {
        mesh.getEntities( 0, TSTTM::EntityType_VERTEX, TSTTM::EntityTopology_POINT, all_verts, all_verts_size );
    }
    catch( TSTT::Error& /* err */ )
    {
        cerr << "Couldn't get all vertices in query_vert_to_elem" << endl;
        return;
    }

    try
    {
        // set up some tmp arrays and array ptrs
        Entity_Handle* all_verts_ptr = HANDLE_ARRAY_PTR( all_verts );

        // now loop over vertices
        for( int i = 0; i < all_verts_size; i++ )
        {
            sidl::array< Entity_Handle > dum_hexes;
            int dum_hexes_size;

            // get the connectivity of this element; will have to allocate space on every
            // iteration, since size can vary
            mesh_ent.getEntAdj( all_verts_ptr[i], TSTTM::EntityType_REGION, dum_hexes, dum_hexes_size );
        }
    }
    catch( TSTT::Error& /* err */ )
    {
        cerr << "Problem getting connectivity or vertex coords." << endl;
        return;
    }
}

void print_time( const bool print_em, double& tot_time, double& utime, double& stime )
{
    struct rusage r_usage;
    getrusage( RUSAGE_SELF, &r_usage );
    utime    = (double)r_usage.ru_utime.tv_sec + ( (double)r_usage.ru_utime.tv_usec / 1.e6 );
    stime    = (double)r_usage.ru_stime.tv_sec + ( (double)r_usage.ru_stime.tv_usec / 1.e6 );
    tot_time = utime + stime;
    if( print_em )
        std::cout << "User, system, total time = " << utime << ", " << stime << ", " << tot_time << std::endl;
#ifndef LINUX
    std::cout << "Max resident set size = " << r_usage.ru_maxrss * 4096 << " bytes" << std::endl;
    std::cout << "Int resident set size = " << r_usage.ru_idrss << std::endl;
#else
    system( "ps o args,drs,rss | grep perf | grep -v grep" );  // RedHat 9.0 doesnt fill in actual
                                                               // memory data
#endif
}

void compute_edge( double* start, const int nelem, const double xint, const int stride )
{
    for( int i = 1; i < nelem; i++ )
    {
        start[i * stride]                     = start[0] + i * xint;
        start[nelem + 1 + i * stride]         = start[nelem + 1] + i * xint;
        start[2 * ( nelem + 1 ) + i * stride] = start[2 * ( nelem + 1 )] + i * xint;
    }
}

void compute_face( double* a, const int nelem, const double xint, const int stride1, const int stride2 )
{
    // 2D TFI on a face starting at a, with strides stride1 in ada and stride2 in tse
    for( int j = 1; j < nelem; j++ )
    {
        double tse = j * xint;
        for( int i = 1; i < nelem; i++ )
        {
            double ada = i * xint;

            a[i * stride1 + j * stride2] =
                ( 1.0 - ada ) * a[i * stride1] + ada * a[i * stride1 + nelem * stride2] +
                ( 1.0 - tse ) * a[j * stride2] + tse * a[j * stride2 + nelem * stride1] -
                ( 1.0 - tse ) * ( 1.0 - ada ) * a[0] - ( 1.0 - tse ) * ada * a[nelem * stride1] -
                tse * ( 1.0 - ada ) * a[nelem * stride2] - tse * ada * a[nelem * ( stride1 + stride2 )];
            a[nelem + 1 + i * stride1 + j * stride2] =
                ( 1.0 - ada ) * a[nelem + 1 + i * stride1] + ada * a[nelem + 1 + i * stride1 + nelem * stride2] +
                ( 1.0 - tse ) * a[nelem + 1 + j * stride2] + tse * a[nelem + 1 + j * stride2 + nelem * stride1] -
                ( 1.0 - tse ) * ( 1.0 - ada ) * a[nelem + 1 + 0] -
                ( 1.0 - tse ) * ada * a[nelem + 1 + nelem * stride1] -
                tse * ( 1.0 - ada ) * a[nelem + 1 + nelem * stride2] -
                tse * ada * a[nelem + 1 + nelem * ( stride1 + stride2 )];
            a[2 * ( nelem + 1 ) + i * stride1 + j * stride2] =
                ( 1.0 - ada ) * a[2 * ( nelem + 1 ) + i * stride1] +
                ada * a[2 * ( nelem + 1 ) + i * stride1 + nelem * stride2] +
                ( 1.0 - tse ) * a[2 * ( nelem + 1 ) + j * stride2] +
                tse * a[2 * ( nelem + 1 ) + j * stride2 + nelem * stride1] -
                ( 1.0 - tse ) * ( 1.0 - ada ) * a[2 * ( nelem + 1 ) + 0] -
                ( 1.0 - tse ) * ada * a[2 * ( nelem + 1 ) + nelem * stride1] -
                tse * ( 1.0 - ada ) * a[2 * ( nelem + 1 ) + nelem * stride2] -
                tse * ada * a[2 * ( nelem + 1 ) + nelem * ( stride1 + stride2 )];
        }
    }
}

