1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480 | //! \file CubitConcurrentApi.h
/*! \brief Api for concurrency
*/
#ifndef _CUBIT_CONCURRENT_API_H_
#define _CUBIT_CONCURRENT_API_H_
#include "CGMUtilConfigure.h"
#include <vector>
#include <stddef.h>
// class to provide a way to run tasks concurrently
class CUBIT_UTIL_EXPORT CubitConcurrent
{
public:
CubitConcurrent();
virtual ~CubitConcurrent();
//! Gets the global Concurrent instance.
//! \return
//! A Pointer to the global Concurrent instance.
static CubitConcurrent *instance() {return mInstance;}
// struct for working with mutexes
class Mutex
{
public:
virtual ~Mutex() {}
virtual void lock() = 0;
virtual void unlock() = 0;
};
// convenience class to lock/unlock mutex within a scope
// use this whenever possible
// it also provides a safe lock()/unlock()
struct MutexLocker
{
MutexLocker(Mutex* mutex) : mMutex(mutex), mLocked(false)<--- Struct 'MutexLocker' has a constructor with 1 argument that is not explicit. [+]Struct 'MutexLocker' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Struct 'MutexLocker' has a constructor with 1 argument that is not explicit. [+]Struct 'MutexLocker' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Struct 'MutexLocker' has a constructor with 1 argument that is not explicit. [+]Struct 'MutexLocker' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
{
lock();
}
~MutexLocker()
{
unlock();
}
void lock()
{
if(!mLocked)
{
mMutex->lock();
mLocked = true;
}
}
void unlock()
{
if(mLocked)
{
mMutex->unlock();
mLocked = false;
}
}
Mutex* mMutex;
bool mLocked;
};
virtual Mutex* create_mutex();
virtual void destroy_mutex(Mutex* m);
// struct for working with thread local storage
class ThreadLocalStorageInterface
{
public:
virtual void* local_data() = 0;
virtual void set_local_data(void*) = 0;
protected:
virtual ~ThreadLocalStorageInterface() {}
};
virtual ThreadLocalStorageInterface* create_local_storage(void (*cleanup_function)(void*)) = 0;
virtual void destroy_local_storage(ThreadLocalStorageInterface* s) = 0;
template <class T>
class ThreadLocalStorage
{
public:
ThreadLocalStorage()
{
mTLS = CubitConcurrent::instance()->create_local_storage(ThreadLocalStorage::cleanup);
}
~ThreadLocalStorage()
{
CubitConcurrent::instance()->destroy_local_storage(mTLS);
}
T* local_data()
{
return reinterpret_cast<T*>(mTLS->local_data());
}
void set_local_data(T* t)
{
mTLS->set_local_data(t);
}
private:
static void cleanup(void* p)
{
delete reinterpret_cast<T*>(p);
}
ThreadLocalStorageInterface* mTLS;
};
// struct to encapsulate a task to execute
struct Task
{
virtual ~Task() {}
virtual void execute() = 0;
};
// struct to represent a group of tasks (several tasks started with one api call)
// this sometimes gives a simpler setup of tasks and also provides cancellation ability
struct TaskGroup
{
std::vector<Task*> tasks;
};
// create a schedule a task for a member function with no arguments
// for example:
/*
class Foo
{
void foo()
{
Task* t = c->create_and_schedule(*this, &Foo::thread_func);
c->wait(t);
delete t;
}
void thread_func()
{
}
};
*/
template <typename X>
Task* create_and_schedule(X& x, void (X::*fun)())
{
Task* t = new ClassFunctionTask<X>(x, fun);
this->schedule(t);
return t;
};
// create and schedule a task for a member function with one argument
// for example:
/*
class Foo
{
void foo()
{
Task* t = c->create_and_schedule(*this, &Foo::thread_func, 5);
c->wait(t);
delete t;
}
void thread_func(int v)
{
}
};
*/
template <typename X, typename Param1, typename Arg1>
Task* create_and_schedule(X& x, void (X::*fun)(Param1), const Arg1& arg1)
{
return create_task1<X,Param1,const Arg1&>(x,fun,arg1);
};
// same as above but to handle references passed through thread function
template <typename X, typename Param1, typename Arg1>
Task* create_and_schedule(X& x, void (X::*fun)(Param1), Arg1& arg1)
{
return create_task1<X,Param1,Arg1&>(x,fun,arg1);
};
// create a schedule a task for a member function with two arguments
// for example:
/*
class Foo
{
void foo()
{
int result;
Task* t = c->create_and_schedule(*this, &Foo::square, 5, result);
c->wait(t);
delete t;
}
void square(int v, int& result)
{
result = v*v;
}
};
*/
template <typename X, typename Param1, typename Param2, typename Arg1, typename Arg2>
Task* create_and_schedule(X& x, void (X::*fun)(Param1, Param2), const Arg1& arg1, const Arg2& arg2)
{
return create_task2<X,Param1,Param2, const Arg1&,const Arg2&>(x,fun,arg1, arg2);
};
template <typename X, typename Param1, typename Param2, typename Arg1, typename Arg2>
Task* create_and_schedule(X& x, void (X::*fun)(Param1, Param2), Arg1& arg1, const Arg2& arg2)
{
return create_task2<X,Param1,Param2,Arg1&, const Arg2&>(x,fun,arg1, arg2);
};
template <typename X, typename Param1, typename Param2, typename Arg1, typename Arg2>
Task* create_and_schedule(X& x, void (X::*fun)(Param1, Param2), const Arg1& arg1, Arg2& arg2)
{
return create_task2<X,Param1,Param2,const Arg1&,Arg2&>(x,fun,arg1, arg2);
};
template <typename X, typename Param1, typename Param2, typename Arg1, typename Arg2>
Task* create_and_schedule(X& x, void (X::*fun)(Param1, Param2), Arg1& arg1, Arg2& arg2)
