![]() |
Mesh Oriented datABase
(version 5.4.1)
Array-based unstructured mesh datastructure
|
00001 #ifndef SPECTRALFUNCS_HPP
00002 #define SPECTRALFUNCS_HPP
00003
00004 #include
00005
00006 //======================================================
00007 // from types.h
00008 //======================================================
00009
00010 /* integer type to use for everything */
00011 #if defined( USE_LONG )
00012 #define INTEGER long
00013 #elif defined( USE_LONG_LONG )
00014 #define INTEGER long long
00015 #elif defined( USE_SHORT )
00016 #define INTEGER short
00017 #else
00018 #define INTEGER int
00019 #endif
00020
00021 /* when defined, use the given type for global indices instead of INTEGER */
00022 #if defined( USE_GLOBAL_LONG_LONG )
00023 #define GLOBAL_INT long long
00024 #elif defined( USE_GLOBAL_LONG )
00025 #define GLOBAL_INT long
00026 #else
00027 #define GLOBAL_INT long
00028 #endif
00029
00030 /* floating point type to use for everything */
00031 #if defined( USE_FLOAT )
00032 typedef float real;
00033 #define floorr floorf
00034 #define ceilr ceilf
00035 #define sqrtr sqrtf
00036 #define fabsr fabsf
00037 #define cosr cosf
00038 #define sinr sinf
00039 #define EPS ( 128 * FLT_EPSILON )
00040 #define PI 3.1415926535897932384626433832795028841971693993751058209749445923F
00041 #elif defined( USE_LONG_DOUBLE )
00042 typedef long double real;
00043 #define floorr floorl
00044 #define ceilr ceill
00045 #define sqrtr sqrtl
00046 #define fabsr fabsl
00047 #define cosr cosl
00048 #define sinr sinl
00049 #define EPS ( 128 * LDBL_EPSILON )
00050 #define PI 3.1415926535897932384626433832795028841971693993751058209749445923L
00051 #else
00052 typedef double real;
00053 #define floorr floor
00054 #define ceilr ceil
00055 #define sqrtr sqrt
00056 #define fabsr fabs
00057 #define cosr cos
00058 #define sinr sin
00059 #define EPS ( 128 * DBL_EPSILON )
00060 #define PI 3.1415926535897932384626433832795028841971693993751058209749445923
00061 #endif
00062
00063 /* apparently uint and ulong can be defined already in standard headers */
00064 #define uint uint_
00065 #define ulong ulong_
00066 #define sint sint_
00067 #define slong slong_
00068
00069 typedef signed INTEGER sint;
00070 typedef unsigned INTEGER uint;
00071 #undef INTEGER
00072
00073 #ifdef GLOBAL_INT
00074 typedef signed GLOBAL_INT slong;
00075 typedef unsigned GLOBAL_INT ulong;
00076 #else
00077 typedef sint slong;
00078 typedef uint ulong;
00079 #endif
00080
00081 //======================================================
00082 // from poly.h
00083 //======================================================
00084
00085 /*
00086 For brevity's sake, some names have been shortened
00087 Quadrature rules
00088 Gauss -> Gauss-Legendre quadrature (open)
00089 Lobatto -> Gauss-Lobatto-Legendre quadrature (closed at both ends)
00090 Polynomial bases
00091 Legendre -> Legendre basis
00092 Gauss -> Lagrangian basis using Gauss quadrature nodes
00093 Lobatto -> Lagrangian basis using Lobatto quadrature nodes
00094 */
00095
00096 /*--------------------------------------------------------------------------
00097 Legendre Polynomial Matrix Computation
00098 (compute P_i(x_j) for i = 0, ..., n and a given set of x)
00099 --------------------------------------------------------------------------*/
00100
00101 /* precondition: n >= 1
00102 inner index is x index (0 ... m-1);
00103 outer index is Legendre polynomial number (0 ... n)
00104 */
00105 void legendre_matrix( const real* x, int m, real* P, int n );
00106
00107 /* precondition: n >= 1
00108 inner index is Legendre polynomial number (0 ... n)
00109 outer index is x index (0 ... m-1);
00110 */
00111 void legendre_matrix_t( const real* x, int m, real* P, int n );
00112
00113 /* precondition: n >= 1
00114 compute P_i(x) with i = 0 ... n
