MOAB: Mesh Oriented datABase
(version 5.4.1)
|
Public Member Functions | |
std::string | get_name () const |
bool | evaluate (const MsqMatrix< 2, 2 > &A, const MsqMatrix< 2, 2 > &, double &result, MsqError &err) |
Evaluate \(\mu(A,W)\). | |
bool | evaluate_with_grad (const MsqMatrix< 2, 2 > &A, const MsqMatrix< 2, 2 > &, double &result, MsqMatrix< 2, 2 > &d, MsqError &err) |
Gradient of \(\mu(A,W)\) with respect to components of A. | |
bool | evaluate_with_hess (const MsqMatrix< 2, 2 > &A, const MsqMatrix< 2, 2 > &, double &result, MsqMatrix< 2, 2 > &d, MsqMatrix< 2, 2 > d2[3], MsqError &err) |
Hessian of \(\mu(A,W)\) with respect to components of A. | |
bool | evaluate (const MsqMatrix< 3, 3 > &A, const MsqMatrix< 3, 3 > &, double &result, MsqError &err) |
Evaluate \(\mu(A,W)\). | |
bool | evaluate_with_grad (const MsqMatrix< 3, 3 > &A, const MsqMatrix< 3, 3 > &, double &result, MsqMatrix< 3, 3 > &d, MsqError &err) |
Gradient of \(\mu(A,W)\) with respect to components of A. | |
bool | evaluate_with_hess (const MsqMatrix< 3, 3 > &A, const MsqMatrix< 3, 3 > &, double &result, MsqMatrix< 3, 3 > &d, MsqMatrix< 3, 3 > d2[6], MsqError &err) |
Hessian of \(\mu(A,W)\) with respect to components of A. |
Simple target metric for testing second partial derivatives. \(\mu(T) = |T|\) \(\frac{\partial\mu}{\partial T} = \frac{1}{|T|} T \) \(\frac{\partial^{2}\mu}{\partial t_{i,i}^2} = \frac{1}{|T|} - \frac{t_{i,i}^2}{|T|^3}\) \(\frac{\partial^{2}\mu}{\partial t_{i,j} \partial t_{k,l} (i \ne k or j \ne l)} = -\frac{t_{i,j} a_{k,l}}{|T|^3}\) Simple target metric for testing second partial derivatives. \(\mu(A,W) = |A|\) \(\frac{\partial\mu}{\partial A} = \frac{1}{|A|} A \) \(\frac{\partial^{2}\mu}{\partial a_{i,i}^2} = \frac{1}{|A|} - \frac{a_{i,i}^2}{|A|^3}\) \(\frac{\partial^{2}\mu}{\partial a_{i,j} \partial a_{k,l} (i \ne k or j \ne l)} = -\frac{a_{i,j} a_{k,l}}{|A|^3}\)
Definition at line 165 of file AWMetricTest.cpp.
bool HessTestMetricAbs_2::evaluate | ( | const MsqMatrix< 2, 2 > & | A, |
const MsqMatrix< 2, 2 > & | W, | ||
double & | result, | ||
MsqError & | err | ||
) | [inline, virtual] |
Evaluate \(\mu(A,W)\).
A | 2x2 active matrix |
W | 2x2 target matrix |
result | Output: value of function |
Reimplemented from MBMesquite::AWMetric.
Definition at line 173 of file AWMetricTest.cpp.
References MBMesquite::Frobenius().
{ result = Frobenius( A ); return true; }
bool HessTestMetricAbs_2::evaluate | ( | const MsqMatrix< 3, 3 > & | A, |
const MsqMatrix< 3, 3 > & | W, | ||
double & | result, | ||
MsqError & | err | ||
) | [inline, virtual] |
Evaluate \(\mu(A,W)\).
A | 3x3 active matrix |
W | 3x3 target matrix |
result | Output: value of function |
Reimplemented from MBMesquite::AWMetric.
Definition at line 210 of file AWMetricTest.cpp.
References MBMesquite::Frobenius().
{ result = Frobenius( A ); return true; }
bool HessTestMetricAbs_2::evaluate_with_grad | ( | const MsqMatrix< 2, 2 > & | A, |
const MsqMatrix< 2, 2 > & | W, | ||
double & | result, | ||
MsqMatrix< 2, 2 > & | deriv_wrt_A, | ||
MsqError & | err | ||
) | [inline, virtual] |
Gradient of \(\mu(A,W)\) with respect to components of A.
