MOAB
4.9.3pre
|
00001 // This file is part of Eigen, a lightweight C++ template library 00002 // for linear algebra. 00003 // 00004 // Copyright (C) 2010 Gael Guennebaud <[email protected]> 00005 // 00006 // This Source Code Form is subject to the terms of the Mozilla 00007 // Public License v. 2.0. If a copy of the MPL was not distributed 00008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 00009 00010 #ifndef EIGEN_COMPLEX_NEON_H 00011 #define EIGEN_COMPLEX_NEON_H 00012 00013 namespace Eigen { 00014 00015 namespace internal { 00016 00017 static uint32x4_t p4ui_CONJ_XOR = EIGEN_INIT_NEON_PACKET4(0x00000000, 0x80000000, 0x00000000, 0x80000000); 00018 static uint32x2_t p2ui_CONJ_XOR = EIGEN_INIT_NEON_PACKET2(0x00000000, 0x80000000); 00019 00020 //---------- float ---------- 00021 struct Packet2cf 00022 { 00023 EIGEN_STRONG_INLINE Packet2cf() {} 00024 EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {} 00025 Packet4f v; 00026 }; 00027 00028 template<> struct packet_traits<std::complex<float> > : default_packet_traits 00029 { 00030 typedef Packet2cf type; 00031 typedef Packet2cf half; 00032 enum { 00033 Vectorizable = 1, 00034 AlignedOnScalar = 1, 00035 size = 2, 00036 HasHalfPacket = 0, 00037 00038 HasAdd = 1, 00039 HasSub = 1, 00040 HasMul = 1, 00041 HasDiv = 1, 00042 HasNegate = 1, 00043 HasAbs = 0, 00044 HasAbs2 = 0, 00045 HasMin = 0, 00046 HasMax = 0, 00047 HasSetLinear = 0 00048 }; 00049 }; 00050 00051 template<> struct unpacket_traits<Packet2cf> { typedef std::complex<float> type; enum {size=2, alignment=Aligned16}; typedef Packet2cf half; }; 00052 00053 template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>& from) 00054 { 00055 float32x2_t r64; 00056 r64 = vld1_f32((float *)&from); 00057 00058 return Packet2cf(vcombine_f32(r64, r64)); 00059 } 00060 00061 template<> EIGEN_STRONG_INLINE Packet2cf padd<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(padd<Packet4f>(a.v,b.v)); } 00062 template<> EIGEN_STRONG_INLINE Packet2cf psub<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(psub<Packet4f>(a.v,b.v)); } 00063 template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) { return Packet2cf(pnegate<Packet4f>(a.v)); } 00064 template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a) 00065 { 00066 Packet4ui b = vreinterpretq_u32_f32(a.v); 00067 return Packet2cf(vreinterpretq_f32_u32(veorq_u32(b, p4ui_CONJ_XOR))); 00068 } 00069 00070 template<> EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, const Packet2cf& b) 00071 { 00072 Packet4f v1, v2; 00073 00074 // Get the real values of a | a1_re | a1_re | a2_re | a2_re | 00075 v1 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 0), vdup_lane_f32(vget_high_f32(a.v), 0)); 00076 // Get the imag values of a | a1_im | a1_im | a2_im | a2_im | 00077 v2 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 1), vdup_lane_f32(vget_high_f32(a.v), 1)); 00078 // Multiply the real a with b 00079 v1 = vmulq_f32(v1, b.v); 00080 // Multiply the imag a with b 00081 v2 = vmulq_f32(v2, b.v); 00082 // Conjugate v2 00083 v2 = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(v2), p4ui_CONJ_XOR)); 00084 // Swap real/imag elements in v2. 