00115 */
00116 void legendre_row( real x, real* P, int n );
00117
00118 /*--------------------------------------------------------------------------
00119 Quadrature Nodes and Weights Calculation
00120
00121 call the _nodes function before calling the _weights function
00122 --------------------------------------------------------------------------*/
00123
00124 void gauss_nodes( real* z, int n ); /* n nodes (order = 2n-1) */
00125 void lobatto_nodes( real* z, int n ); /* n nodes (order = 2n-3) */
00126
00127 void gauss_weights( const real* z, real* w, int n );
00128 void lobatto_weights( const real* z, real* w, int n );
00129
00130 /*--------------------------------------------------------------------------
00131 Lagrangian to Legendre Change-of-basis Matrix
00132 --------------------------------------------------------------------------*/
00133
00134 /* precondition: n >= 2
00135 given the Gauss quadrature rule (z,w,n), compute the square matrix J
00136 for transforming from the Gauss basis to the Legendre basis:
00137
00138 u_legendre(i) = sum_j J(i,j) u_gauss(j)
00139
00140 computes J = .5 (2i+1) w P (z )
00141 ij j i j
00142
00143 in column major format (inner index is i, the Legendre index)
00144 */
00145 void gauss_to_legendre( const real* z, const real* w, int n, real* J );
00146
00147 /* precondition: n >= 2
00148 same as above, but
00149 in row major format (inner index is j, the Gauss index)
00150 */
00151 void gauss_to_legendre_t( const real* z, const real* w, int n, real* J );
00152
00153 /* precondition: n >= 3
00154 given the Lobatto quadrature rule (z,w,n), compute the square matrix J
00155 for transforming from the Lobatto basis to the Legendre basis:
00156
00157 u_legendre(i) = sum_j J(i,j) u_lobatto(j)
00158
00159 in column major format (inner index is i, the Legendre index)
00160 */
00161 void lobatto_to_legendre( const real* z, const real* w, int n, real* J );
00162
00163 /*--------------------------------------------------------------------------
00164 Lagrangian basis function evaluation
00165 --------------------------------------------------------------------------*/
00166
00167 /* given the Lagrangian nodes (z,n) and evaluation points (x,m)
00168 evaluate all Lagrangian basis functions at all points x
00169
00170 inner index of output J is the basis function index (row-major format)
00171 provide work array with space for 4*n doubles
00172 */
00173 void lagrange_weights( const real* z, unsigned n, const real* x, unsigned m, real* J, real* work );
00174
00175 /* given the Lagrangian nodes (z,n) and evaluation points (x,m)
00176 evaluate all Lagrangian basis functions and their derivatives
00177
00178 inner index of outputs J,D is the basis function index (row-major format)
00179 provide work array with space for 6*n doubles
00180 */
00181 void lagrange_weights_deriv( const real* z, unsigned n, const real* x, unsigned m, real* J, real* D, real* work );
00182
00183 /*--------------------------------------------------------------------------
00184 Speedy Lagrangian Interpolation
00185
00186 Usage:
00187
00188 lagrange_data p;
00189 lagrange_setup(&p,z,n); * setup for nodes z[0 ... n-1] *
00190
00191 the weights
00192 p->J [0 ... n-1] interpolation weights
00193 p->D [0 ... n-1] 1st derivative weights
00194 p->D2[0 ... n-1] 2nd derivative weights
00195 are computed for a given x with:
00196 lagrange_0(p,x); * compute p->J *
00197 lagrange_1(p,x); * compute p->J, p->D *
00198 lagrange_2(p,x); * compute p->J, p->D, p->D2 *
00199 lagrange_2u(p); * compute p->D2 after call of lagrange_1(p,x); *
00200 These functions use the z array supplied to setup
00201 (that pointer should not be freed between calls)
00202 Weights for x=z[0] and x=z[n-1] are computed during setup; access as:
00203 p->J_z0, etc. and p->J_zn, etc.