void build_coords( const int nelem, sidl::array< double >& coords )
{
    double ttime0, ttime1, utime1, stime1;
    print_time( false, ttime0, utime1, stime1 );

    // allocate the memory
    int numv     = nelem + 1;
    int numv_sq  = numv * numv;
    int tot_numv = numv * numv * numv;
    CHECK_SIZE( coords, 3 * tot_numv );
    double* coords_ptr = ARRAY_PTR( coords, double );

// use FORTRAN-like indexing
#define VINDEX( i, j, k ) ( ( i ) + ( (j)*numv ) + ( (k)*numv_sq ) )
    int idx;<--- Unused variable: idx
    double scale1, scale2, scale3;
    // use these to prevent optimization on 1-scale, etc (real map wouldn't have
    // all these equal)
    scale1 = LENGTH / nelem;
    scale2 = LENGTH / nelem;
    scale3 = LENGTH / nelem;

#ifdef REALTFI
    // use a real TFI xform to compute coordinates
    // initialize positions of 8 corners
    coords_ptr[VINDEX( 0, 0, 0 )]                         = coords_ptr[VINDEX( 0, 0, 0 ) + nelem + 1] =
        coords_ptr[VINDEX( 0, 0, 0 ) + 2 * ( nelem + 1 )] = 0.0;
    coords_ptr[VINDEX( 0, nelem, 0 )] = coords_ptr[VINDEX( 0, nelem, 0 ) + 2 * ( nelem + 1 )] = 0.0;
    coords_ptr[VINDEX( 0, nelem, 0 ) + nelem + 1]                                             = LENGTH;
    coords_ptr[VINDEX( 0, 0, nelem )] = coords_ptr[VINDEX( 0, 0, nelem ) + nelem + 1] = 0.0;
    coords_ptr[VINDEX( 0, 0, nelem ) + 2 * ( nelem + 1 )]                             = LENGTH;
    coords_ptr[VINDEX( 0, nelem, nelem )]                                             = 0.0;
    coords_ptr[VINDEX( 0, nelem, nelem ) + nelem + 1] = coords_ptr[VINDEX( 0, nelem, nelem ) + 2 * ( nelem + 1 )] =
        LENGTH;
    coords_ptr[VINDEX( nelem, 0, 0 )]             = LENGTH;
    coords_ptr[VINDEX( nelem, 0, 0 ) + nelem + 1] = coords_ptr[VINDEX( nelem, 0, 0 ) + 2 * ( nelem + 1 )] = 0.0;
    coords_ptr[VINDEX( nelem, 0, nelem )] = coords_ptr[VINDEX( nelem, 0, nelem ) + 2 * ( nelem + 1 )] = LENGTH;
    coords_ptr[VINDEX( nelem, 0, nelem ) + nelem + 1]                                                 = 0.0;
    coords_ptr[VINDEX( nelem, nelem, 0 )] = coords_ptr[VINDEX( nelem, nelem, 0 ) + nelem + 1] = LENGTH;
    coords_ptr[VINDEX( nelem, nelem, 0 ) + 2 * ( nelem + 1 )]                                 = 0.0;
    coords_ptr[VINDEX( nelem, nelem, nelem )] = coords_ptr[VINDEX( nelem, nelem, nelem ) + nelem + 1] =
        coords_ptr[VINDEX( nelem, nelem, nelem ) + 2 * ( nelem + 1 )] = LENGTH;