00085 v2 = vrev64q_f32(v2); 00086 // Add and return the result 00087 return Packet2cf(vaddq_f32(v1, v2)); 00088 } 00089 00090 template<> EIGEN_STRONG_INLINE Packet2cf pand <Packet2cf>(const Packet2cf& a, const Packet2cf& b) 00091 { 00092 return Packet2cf(vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v)))); 00093 } 00094 template<> EIGEN_STRONG_INLINE Packet2cf por <Packet2cf>(const Packet2cf& a, const Packet2cf& b) 00095 { 00096 return Packet2cf(vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v)))); 00097 } 00098 template<> EIGEN_STRONG_INLINE Packet2cf pxor <Packet2cf>(const Packet2cf& a, const Packet2cf& b) 00099 { 00100 return Packet2cf(vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v)))); 00101 } 00102 template<> EIGEN_STRONG_INLINE Packet2cf pandnot<Packet2cf>(const Packet2cf& a, const Packet2cf& b) 00103 { 00104 return Packet2cf(vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v)))); 00105 } 00106 00107 template<> EIGEN_STRONG_INLINE Packet2cf pload<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload<Packet4f>((const float*)from)); } 00108 template<> EIGEN_STRONG_INLINE Packet2cf ploadu<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu<Packet4f>((const float*)from)); } 00109 00110 template<> EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<float>* from) { return pset1<Packet2cf>(*from); } 00111 00112 template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((float*)to, from.v); } 00113 template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((float*)to, from.v); } 00114 00115 template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather<std::complex<float>, Packet2cf>(const std::complex<float>* from, Index stride) 00116 { 00117 Packet4f res = pset1<Packet4f>(0.f); 00118 res = vsetq_lane_f32(std::real(from[0*stride]), res, 0); 00119 res = vsetq_lane_f32(std::imag(from[0*stride]), res, 1); 00120 res = vsetq_lane_f32(std::real(from[1*stride]), res, 2); 00121 res = vsetq_lane_f32(std::imag(from[1*stride]), res, 3); 00122 return Packet2cf(res); 00123 } 00124 00125 template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet2cf>(std::complex<float>* to, const Packet2cf& from, Index stride) 00126 { 00127 to[stride*0] = std::complex<float>(vgetq_lane_f32(from.v, 0), vgetq_lane_f32(from.v, 1)); 00128 to[stride*1] = std::complex<float>(vgetq_lane_f32(from.v, 2), vgetq_lane_f32(from.v, 3)); 00129 } 00130 00131 template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> * addr) { EIGEN_ARM_PREFETCH((float *)addr); } 00132 00133 template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet2cf>(const Packet2cf& a) 00134 { 00135 std::complex<float> EIGEN_ALIGN16 x[2]; 00136 vst1q_f32((float *)x, a.v); 00137 return x[0]; 00138 } 00139 00140 template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a) 00141 { 00142 float32x2_t a_lo, a_hi; 00143 Packet4f a_r128; 00144 00145 a_lo = vget_low_f32(a.v); 00146 a_hi = vget_high_f32(a.v); 00147 a_r128 = vcombine_f32(a_hi, a_lo); 00148 00149 return Packet2cf(a_r128); 00150 } 00151 00152 template<> EIGEN_STRONG_INLINE Packet2cf pcplxflip<Packet2cf>(const Packet2cf& a) 00153 { 00154 return Packet2cf(vrev64q_f32(a.v)); 00155 } 00156 00157 template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packet2cf& a) 00158 { 00159 float32x2_t a1, a2; 00160 std::complex<float> s; 00161 00162 a1 = vget_low_f32(a.v); 00163 a2 = vget_high_f32(a.v); 00164 a2 = vadd_f32(a1, a2); 00165 vst1_f32((float *)&s, a2); 00166 00167 return s; 00168 } 00169 00170 template<> EIGEN_STRONG_INLINE Packet2cf preduxp<Packet2cf>(const Packet2cf* vecs) 00171 { 00172 Packet4f sum1, sum2, sum; 00173 00174 // Add the first two 64-bit float32x2_t of vecs[0] 00175 sum1 = vcombine_f32(vget_low_f32(vecs[0].v), vget_low_f32(vecs[1].v)); 00176 sum2 = vcombine_f32(vget_high_f32(vecs[0].v), vget_high_f32(vecs[1].v)); 00177 sum = vaddq_f32(sum1, sum2); 00178 00179 return Packet2cf(sum); 00180 } 00181 00182 template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet2cf>(const Packet2cf& a) 