00204
00205 lagrange_free(&p); * deallocate memory allocated by setup *
00206 --------------------------------------------------------------------------*/
00207
00208 typedef struct
00209 {
00210 unsigned n; /* number of Lagrange nodes */
00211 const real* z; /* Lagrange nodes (user-supplied) */
00212 real *J, *D, *D2; /* weights for 0th,1st,2nd derivatives */
00213 real *J_z0, *D_z0, *D2_z0; /* ditto at z[0] (computed at setup) */
00214 real *J_zn, *D_zn, *D2_zn; /* ditto at z[n-1] (computed at setup) */
00215 real *w, *d, *u0, *v0, *u1, *v1, *u2, *v2; /* work data */
00216 } lagrange_data;
00217
00218 void lagrange_setup( lagrange_data* p, const real* z, unsigned n );
00219 void lagrange_free( lagrange_data* p );
00220
00221 void lagrange_0( lagrange_data* p, real x );
00222 void lagrange_1( lagrange_data* p, real x );
00223 void lagrange_2( lagrange_data* p, real x );
00224 void lagrange_2u( lagrange_data* p );
00225
00226 //======================================================
00227 // from tensor.h
00228 //======================================================
00229
00230 /*--------------------------------------------------------------------------
00231 1-,2-,3-d Tensor Application
00232
00233 the 3d case:
00234 tensor_f3(R,mr,nr, S,ms,ns, T,mt,nt, u,v, work1,work2)
00235 gives v = [ R (x) S (x) T ] u
00236 where R is mr x nr, S is ms x ns, T is mt x nt,
00237 each in row- or column-major format according to f := r | c
00238 u is nr x ns x nt in column-major format (inner index is r)
00239 v is mr x ms x mt in column-major format (inner index is r)
00240 --------------------------------------------------------------------------*/
00241
00242 void tensor_c1( const real* R, unsigned mr, unsigned nr, const real* u, real* v );
00243 void tensor_r1( const real* R, unsigned mr, unsigned nr, const real* u, real* v );
00244
00245 /* work holds mr*ns reals */
00246 void tensor_c2( const real* R,
00247 unsigned mr,
00248 unsigned nr,
00249 const real* S,
00250 unsigned ms,
00251 unsigned ns,
00252 const real* u,
00253 real* v,
00254 real* work );
00255 void tensor_r2( const real* R,
00256 unsigned mr,
00257 unsigned nr,
00258 const real* S,
00259 unsigned ms,
00260 unsigned ns,
00261 const real* u,
00262 real* v,
00263 real* work );
00264
00265 /* work1 holds mr*ns*nt reals,
00266 work2 holds mr*ms*nt reals */
00267 void tensor_c3( const real* R,
00268 unsigned mr,
00269 unsigned nr,
00270 const real* S,
00271 unsigned ms,
00272 unsigned ns,
00273 const real* T,
00274 unsigned mt,
00275 unsigned nt,
00276 const real* u,
00277 real* v,
00278 real* work1,
00279 real* work2 );
00280 void tensor_r3( const real* R,
00281 unsigned mr,
00282 unsigned nr,
00283 const real* S,
00284 unsigned ms,
00285 unsigned ns,
00286 const real* T,
00287 unsigned mt,
00288 unsigned nt,
00289 const real* u,
00290 real* v,
00291 real* work1,
00292 real* work2 );
00293
00294 /*--------------------------------------------------------------------------
00295 1-,2-,3-d Tensor Application of Row Vectors (for Interpolation)
00296
00297 the 3d case:
00298 v = tensor_i3(Jr,nr, Js,ns, Jt,nt, u, work)
00299 same effect as tensor_r3(Jr,1,nr, Js,1,ns, Jt,1,nt, u,&v, work1,work2):
00300 gives v = [ Jr (x) Js (x) Jt ] u
00301 where Jr, Js, Jt are row vectors (interpolation weights)
00302 u is nr x ns x nt in column-major format (inner index is r)
00303 v is a scalar
00304 --------------------------------------------------------------------------*/
00305