    // compute edges
    // i (stride=1)
    compute_edge( &coords_ptr[VINDEX( 0, 0, 0 )], nelem, scale1, 1 );
    compute_edge( &coords_ptr[VINDEX( 0, nelem, 0 )], nelem, scale1, 1 );
    compute_edge( &coords_ptr[VINDEX( 0, 0, nelem )], nelem, scale1, 1 );
    compute_edge( &coords_ptr[VINDEX( 0, nelem, nelem )], nelem, scale1, 1 );
    // j (stride=numv)
    compute_edge( &coords_ptr[VINDEX( 0, 0, 0 )], nelem, scale1, numv );
    compute_edge( &coords_ptr[VINDEX( nelem, 0, 0 )], nelem, scale1, numv );
    compute_edge( &coords_ptr[VINDEX( 0, 0, nelem )], nelem, scale1, numv );
    compute_edge( &coords_ptr[VINDEX( nelem, 0, nelem )], nelem, scale1, numv );
    // k (stride=numv^2)
    compute_edge( &coords_ptr[VINDEX( 0, 0, 0 )], nelem, scale1, numv_sq );
    compute_edge( &coords_ptr[VINDEX( nelem, 0, 0 )], nelem, scale1, numv_sq );
    compute_edge( &coords_ptr[VINDEX( 0, nelem, 0 )], nelem, scale1, numv_sq );
    compute_edge( &coords_ptr[VINDEX( nelem, nelem, 0 )], nelem, scale1, numv_sq );

    // compute faces
    // i=0, nelem
    compute_face( &coords_ptr[VINDEX( 0, 0, 0 )], nelem, scale1, numv, numv_sq );
    compute_face( &coords_ptr[VINDEX( nelem, 0, 0 )], nelem, scale1, numv, numv_sq );
    // j=0, nelem
    compute_face( &coords_ptr[VINDEX( 0, 0, 0 )], nelem, scale1, 1, numv_sq );
    compute_face( &coords_ptr[VINDEX( 0, nelem, 0 )], nelem, scale1, 1, numv_sq );
    // k=0, nelem
    compute_face( &coords_ptr[VINDEX( 0, 0, 0 )], nelem, scale1, 1, numv );
    compute_face( &coords_ptr[VINDEX( 0, 0, nelem )], nelem, scale1, 1, numv );

    // initialize corner indices
    int i000 = VINDEX( 0, 0, 0 );
    int ia00 = VINDEX( nelem, 0, 0 );
    int i0t0 = VINDEX( 0, nelem, 0 );
    int iat0 = VINDEX( nelem, nelem, 0 );
    int i00g = VINDEX( 0, 0, nelem );
    int ia0g = VINDEX( nelem, 0, nelem );
    int i0tg = VINDEX( 0, nelem, nelem );
    int iatg = VINDEX( nelem, nelem, nelem );
    double cX, cY, cZ;
    int adaInts   = nelem;
    int tseInts   = nelem;
    int gammaInts = nelem;

    for( int i = 1; i < nelem; i++ )
    {
        for( int j = 1; j < nelem; j++ )
        {
            for( int k = 1; k < nelem; k++ )
            {
                // idx = VINDEX(i,j,k);
                double tse   = i * scale1;
                double ada   = j * scale2;
                double gamma = k * scale3;
                double tm1   = 1.0 - tse;
                double am1   = 1.0 - ada;
                double gm1   = 1.0 - gamma;

                cX = gm1 * ( am1 * ( tm1 * coords_ptr[i000] + tse * coords_ptr[i0t0] ) +
                             ada * ( tm1 * coords_ptr[ia00] + tse * coords_ptr[iat0] ) ) +
                     gamma * ( am1 * ( tm1 * coords_ptr[i00g] + tse * coords_ptr[i0tg] ) +
                               ada * ( tm1 * coords_ptr[ia0g] + tse * coords_ptr[iatg] ) );