00183 { 00184 float32x2_t a1, a2, v1, v2, prod; 00185 std::complex<float> s; 00186 00187 a1 = vget_low_f32(a.v); 00188 a2 = vget_high_f32(a.v); 00189 // Get the real values of a | a1_re | a1_re | a2_re | a2_re | 00190 v1 = vdup_lane_f32(a1, 0); 00191 // Get the real values of a | a1_im | a1_im | a2_im | a2_im | 00192 v2 = vdup_lane_f32(a1, 1); 00193 // Multiply the real a with b 00194 v1 = vmul_f32(v1, a2); 00195 // Multiply the imag a with b 00196 v2 = vmul_f32(v2, a2); 00197 // Conjugate v2 00198 v2 = vreinterpret_f32_u32(veor_u32(vreinterpret_u32_f32(v2), p2ui_CONJ_XOR)); 00199 // Swap real/imag elements in v2. 00200 v2 = vrev64_f32(v2); 00201 // Add v1, v2 00202 prod = vadd_f32(v1, v2); 00203 00204 vst1_f32((float *)&s, prod); 00205 00206 return s; 00207 } 00208 00209 template<int Offset> 00210 struct palign_impl<Offset,Packet2cf> 00211 { 00212 EIGEN_STRONG_INLINE static void run(Packet2cf& first, const Packet2cf& second) 00213 { 00214 if (Offset==1) 00215 { 00216 first.v = vextq_f32(first.v, second.v, 2); 00217 } 00218 } 00219 }; 00220 00221 template<> struct conj_helper<Packet2cf, Packet2cf, false,true> 00222 { 00223 EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const 00224 { return padd(pmul(x,y),c); } 00225 00226 EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const 00227 { 00228 return internal::pmul(a, pconj(b)); 00229 } 00230 }; 00231 00232 template<> struct conj_helper<Packet2cf, Packet2cf, true,false> 00233 { 00234 EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const 00235 { return padd(pmul(x,y),c); } 00236 00237 EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const 00238 { 00239 return internal::pmul(pconj(a), b); 00240 } 00241 }; 00242 00243 template<> struct conj_helper<Packet2cf, Packet2cf, true,true> 00244 { 00245 EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const 00246 { return padd(pmul(x,y),c); } 00247 00248 EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const 00249 { 00250 return pconj(internal::pmul(a, b)); 00251 } 00252 }; 00253 00254 template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b) 00255 { 00256 // TODO optimize it for NEON 00257 Packet2cf res = conj_helper<Packet2cf,Packet2cf,false,true>().pmul(a,b); 00258 Packet4f s, rev_s; 00259 00260 // this computes the norm 00261 s = vmulq_f32(b.v, b.v); 00262 rev_s = vrev64q_f32(s); 00263 00264 return Packet2cf(pdiv(res.v, vaddq_f32(s,rev_s))); 00265 } 00266 00267 EIGEN_DEVICE_FUNC inline void 00268 ptranspose(PacketBlock<Packet2cf,2>& kernel) { 00269 Packet4f tmp = vcombine_f32(vget_high_f32(kernel.packet[0].v), vget_high_f32(kernel.packet[1].v)); 00270 kernel.packet[0].v = vcombine_f32(vget_low_f32(kernel.packet[0].v), vget_low_f32(kernel.packet[1].v)); 00271 kernel.packet[1].v = tmp; 00272 } 00273 00274 //---------- double ---------- 00275 #if EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG 00276 00277 static uint64x2_t p2ul_CONJ_XOR = EIGEN_INIT_NEON_PACKET2(0x0, 0x8000000000000000); 00278 00279 struct Packet1cd 00280 { 00281 EIGEN_STRONG_INLINE Packet1cd() {} 00282 EIGEN_STRONG_INLINE explicit Packet1cd(const Packet2d& a) : v(a) {} 00283 Packet2d v; 00284 }; 00285 00286 template<> struct packet_traits<std::complex<double> > : default_packet_traits 00287 { 00288 typedef Packet1cd type; 00289 typedef Packet1cd half; 00290 enum { 00291 Vectorizable = 1, 00292 AlignedOnScalar = 0, 00293 size = 1, 00294 HasHalfPacket = 0, 00295 00296 HasAdd = 1, 00297 HasSub = 1, 00298 HasMul = 1, 00299 HasDiv = 1, 00300 HasNegate = 1, 00301 HasAbs = 0, 00302 HasAbs2 = 0, 00303 HasMin = 0, 00304 HasMax = 0, 00305 