A | 2x2 active matrix |
W | 2x2 target matrix |
result | Output: value of function |
deriv_wrt_A | Output: partial deriviatve of \(\mu\) wrt each term of A, evaluated at passed A. \[\left[\begin{array}{cc} \frac{\partial\mu}{\partial A_{0,0}} & \frac{\partial\mu}{\partial A_{0,1}} \\ \frac{\partial\mu}{\partial A_{1,0}} & \frac{\partial\mu}{\partial A_{1,1}} \\ \end{array}\right]\] |
Reimplemented from MBMesquite::AWMetric.
Definition at line 179 of file AWMetricTest.cpp.
References MBMesquite::Frobenius().
Referenced by AWMetricTest::test_numerical_gradient_2D(), and AWMetricTest::test_numerical_gradient_3D().
{ result = Frobenius( A ); d = A / result; return true; }
bool HessTestMetricAbs_2::evaluate_with_grad | ( | const MsqMatrix< 3, 3 > & | A, |
const MsqMatrix< 3, 3 > & | W, | ||
double & | result, | ||
MsqMatrix< 3, 3 > & | deriv_wrt_A, | ||
MsqError & | err | ||
) | [inline, virtual] |
Gradient of \(\mu(A,W)\) with respect to components of A.
A | 3x3 active matrix |
W | 3x3 target matrix |
result | Output: value of function |
deriv_wrt_A | Output: partial deriviatve of \(\mu\) wrt each term of A, evaluated at passed A. \[\left[\begin{array}{ccc} \frac{\partial\mu}{\partial A_{0,0}} & \frac{\partial\mu}{\partial A_{0,1}} & \frac{\partial\mu}{\partial A_{0,2}} \\ \frac{\partial\mu}{\partial A_{1,0}} & \frac{\partial\mu}{\partial A_{1,1}} & \frac{\partial\mu}{\partial A_{1,2}} \\ \frac{\partial\mu}{\partial A_{2,0}} & \frac{\partial\mu}{\partial A_{2,1}} & \frac{\partial\mu}{\partial A_{2,2}} \end{array}\right]\] |
Reimplemented from MBMesquite::AWMetric.
Definition at line 216 of file AWMetricTest.cpp.
References MBMesquite::Frobenius().
{ result = Frobenius( A ); d = A / result; return true; }
bool HessTestMetricAbs_2::evaluate_with_hess | ( | const MsqMatrix< 2, 2 > & | A, |
const MsqMatrix< 2, 2 > & | W, | ||
double & | result, | ||
MsqMatrix< 2, 2 > & | deriv_wrt_A, | ||
MsqMatrix< 2, 2 > | second_wrt_A[3], | ||
MsqError & | err | ||
) | [inline, virtual] |
Hessian of \(\mu(A,W)\) with respect to components of A.
A | 2x2 active matrix |
W | 2x2 target matrix |
result | Output: value of function |
deriv_wrt_A | Output: partial deriviatve of \(\mu\) wrt each term of A, evaluated at passed A. |
second_wrt_A | Output: 4x4 matrix of second partial deriviatve of \(\mu\) wrt each term of A, in row-major order. The symmetric matrix is decomposed into 2x2 blocks and only the upper diagonal blocks, in row-major order, are returned. \[\left[\begin{array}{cc|cc} \frac{\partial^{2}\mu}{\partial A_{0,0}^2} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{1,1}} \\ \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial A_{0,1}^2} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{1,1}} \\ \hline & & \frac{\partial^{2}\mu}{\partial A_{1,0}^2} & \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{1,1}} \\ & & \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{1,1}} & \frac{\partial^{2}\mu}{\partial A_{1,1}^2} \\ \end{array}\right]\] |
Reimplemented from MBMesquite::AWMetric.
Definition at line 190 of file AWMetricTest.cpp.
References MBMesquite::Frobenius(), MBMesquite::MsqMatrix< R, C >::row(), and MBMesquite::transpose().
Referenced by AWMetricTest::test_numerical_hessian_2D(), and AWMetricTest::test_numerical_hessian_3D().
{ result = Frobenius( A ); d = A / result; int h = 0; for( int r = 0; r < 2; ++r ) { int i = h; for( int c = r; c < 2; ++c ) d2[h++] = transpose( A.row( r ) ) * A.row( c ) / -( result * result * result ); d2[i] += MsqMatrix< 2, 2 >( 1.0 / result ); } return true; }
bool HessTestMetricAbs_2::evaluate_with_hess | ( | const MsqMatrix< 3, 3 > & | A, |
const MsqMatrix< 3, 3 > & | W, | ||
double & | result, | ||
MsqMatrix< 3, 3 > & | deriv_wrt_A, | ||
MsqMatrix< 3, 3 > | second_wrt_A[6], | ||
MsqError & | err | ||
) | [inline, virtual] |
Hessian of \(\mu(A,W)\) with respect to components of A.
A | 3x3 active matrix |
W | 3x3 target matrix |
result | Output: value of function |
deriv_wrt_A | Output: partial deriviatve of \(\mu\) wrt each term of A, evaluated at passed A. |
second_wrt_A | Output: 9x9 matrix of second partial deriviatve of \(\mu\) wrt each term of A, in row-major order. The symmetric matrix is decomposed into 3x3 blocks and only the upper diagonal blocks, in row-major order, are returned. \[\left[\begin{array}{ccc|ccc|ccc} \frac{\partial^{2}\mu}{\partial A_{0,0}^2} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{0,2}} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{1,1}} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{1,2}} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{2,0}} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{2,1}} & \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{2,2}} \\ \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{0,1}} & \frac{\partial^{2}\mu}{\partial A_{0,1}^2} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{0,2}} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{1,1}} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{1,2}} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{2,0}} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{2,1}} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{2,2}} \\ \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{0,2}} & \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{0,2}} & \frac{\partial^{2}\mu}{\partial A_{0,2}^2} & \frac{\partial^{2}\mu}{\partial A_{0,2}\partial A_{1,0}} & \frac{\partial^{2}\mu}{\partial A_{0,2}\partial A_{1,1}} & \frac{\partial^{2}\mu}{\partial A_{0,2}\partial A_{1,2}} & \frac{\partial^{2}\mu}{\partial A_{0,2}\partial A_{2,0}} & \frac{\partial^{2}\mu}{\partial A_{0,2}\partial A_{2,1}} & \frac{\partial^{2}\mu}{\partial A_{0,2}\partial A_{2,2}} \\ \hline & & & \frac{\partial^{2}\mu}{\partial A_{1,0}^2} & \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{1,1}} & \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{1,2}} & \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{2,0}} & \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{2,1}} & \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{2,2}} \\ & & & \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{1,1}} & \frac{\partial^{2}\mu}{\partial A_{1,1}^2} & \frac{\partial^{2}\mu}{\partial A_{1,1}\partial A_{1,2}} & \frac{\partial^{2}\mu}{\partial A_{1,1}\partial A_{2,0}} & \frac{\partial^{2}\mu}{\partial A_{1,1}\partial A_{2,1}} & \frac{\partial^{2}\mu}{\partial A_{1,1}\partial A_{2,2}} \\ & & & \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{1,2}} & \frac{\partial^{2}\mu}{\partial A_{1,1}\partial A_{1,2}} & \frac{\partial^{2}\mu}{\partial A_{1,2}^2} & \frac{\partial^{2}\mu}{\partial A_{1,2}\partial A_{2,0}} & \frac{\partial^{2}\mu}{\partial A_{1,2}\partial A_{2,1}} & \frac{\partial^{2}\mu}{\partial A_{1,2}\partial A_{2,2}} \\ \hline & & & & & & \frac{\partial^{2}\mu}{\partial A_{2,0}^2} & \frac{\partial^{2}\mu}{\partial A_{2,0}\partial A_{2,1}} & \frac{\partial^{2}\mu}{\partial A_{2,0}\partial A_{2,2}} \\ & & & & & & \frac{\partial^{2}\mu}{\partial A_{2,0}\partial A_{2,1}} & \frac{\partial^{2}\mu}{\partial A_{2,1}^2} & \frac{\partial^{2}\mu}{\partial A_{2,1}\partial A_{2,2}} \\ & & & & & & \frac{\partial^{2}\mu}{\partial A_{2,0}\partial A_{2,2}} & \frac{\partial^{2}\mu}{\partial A_{2,1}\partial A_{2,2}} & \frac{\partial^{2}\mu}{\partial A_{2,2}^2} \\ \end{array}\right]\] |
Reimplemented from MBMesquite::AWMetric.
Definition at line 227 of file AWMetricTest.cpp.
References MBMesquite::Frobenius(), MBMesquite::MsqMatrix< R, C >::row(), and MBMesquite::transpose().
{ result = Frobenius( A ); d = A / result; int h = 0; for( int r = 0; r < 3; ++r ) { int i = h; for( int c = r; c < 3; ++c ) d2[h++] = transpose( A.row( r ) ) * A.row( c ) / -( result * result * result ); d2[i] += MsqMatrix< 3, 3 >( 1.0 / result ); } return true; }
std::string HessTestMetricAbs_2::get_name | ( | ) | const [inline, virtual] |
Implements MBMesquite::AWMetric.
Definition at line 168 of file AWMetricTest.cpp.
{ return "HessTest2"; }