MOAB: Mesh Oriented datABase
(version 5.4.1)
|
00001 /* ***************************************************************** 00002 MESQUITE -- The Mesh Quality Improvement Toolkit 00003 00004 Copyright 2006 Lawrence Livermore National Laboratory. Under 00005 the terms of Contract B545069 with the University of Wisconsin -- 00006 Madison, Lawrence Livermore National Laboratory retains certain 00007 rights in this software. 00008 00009 This library is free software; you can redistribute it and/or 00010 modify it under the terms of the GNU Lesser General Public 00011 License as published by the Free Software Foundation; either 00012 version 2.1 of the License, or (at your option) any later version. 00013 00014 This library is distributed in the hope that it will be useful, 00015 but WITHOUT ANY WARRANTY; without even the implied warranty of 00016 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00017 Lesser General Public License for more details. 00018 00019 You should have received a copy of the GNU Lesser General Public License 00020 (lgpl.txt) along with this library; if not, write to the Free Software 00021 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 00022 00023 (2006) [email protected] 00024 00025 ***************************************************************** */ 00026 00027 #ifndef MSQ_QUAD_LAGRANGE_SHAPE_HPP 00028 #define MSQ_QUAD_LAGRANGE_SHAPE_HPP 00029 00030 /** \file QuadLagrangeShape.hpp 00031 * \brief Lagrange mapping funtion for a 9-node quad. 00032 * \author Jason Kraftcheck 00033 */ 00034 00035 #include "MappingFunction.hpp" 00036 00037 namespace MBMesquite 00038 { 00039 00040 /**\brief Lagrange shape function for 9-node quadrilateral elements 00041 * 00042 * This class implements the MappingFunction interface, providing 00043 * a Lagrange shape function for quadrilateral elements. 00044 * 00045 * \f$\vec{x}(\xi,\eta) = \sum_{i=0}^{n-1} N_i(\xi,\eta) \vec{x_i}\f$ 00046 * 00047 * \f$N_a = l^2_b(\xi) l^2_c(\eta)\f$ 00048 * 00049 * \f$l^2_1(\xi) = (\xi - 1) (2 \xi - 1)\f$ 00050 * 00051 * \f$l^2_2(\xi) = 4 \xi (1 - \xi)\f$ 00052 * 00053 * \f$l^2_3(\xi) = \xi (2 \xi - 1)\f$ 00054 * 00055 * \f$\begin{array}{ccc} 00056 * a & b & c \\ \hline 00057 * 0 & 1 & 1 \\ 00058 * 1 & 3 & 1 \\ 00059 * 2 & 3 & 3 \\ 00060 * 3 & 1 & 3 \\ 00061 * 4 & 2 & 1 \\ 00062 * 5 & 3 & 2 \\ 00063 * 6 & 2 & 3 \\ 00064 * 7 & 1 & 2 \\ 00065 * 8 & 2 & 2 \end{array}\f$ 00066 * 00067 */ 00068 class MESQUITE_EXPORT QuadLagrangeShape : public MappingFunction2D 00069 { 00070 public: 00071 virtual EntityTopology element_topology() const; 00072 00073 virtual int num_nodes() const; 00074 00075 virtual void coefficients( Sample location, 00076 NodeSet nodeset, 00077 double* coeff_out, 00078 size_t* indices_out, 00079 size_t& num_coeff_out, 00080 MsqError& err ) const; 00081 00082 virtual void derivatives( Sample location, 00083 NodeSet nodeset, 00084 size_t* vertex_indices_out, 00085 MsqVector< 2 >* d_coeff_d_xi_out, 00086 size_t& num_vtx, 00087 MsqError& err ) const; 00088 00089 virtual void ideal( Sample location, MsqMatrix< 3, 2 >& jacobian_out, MsqError& err ) const; 00090 }; 00091 00092 } // namespace MBMesquite 00093 00094 #endif