00306 real tensor_i1( const real* Jr, unsigned nr, const real* u );
00307
00308 /* work holds ns reals */
00309 real tensor_i2( const real* Jr, unsigned nr, const real* Js, unsigned ns, const real* u, real* work );
00310
00311 /* work holds ns*nt + nt reals */
00312 real tensor_i3( const real* Jr,
00313 unsigned nr,
00314 const real* Js,
00315 unsigned ns,
00316 const real* Jt,
00317 unsigned nt,
00318 const real* u,
00319 real* work );
00320
00321 /*--------------------------------------------------------------------------
00322 1-,2-,3-d Tensor Application of Row Vectors
00323 for simultaneous Interpolation and Gradient computation
00324
00325 the 3d case:
00326 v = tensor_ig3(Jr,Dr,nr, Js,Ds,ns, Jt,Dt,nt, u,g, work)
00327 gives v = [ Jr (x) Js (x) Jt ] u
00328 g_0 = [ Dr (x) Js (x) Jt ] u
00329 g_1 = [ Jr (x) Ds (x) Jt ] u
00330 g_2 = [ Jr (x) Js (x) Dt ] u
00331 where Jr,Dr,Js,Ds,Jt,Dt are row vectors
00332 (interpolation & derivative weights)
00333 u is nr x ns x nt in column-major format (inner index is r)
00334 v is a scalar, g is an array of 3 reals
00335 --------------------------------------------------------------------------*/
00336
00337 real tensor_ig1( const real* Jr, const real* Dr, unsigned nr, const real* u, real* g );
00338
00339 /* work holds 2*ns reals */
00340 real tensor_ig2( const real* Jr,
00341 const real* Dr,
00342 unsigned nr,
00343 const real* Js,
00344 const real* Ds,
00345 unsigned ns,
00346 const real* u,
00347 real* g,
00348 real* work );
00349
00350 /* work holds 2*ns*nt + 3*ns reals */
00351 real tensor_ig3( const real* Jr,
00352 const real* Dr,
00353 unsigned nr,
00354 const real* Js,
00355 const real* Ds,
00356 unsigned ns,
00357 const real* Jt,
00358 const real* Dt,
00359 unsigned nt,
00360 const real* u,
00361 real* g,
00362 real* work );
00363
00364 //======================================================
00365 // from findpt.h
00366 //======================================================
00367
00368 typedef struct
00369 {
00370 const real* xw[2]; /* geometry data */
00371 real* z[2]; /* lobatto nodes */
00372 lagrange_data ld[2]; /* interpolation, derivative weights & data */
00373 unsigned nptel; /* nodes per element */
00374 struct findpt_hash_data_2* hash; /* geometric hashing data */
00375 struct findpt_listel *list, **sorted, **end;
00376 /* pre-allocated list of elements to
00377 check (found by hashing), and
00378 pre-allocated list of pointers into
00379 the first list for sorting */
00380 struct findpt_opt_data_2* od; /* data for the optimization algorithm */
00381 real* od_work;
00382 } findpt_data_2;
00383
00384 typedef struct
00385 {
00386 const real* xw[3]; /* geometry data */
00387 real* z[3]; /* lobatto nodes */
00388 lagrange_data ld[3]; /* interpolation, derivative weights & data */
00389 unsigned nptel; /* nodes per element */
00390 struct findpt_hash_data_3* hash; /* geometric hashing data */
00391 struct findpt_listel *list, **sorted, **end;
00392 /* pre-allocated list of elements to
00393 check (found by hashing), and
00394 pre-allocated list of pointers into
00395 the first list for sorting */
00396 struct findpt_opt_data_3* od; /* data for the optimization algorithm */
00397 real* od_work;
00398 } findpt_data_3;
00399
00400 findpt_data_2* findpt_setup_2( const real* const xw[2],
00401 const unsigned n[2],
00402 uint nel,
00403 uint max_hash_size,
00404 real bbox_tol );
00405 findpt_data_3* findpt_setup_3( const real* const xw[3],
00406 const unsigned n[3],
00407 uint nel,