                cY = gm1 * ( am1 * ( tm1 * coords_ptr[i000] + tse * coords_ptr[i0t0] ) +
                             ada * ( tm1 * coords_ptr[ia00] + tse * coords_ptr[iat0] ) ) +
                     gamma * ( am1 * ( tm1 * coords_ptr[i00g] + tse * coords_ptr[i0tg] ) +
                               ada * ( tm1 * coords_ptr[ia0g] + tse * coords_ptr[iatg] ) );

                cZ = gm1 * ( am1 * ( tm1 * coords_ptr[i000] + tse * coords_ptr[i0t0] ) +
                             ada * ( tm1 * coords_ptr[ia00] + tse * coords_ptr[iat0] ) ) +
                     gamma * ( am1 * ( tm1 * coords_ptr[i00g] + tse * coords_ptr[i0tg] ) +
                               ada * ( tm1 * coords_ptr[ia0g] + tse * coords_ptr[iatg] ) );

                double* ai0k = &coords_ptr[VINDEX( k, 0, i )];
                double* aiak = &coords_ptr[VINDEX( k, adaInts, i )];
                double* a0jk = &coords_ptr[VINDEX( k, j, 0 )];
                double* atjk = &coords_ptr[VINDEX( k, j, tseInts )];
                double* aij0 = &coords_ptr[VINDEX( 0, j, i )];
                double* aijg = &coords_ptr[VINDEX( gammaInts, j, i )];

                coords_ptr[VINDEX( i, j, k )] = ( am1 * ai0k[0] + ada * aiak[0] + tm1 * a0jk[0] + tse * atjk[0] +
                                                  gm1 * aij0[0] + gamma * aijg[0] ) /
                                                    2.0 -
                                                cX / 2.0;

                coords_ptr[nelem + 1 + VINDEX( i, j, k )] =
                    ( am1 * ai0k[nelem + 1] + ada * aiak[nelem + 1] + tm1 * a0jk[nelem + 1] + tse * atjk[nelem + 1] +
                      gm1 * aij0[nelem + 1] + gamma * aijg[nelem + 1] ) /
                        2.0 -
                    cY / 2.0;

                coords_ptr[2 * ( nelem + 1 ) + VINDEX( i, j, k )] =
                    ( am1 * ai0k[2 * ( nelem + 1 )] + ada * aiak[2 * ( nelem + 1 )] + tm1 * a0jk[2 * ( nelem + 1 )] +
                      tse * atjk[2 * ( nelem + 1 )] + gm1 * aij0[2 * ( nelem + 1 )] +
                      gamma * aijg[2 * ( nelem + 1 )] ) /
                        2.0 -
                    cZ / 2.0;
            }
        }
    }

#else
    for( int i = 0; i < numv; i++ )
    {
        for( int j = 0; j < numv; j++ )
        {
            for( int k = 0; k < numv; k++ )
            {
                idx = VINDEX( i, j, k );
                // blocked coordinate ordering
                coords_ptr[idx]                = i * scale1;
                coords_ptr[tot_numv + idx]     = j * scale2;
                coords_ptr[2 * tot_numv + idx] = k * scale3;
            }
        }
    }
#endif
    print_time( false, ttime1, utime1, stime1 );
    std::cout << "TSTT/MOAB: TFI time = " << ttime1 - ttime0 << " sec" << std::endl;
}

void build_connect( const int nelem, const int vstart, int*& connect )
{
    // allocate the memory
    int nume_tot = nelem * nelem * nelem;
    connect      = new int[8 * nume_tot];

    int vijk;
    int numv    = nelem + 1;
    int numv_sq = numv * numv;
    int idx     = 0;
    for( int i = 0; i < nelem; i++ )
    {
        for( int j = 0; j < nelem; j++ )
        {
            for( int k = 0; k < nelem; k++ )
            {
                vijk           = vstart + VINDEX( i, j, k );
                connect[idx++] = vijk;
                connect[idx++] = vijk + 1;
                connect[idx++] = vijk + 1 + numv;
                connect[idx++] = vijk + numv;
                connect[idx++] = vijk + numv * numv;
                connect[idx++] = vijk + 1 + numv * numv;
                connect[idx++] = vijk + 1 + numv + numv * numv;
                connect[idx++] = vijk + numv + numv * numv;
                assert( i <= numv * numv * numv );
            }
        }
    }
}