HasSetLinear = 0 00306 }; 00307 }; 00308 00309 template<> struct unpacket_traits<Packet1cd> { typedef std::complex<double> type; enum {size=1, alignment=Aligned16}; typedef Packet1cd half; }; 00310 00311 template<> EIGEN_STRONG_INLINE Packet1cd pload<Packet1cd>(const std::complex<double>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet1cd(pload<Packet2d>((const double*)from)); } 00312 template<> EIGEN_STRONG_INLINE Packet1cd ploadu<Packet1cd>(const std::complex<double>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet1cd(ploadu<Packet2d>((const double*)from)); } 00313 00314 template<> EIGEN_STRONG_INLINE Packet1cd pset1<Packet1cd>(const std::complex<double>& from) 00315 { /* here we really have to use unaligned loads :( */ return ploadu<Packet1cd>(&from); } 00316 00317 template<> EIGEN_STRONG_INLINE Packet1cd padd<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(padd<Packet2d>(a.v,b.v)); } 00318 template<> EIGEN_STRONG_INLINE Packet1cd psub<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(psub<Packet2d>(a.v,b.v)); } 00319 template<> EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) { return Packet1cd(pnegate<Packet2d>(a.v)); } 00320 template<> EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a) { return Packet1cd(vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(a.v), p2ul_CONJ_XOR))); } 00321 00322 template<> EIGEN_STRONG_INLINE Packet1cd pmul<Packet1cd>(const Packet1cd& a, const Packet1cd& b) 00323 { 00324 Packet2d v1, v2; 00325 00326 // Get the real values of a 00327 v1 = vdupq_lane_f64(vget_low_f64(a.v), 0); 00328 // Get the imag values of a 00329 v2 = vdupq_lane_f64(vget_high_f64(a.v), 0); 00330 // Multiply the real a with b 00331 v1 = vmulq_f64(v1, b.v); 00332 // Multiply the imag a with b 00333 v2 = vmulq_f64(v2, b.v); 00334 // Conjugate v2 00335 v2 = vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(v2), p2ul_CONJ_XOR)); 00336 // Swap real/imag elements in v2. 00337 v2 = preverse<Packet2d>(v2); 00338 // Add and return the result 00339 return Packet1cd(vaddq_f64(v1, v2)); 00340 } 00341 00342 template<> EIGEN_STRONG_INLINE Packet1cd pand <Packet1cd>(const Packet1cd& a, const Packet1cd& b) 00343 { 00344 return Packet1cd(vreinterpretq_f64_u64(vandq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v)))); 00345 } 00346 template<> EIGEN_STRONG_INLINE Packet1cd por <Packet1cd>(const Packet1cd& a, const Packet1cd& b) 00347 { 00348 return Packet1cd(vreinterpretq_f64_u64(vorrq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v)))); 00349 } 00350 template<> EIGEN_STRONG_INLINE Packet1cd pxor <Packet1cd>(const Packet1cd& a, const Packet1cd& b) 00351 { 00352 return Packet1cd(vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v)))); 00353 } 00354 template<> EIGEN_STRONG_INLINE Packet1cd pandnot<Packet1cd>(const Packet1cd& a, const Packet1cd& b) 00355 { 00356 return Packet1cd(vreinterpretq_f64_u64(vbicq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v)))); 00357 } 00358 00359 template<> EIGEN_STRONG_INLINE Packet1cd ploaddup<Packet1cd>(const std::complex<double>* from) { return pset1<Packet1cd>(*from); } 00360 00361 template<> EIGEN_STRONG_INLINE void pstore <std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v); } 00362 template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v); } 00363 00364 template<> EIGEN_STRONG_INLINE void prefetch<std::complex<double> >(const std::complex<double> * addr) { EIGEN_ARM_PREFETCH((double *)addr); } 00365 00366 template<> EIGEN_DEVICE_FUNC inline Packet1cd pgather<std::complex<double>, Packet1cd>(const std::complex<double>* from, Index