00408 uint max_hash_size,
00409 real bbox_tol );
00410
00411 void findpt_free_2( findpt_data_2* p );
00412 void findpt_free_3( findpt_data_3* p );
00413
00414 const real* findpt_allbnd_2( const findpt_data_2* p );
00415 const real* findpt_allbnd_3( const findpt_data_3* p );
00416
00417 typedef int ( *findpt_func )( void*, const real*, int, uint*, real*, real* );
00418 int findpt_2( findpt_data_2* p, const real x[2], int guess, uint* el, real r[2], real* dist );
00419 int findpt_3( findpt_data_3* p, const real x[3], int guess, uint* el, real r[3], real* dist );
00420
00421 inline void findpt_weights_2( findpt_data_2* p, const real r[2] )
00422 {
00423 lagrange_0( &p->ld[0], r[0] );
00424 lagrange_0( &p->ld[1], r[1] );
00425 }
00426
00427 inline void findpt_weights_3( findpt_data_3* p, const real r[3] )
00428 {
00429 lagrange_0( &p->ld[0], r[0] );
00430 lagrange_0( &p->ld[1], r[1] );
00431 lagrange_0( &p->ld[2], r[2] );
00432 }
00433
00434 inline double findpt_eval_2( findpt_data_2* p, const real* u )
00435 {
00436 return tensor_i2( p->ld[0].J, p->ld[0].n, p->ld[1].J, p->ld[1].n, u, p->od_work );
00437 }
00438
00439 inline double findpt_eval_3( findpt_data_3* p, const real* u )
00440 {
00441 return tensor_i3( p->ld[0].J, p->ld[0].n, p->ld[1].J, p->ld[1].n, p->ld[2].J, p->ld[2].n, u, p->od_work );
00442 }
00443
00444 //======================================================
00445 // from extrafindpt.h
00446 //======================================================
00447
00448 typedef struct
00449 {
00450 unsigned constraints;
00451 unsigned dn, d1, d2;
00452 real *x[3], *fdn[3];
00453 } opt_face_data_3;
00454
00455 typedef struct
00456 {
00457 unsigned constraints;
00458 unsigned de, d1, d2;
00459 real *x[3], *fd1[3], *fd2[3];
00460 } opt_edge_data_3;
00461
00462 typedef struct
00463 {
00464 unsigned constraints;
00465 real x[3], jac[9];
00466 } opt_point_data_3;
00467
00468 typedef struct
00469 {
00470 lagrange_data* ld;
00471 unsigned size[4];
00472 const real* elx[3];
00473 opt_face_data_3 fd;
00474 opt_edge_data_3 ed;
00475 opt_point_data_3 pd;
00476 real* work;
00477 real x[3], jac[9];
00478 } opt_data_3;
00479
00480 void opt_alloc_3( opt_data_3* p, lagrange_data* ld );
00481 void opt_free_3( opt_data_3* p );
00482 double opt_findpt_3( opt_data_3* p, const real* const elx[3], const real xstar[3], real r[3], unsigned* constr );
00483 void opt_vol_set_intp_3( opt_data_3* p, const real r[3] );
00484
00485 const unsigned opt_no_constraints_2 = 3 + 1;
00486 const unsigned opt_no_constraints_3 = 9 + 3 + 1;
00487
00488 /* for 2d spectralQuad */
00489 /*--------------------------------------------------------------------------
00490
00491 2 - D
00492
00493 --------------------------------------------------------------------------*/
00494
00495 typedef struct
00496 {
00497 unsigned constraints;
00498 unsigned de, d1;
00499 real *x[2], *fd1[2];
00500 } opt_edge_data_2;
00501
00502 typedef struct
00503 {
00504 unsigned constraints;
00505 real x[2], jac[4];
00506 } opt_point_data_2;
00507
00508 typedef struct
00509 {
00510 lagrange_data* ld;
00511 unsigned size[3];
00512 const real* elx[2];
00513 opt_edge_data_2 ed;
00514 opt_point_data_2 pd;
00515 real* work;
00516 real x[2], jac[4];
00517 } opt_data_2;
00518 void opt_alloc_2( opt_data_2* p, lagrange_data* ld );
00519 void opt_free_2( opt_data_2* p );
00520 double opt_findpt_2( opt_data_2* p, const real* const elx[2], const real xstar[2], real r[2], unsigned* constr );
00521
00522 #endif