MOAB: Mesh Oriented datABase
(version 5.4.1)
|
00001 /* ***************************************************************** 00002 MESQUITE -- The Mesh Quality Improvement Toolkit 00003 00004 Copyright 2009 Sandia National Laboratories. Developed at the 00005 University of Wisconsin--Madison under SNL contract number 00006 624796. The U.S. Government and the University of Wisconsin 00007 retain certain rights to this software. 00008 00009 This library is free software; you can redistribute it and/or 00010 modify it under the terms of the GNU Lesser General Public 00011 License as published by the Free Software Foundation; either 00012 version 2.1 of the License, or (at your option) any later version. 00013 00014 This library is distributed in the hope that it will be useful, 00015 but WITHOUT ANY WARRANTY; without even the implied warranty of 00016 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00017 Lesser General Public License for more details. 00018 00019 You should have received a copy of the GNU Lesser General Public License 00020 (lgpl.txt) along with this library; if not, write to the Free Software 00021 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 00022 00023 (2009) kraftche@cae.wisc.edu 00024 00025 ***************************************************************** */ 00026 00027 /** \file TShapeSizeNB3.cpp 00028 * \brief 00029 * \author Jason Kraftcheck 00030 */ 00031 00032 #include "Mesquite.hpp" 00033 #include "TShapeSizeNB3.hpp" 00034 #include "MsqMatrix.hpp" 00035 #include "TMPDerivs.hpp" 00036 00037 namespace MBMesquite 00038 { 00039 00040 std::string TShapeSizeNB3::get_name() const 00041 { 00042 return "TShapeSizeNB3"; 00043 } 00044 00045 TShapeSizeNB3::~TShapeSizeNB3() {} 00046 00047 bool TShapeSizeNB3::evaluate( const MsqMatrix< 2, 2 >& T, double& result, MsqError& ) 00048 { 00049 const double nT = sqr_Frobenius( T ); 00050 const double tau = det( T ); 00051 const double tau1 = tau - 1; 00052 result = 2 * nT - 4 * tau + mGamma * tau1 * tau1; 00053 return true; 00054 } 00055 00056 bool TShapeSizeNB3::evaluate_with_grad( const MsqMatrix< 2, 2 >& T, 00057 double& result, 00058 MsqMatrix< 2, 2 >& deriv_wrt_T, 00059 MsqError& /*err*/ ) 00060 { 00061 const double nT = sqr_Frobenius( T ); 00062 const double tau = det( T ); 00063 const double tau1 = tau - 1; 00064 result = 2 * nT - 4 * tau + mGamma * tau1 * tau1; 00065 00066 deriv_wrt_T = T; 00067 deriv_wrt_T *= 4; 00068 deriv_wrt_T += ( 2 * mGamma * tau1 - 4 ) * transpose_adj( T ); 00069 00070 return true; 00071 } 00072 00073 bool TShapeSizeNB3::evaluate_with_hess( const MsqMatrix< 2, 2 >& T, 00074 double& result, 00075 MsqMatrix< 2, 2 >& deriv_wrt_T, 00076 MsqMatrix< 2, 2 > second[3], 00077 MsqError& /*err*/ ) 00078 { 00079 const double nT = sqr_Frobenius( T ); 00080 const double tau = det( T ); 00081 const double tau1 = tau - 1; 00082 result = 2 * nT - 4 * tau + mGamma * tau1 * tau1; 00083 00084 const double f = 2 * mGamma * tau1 - 4; 00085 const MsqMatrix< 2, 2 > adjt = transpose_adj( T ); 00086 deriv_wrt_T = T; 00087 deriv_wrt_T *= 4; 00088 deriv_wrt_T += f * adjt; 00089 00090 set_scaled_outer_product( second, 2 * mGamma, adjt ); 00091 pluseq_scaled_I( second, 4 ); 00092 pluseq_scaled_2nd_deriv_of_det( second, f ); 00093 00094 return true; 00095 } 00096 00097 bool TShapeSizeNB3::evaluate( const MsqMatrix< 3, 3 >& T, double& result, MsqError& /*err*/ ) 00098 { 00099 const double nT = Frobenius( T ); 00100 const double tau = det( T ); 00101 const double tau1 = tau - 1; 00102 result = nT * nT * nT - 3 * MSQ_SQRT_THREE * tau + mGamma * tau1 * tau1; 00103 return true; 00104 } 00105 00106 bool TShapeSizeNB3::evaluate_with_grad( const MsqMatrix< 3, 3 >& T, 00107 double& result, 00108 MsqMatrix< 3, 3 >& wrt_T, 00109 MsqError& /*err*/ ) 00110 { 00111 const double nT = Frobenius( T ); 00112 const double tau = det( T ); 00113 const double tau1 = tau - 1; 00114 result = nT * nT * nT - 3 * MSQ_SQRT_THREE * tau + mGamma * tau1 * tau1; 00115 00116 wrt_T = T; 00117 wrt_T *= 3 * nT; 00118 wrt_T -= ( 3 * MSQ_SQRT_THREE - 2 * mGamma * tau1 ) * transpose_adj( T ); 00119 00120 return true; 00121 } 00122 00123 bool TShapeSizeNB3::evaluate_with_hess( const MsqMatrix< 3, 3 >& T, 00124 double& result, 00125 MsqMatrix< 3, 3 >& wrt_T, 00126 MsqMatrix< 3, 3 > second[6], 00127 MsqError& /*err*/ ) 00128 { 00129 const double nT = Frobenius( T ); 00130 const double tau = det( T ); 00131 const double tau1 = tau - 1; 00132 result = nT * nT * nT - 3 * MSQ_SQRT_THREE * tau + mGamma * tau1 * tau1; 00133 00134 const double f = ( 3 * MSQ_SQRT_THREE - 2 * mGamma * tau1 ); 00135 const MsqMatrix< 3, 3 > adjt = transpose_adj( T ); 00136 wrt_T = T; 00137 wrt_T *= 3 * nT; 00138 wrt_T -= f * adjt; 00139 00140 set_scaled_outer_product( second, 2 * mGamma, adjt ); 00141 pluseq_scaled_2nd_deriv_of_det( second, -f, T ); 00142 pluseq_scaled_I( second, 3 * nT ); 00143 // Could perturb T a bit if the norm is zero, but that would just 00144 // result in the coefficent of the outer product being practically 00145 // zero, so just skip the outer product in that case. 00146 // Anyway nT approaches zero as T does, so the limit of this term 00147 // as nT approaches zero is zero. 00148 if( nT > 1e-100 ) // NOTE: nT is always positive 00149 pluseq_scaled_outer_product( second, 3 / nT, T ); 00150 00151 return true; 00152 } 00153 00154 } // namespace MBMesquite