MOAB: Mesh Oriented datABase  (version 5.4.1)
HessTestMetricAbs Class Reference
Inheritance diagram for HessTestMetricAbs:
Collaboration diagram for HessTestMetricAbs:

## Public Member Functions

std::string get_name () const
bool evaluate (const MsqMatrix< 2, 2 > &A, const MsqMatrix< 2, 2 > &W, double &result, MsqError &)
Evaluate $$\mu(A,W)$$.
bool evaluate_with_grad (const MsqMatrix< 2, 2 > &A, const MsqMatrix< 2, 2 > &W, double &result, MsqMatrix< 2, 2 > &wrt_A, MsqError &)
Gradient of $$\mu(A,W)$$ with respect to components of A.
bool evaluate (const MsqMatrix< 3, 3 > &A, const MsqMatrix< 3, 3 > &W, double &result, MsqError &)
Evaluate $$\mu(A,W)$$.
bool evaluate_with_grad (const MsqMatrix< 3, 3 > &A, const MsqMatrix< 3, 3 > &W, double &result, MsqMatrix< 3, 3 > &wrt_A, MsqError &)
Gradient of $$\mu(A,W)$$ with respect to components of A.

## Detailed Description

Definition at line 110 of file AWMetricTest.cpp.

## Member Function Documentation

 bool HessTestMetricAbs::evaluate ( const MsqMatrix< 2, 2 > & A, const MsqMatrix< 2, 2 > & W, double & result, MsqError & err )  [inline, virtual]

Evaluate $$\mu(A,W)$$.

Parameters:
 A 2x2 active matrix W 2x2 target matrix result Output: value of function
Returns:
false if function cannot be evaluated for given A and W (e.g. division by zero, etc.), true otherwise.

Reimplemented from MBMesquite::AWMetric.

Definition at line 118 of file AWMetricTest.cpp.

References MBMesquite::sqr_Frobenius(), and MBMesquite::transpose().

    {
result = sqr_Frobenius( 2 * A - transpose( A ) - W );
return true;
}

 bool HessTestMetricAbs::evaluate ( const MsqMatrix< 3, 3 > & A, const MsqMatrix< 3, 3 > & W, double & result, MsqError & err )  [inline, virtual]

Evaluate $$\mu(A,W)$$.

Parameters:
 A 3x3 active matrix W 3x3 target matrix result Output: value of function
Returns:
false if function cannot be evaluated for given A and W (e.g. division by zero, etc.), true otherwise.

Reimplemented from MBMesquite::AWMetric.

Definition at line 134 of file AWMetricTest.cpp.

References MBMesquite::sqr_Frobenius(), and MBMesquite::transpose().

    {
result = sqr_Frobenius( 2 * A - transpose( A ) - W );
return true;
}

 bool HessTestMetricAbs::evaluate_with_grad ( const MsqMatrix< 2, 2 > & A, const MsqMatrix< 2, 2 > & W, double & result, MsqMatrix< 2, 2 > & deriv_wrt_A, MsqError & err )  [inline, virtual]

Gradient of $$\mu(A,W)$$ with respect to components of A.

Parameters:
 A 2x2 active matrix W 2x2 target matrix result Output: value of function deriv_wrt_A Output: partial deriviatve of $$\mu$$ wrt each term of A, evaluated at passed A. $\left[\begin{array}{cc} \frac{\partial\mu}{\partial A_{0,0}} & \frac{\partial\mu}{\partial A_{0,1}} \\ \frac{\partial\mu}{\partial A_{1,0}} & \frac{\partial\mu}{\partial A_{1,1}} \\ \end{array}\right]$
Returns:
false if function cannot be evaluated for given A and W (e.g. division by zero, etc.), true otherwise.

Reimplemented from MBMesquite::AWMetric.

Definition at line 123 of file AWMetricTest.cpp.

References MBMesquite::sqr_Frobenius(), and MBMesquite::transpose().

    {
result = sqr_Frobenius( 2 * A - transpose( A ) - W );
wrt_A  = 10 * A - 8 * transpose( A ) - 4 * W + 2 * transpose( W );
return true;
}

 bool HessTestMetricAbs::evaluate_with_grad ( const MsqMatrix< 3, 3 > & A, const MsqMatrix< 3, 3 > & W, double & result, MsqMatrix< 3, 3 > & deriv_wrt_A, MsqError & err )  [inline, virtual]

Gradient of $$\mu(A,W)$$ with respect to components of A.

Parameters:
 A 3x3 active matrix W 3x3 target matrix result Output: value of function deriv_wrt_A Output: partial deriviatve of $$\mu$$ wrt each term of A, evaluated at passed A. $\left[\begin{array}{ccc} \frac{\partial\mu}{\partial A_{0,0}} & \frac{\partial\mu}{\partial A_{0,1}} & \frac{\partial\mu}{\partial A_{0,2}} \\ \frac{\partial\mu}{\partial A_{1,0}} & \frac{\partial\mu}{\partial A_{1,1}} & \frac{\partial\mu}{\partial A_{1,2}} \\ \frac{\partial\mu}{\partial A_{2,0}} & \frac{\partial\mu}{\partial A_{2,1}} & \frac{\partial\mu}{\partial A_{2,2}} \end{array}\right]$
Returns:
false if function cannot be evaluated for given A and W (e.g. division by zero, etc.), true otherwise.

Reimplemented from MBMesquite::AWMetric.

Definition at line 139 of file AWMetricTest.cpp.

References MBMesquite::sqr_Frobenius(), and MBMesquite::transpose().

    {
result = sqr_Frobenius( 2 * A - transpose( A ) - W );
wrt_A  = 10 * A - 8 * transpose( A ) - 4 * W + 2 * transpose( W );
return true;
}

 std::string HessTestMetricAbs::get_name ( ) const [inline, virtual]

Implements MBMesquite::AWMetric.

Definition at line 113 of file AWMetricTest.cpp.

    {
return "HessTest";
}


List of all members.

The documentation for this class was generated from the following file: