MOAB
4.9.3pre
|
Template functor to compute the conjugate product of two scalars. More...
#include <BinaryFunctors.h>
Public Types | |
enum | { Conj = NumTraits<LhsScalar>::IsComplex } |
typedef scalar_product_traits < LhsScalar, RhsScalar > ::ReturnType | result_type |
Public Member Functions | |
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type | operator() (const LhsScalar &a, const RhsScalar &b) const |
template<typename Packet > | |
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet | packetOp (const Packet &a, const Packet &b) const |
Template functor to compute the conjugate product of two scalars.
This is a short cut for conj(x) * y which is needed for optimization purpose; in Eigen2 support mode, this becomes x * conj(y)
Definition at line 87 of file BinaryFunctors.h.
typedef scalar_product_traits<LhsScalar,RhsScalar>::ReturnType Eigen::internal::scalar_conj_product_op< LhsScalar, RhsScalar >::result_type |
Definition at line 93 of file BinaryFunctors.h.
anonymous enum |
Definition at line 89 of file BinaryFunctors.h.
{ Conj = NumTraits<LhsScalar>::IsComplex };
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type Eigen::internal::scalar_conj_product_op< LhsScalar, RhsScalar >::operator() | ( | const LhsScalar & | a, |
const RhsScalar & | b | ||
) | const [inline] |
Definition at line 96 of file BinaryFunctors.h.
{ return conj_helper<LhsScalar,RhsScalar,Conj,false>().pmul(a,b); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet Eigen::internal::scalar_conj_product_op< LhsScalar, RhsScalar >::packetOp | ( | const Packet & | a, |
const Packet & | b | ||
) | const [inline] |
Definition at line 100 of file BinaryFunctors.h.
{ return conj_helper<Packet,Packet,Conj,false>().pmul(a,b); }