stride) 00367 { 00368 Packet2d res = pset1<Packet2d>(0.0); 00369 res = vsetq_lane_f64(std::real(from[0*stride]), res, 0); 00370 res = vsetq_lane_f64(std::imag(from[0*stride]), res, 1); 00371 return Packet1cd(res); 00372 } 00373 00374 template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<double>, Packet1cd>(std::complex<double>* to, const Packet1cd& from, Index stride) 00375 { 00376 to[stride*0] = std::complex<double>(vgetq_lane_f64(from.v, 0), vgetq_lane_f64(from.v, 1)); 00377 } 00378 00379 00380 template<> EIGEN_STRONG_INLINE std::complex<double> pfirst<Packet1cd>(const Packet1cd& a) 00381 { 00382 std::complex<double> EIGEN_ALIGN16 res; 00383 pstore<std::complex<double> >(&res, a); 00384 00385 return res; 00386 } 00387 00388 template<> EIGEN_STRONG_INLINE Packet1cd preverse(const Packet1cd& a) { return a; } 00389 00390 template<> EIGEN_STRONG_INLINE std::complex<double> predux<Packet1cd>(const Packet1cd& a) { return pfirst(a); } 00391 00392 template<> EIGEN_STRONG_INLINE Packet1cd preduxp<Packet1cd>(const Packet1cd* vecs) { return vecs[0]; } 00393 00394 template<> EIGEN_STRONG_INLINE std::complex<double> predux_mul<Packet1cd>(const Packet1cd& a) { return pfirst(a); } 00395 00396 template<int Offset> 00397 struct palign_impl<Offset,Packet1cd> 00398 { 00399 static EIGEN_STRONG_INLINE void run(Packet1cd& /*first*/, const Packet1cd& /*second*/) 00400 { 00401 // FIXME is it sure we never have to align a Packet1cd? 00402 // Even though a std::complex<double> has 16 bytes, it is not necessarily aligned on a 16 bytes boundary... 00403 } 00404 }; 00405 00406 template<> struct conj_helper<Packet1cd, Packet1cd, false,true> 00407 { 00408 EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const 00409 { return padd(pmul(x,y),c); } 00410 00411 EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const 00412 { 00413 return internal::pmul(a, pconj(b)); 00414 } 00415 }; 00416 00417 template<> struct conj_helper<Packet1cd, Packet1cd, true,false> 00418 { 00419 EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const 00420 { return padd(pmul(x,y),c); } 00421 00422 EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const 00423 { 00424 return internal::pmul(pconj(a), b); 00425 } 00426 }; 00427 00428 template<> struct conj_helper<Packet1cd, Packet1cd, true,true> 00429 { 00430 EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const 00431 { return padd(pmul(x,y),c); } 00432 00433 EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const 00434 { 00435 return pconj(internal::pmul(a, b)); 00436 } 00437 }; 00438 00439 template<> EIGEN_STRONG_INLINE Packet1cd pdiv<Packet1cd>(const Packet1cd& a, const Packet1cd& b) 00440 { 00441 // TODO optimize it for NEON 00442 Packet1cd res = conj_helper<Packet1cd,Packet1cd,false,true>().pmul(a,b); 00443 Packet2d s = pmul<Packet2d>(b.v, b.v); 00444 Packet2d rev_s = preverse<Packet2d>(s); 00445 00446 return Packet1cd(pdiv(res.v, padd<Packet2d>(s,rev_s))); 00447 } 00448 00449 EIGEN_STRONG_INLINE Packet1cd pcplxflip/*<Packet1cd>*/(const Packet1cd& x) 00450 { 00451 return Packet1cd(preverse(Packet2d(x.v))); 00452 } 00453 00454 EIGEN_STRONG_INLINE void ptranspose(PacketBlock<Packet1cd,2>& kernel) 00455 { 00456 Packet2d tmp = vcombine_f64(vget_high_f64(kernel.packet[0].v), vget_high_f64(kernel.packet[1].v)); 00457 kernel.packet[0].v = vcombine_f64(vget_low_f64(kernel.packet[0].v), vget_low_f64(kernel.packet[1].v)); 00458 kernel.packet[1].v = tmp; 00459 } 00460 #endif // EIGEN_ARCH_ARM64 00461 00462 } // end namespace internal 00463 00464 } // end namespace Eigen 00465 00466 #endif // EIGEN_COMPLEX_NEON_H