{
return create_task2<X,Param1,Param2,Arg1&,Arg2&>(x,fun,arg1, arg2);
};
// create a schedule a task group for a member function with one argument from a sequence
// for example:
/*
class Foo
{
void foo()
{
std::vector<int> input(5, 3);
TaskGroup* t = c->create_and_schedule_group(*this, &Foo::thread_func, input);
c->wait(t);
c->delete_group(t);
}
void thread_func(int v)
{
}
};
*/
template <typename X, typename Param, typename Sequence>
TaskGroup* create_and_schedule_group(X& x, void (X::*fun)(Param), Sequence& seq)
{
return create_taskgroup1<X, Param, Sequence, typename Sequence::iterator>(x, fun, seq);
};
template <typename X, typename Param, typename Sequence>
TaskGroup* create_and_schedule_group(X& x, void (X::*fun)(Param), const Sequence& seq)
{
return create_taskgroup1<X, Param, const Sequence, typename Sequence::const_iterator>(x, fun, seq);
};
// create a schedule a task group for a member function with two arguments from two sequences
// for example:
/*
class Foo
{
void foo()
{
std::vector<int> input(5, 3);
std::vector<int> output(5);
TaskGroup* t = c->create_and_schedule_group(*this, &Foo::square, input, output);
c->wait(t);
c->delete_group(t);
}
void square(int v, int& result)
{
result = v*v;
}
};
*/
template <typename X, typename Param1, typename Param2, typename Sequence1, typename Sequence2>
TaskGroup* create_and_schedule_group(X& x, void (X::*fun)(Param1, Param2), Sequence1& seq1, Sequence2& seq2)
{
return create_taskgroup2<X, Param1, Param2, Sequence1, Sequence2, typename Sequence1::iterator, typename Sequence2::iterator>(x, fun, seq1, seq2);
};
template <typename X, typename Param1, typename Param2, typename Sequence1, typename Sequence2>
TaskGroup* create_and_schedule_group(X& x, void (X::*fun)(Param1, Param2), const Sequence1& seq1, Sequence2& seq2)
{
return create_taskgroup2<X, Param1, Param2, const Sequence1, Sequence2, typename Sequence1::const_iterator, typename Sequence2::iterator>(x, fun, seq1, seq2);
};
template <typename X, typename Param1, typename Param2, typename Sequence1, typename Sequence2>
TaskGroup* create_and_schedule_group(X& x, void (X::*fun)(Param1, Param2), Sequence1& seq1, const Sequence2& seq2)
{
return create_taskgroup2<X, Param1, Param2, Sequence1, const Sequence2, typename Sequence1::iterator, typename Sequence2::const_iterator>(x, fun, seq1, seq2);
};
template <typename X, typename Param1, typename Param2, typename Sequence1, typename Sequence2>
TaskGroup* create_and_schedule_group(X& x, void (X::*fun)(Param1, Param2), const Sequence1& seq1, const Sequence2& seq2)
{
return create_taskgroup2<X, Param1, Param2, const Sequence1, const Sequence2, typename Sequence1::const_iterator, typename Sequence2::const_iterator>(x, fun, seq1, seq2);
};
// delete a task group created by create_and_schedule_group
void delete_group(TaskGroup* tg)
{
for(size_t i=0; i<tg->tasks.size(); i++)
{
delete tg->tasks[i];
}
delete tg;
}
// wait for a task to finish
virtual void wait(Task* task) = 0;
// wait for a task to finish
// implementation may decide to wait by running a local event loop, instead of pausing this thread or taking on the unstarted task
// warning: do not use this with recursive tasks
virtual void idle_wait(Task* task)
{
wait(task);
}
// wait for a set of tasks to finish
virtual void wait(const std::vector<Task*>& task) = 0;
//wait for any of a set of tasks to finish
virtual void wait_for_any(const std::vector<Task*>& tasks,std::vector<Task*>& finished_tasks) = 0;
// return whether a task is complete
virtual bool is_completed(Task* task) = 0;
// return whether a task is currently running (as opposed to waiting in the queue)
virtual bool is_running(Task* task) = 0;
// wait for a task group to complete
virtual void wait(TaskGroup* task_group) = 0;
// return whether a task group is complete
virtual bool is_completed(TaskGroup* task_group) = 0;
// return whether a task group is currently running (as opposed to waiting in the queue)
virtual bool is_running(TaskGroup* task_group) = 0;
// cancel a task group's execution
// this only un-queues tasks that haven't started, and running tasks will run to completion
// after canceling a task group, one still needs to call wait() for completion.
virtual void cancel(TaskGroup* task_group) = 0;
protected:
static CubitConcurrent *mInstance; //!< Stores the global instance.
// schedule a task for execution
virtual void schedule(Task* task) = 0;
// schedule a group of tasks for execution
virtual void schedule(TaskGroup* task_group) = 0;
// implementation helpers
template <class X>
struct ClassFunctionTask : public Task
{
public:
ClassFunctionTask(X& _ptr, void (X::*_MemFun)()) : ptr(_ptr), MemFun(_MemFun) {}
void execute()
{
(ptr.*MemFun)();
}
protected:
X& ptr;
void (X::*MemFun)();
private:
const ClassFunctionTask& operator=(const ClassFunctionTask&);
ClassFunctionTask(const ClassFunctionTask&);
};
template <typename X, typename Param1>
struct ClassFunctionTaskArg1 : public Task
{
public:
ClassFunctionTaskArg1(X& _ptr, void (X::*_MemFun)(Param1), Param1 _arg1) : ptr(_ptr), MemFun(_MemFun), arg1(_arg1) {}
void execute()
{
(ptr.*MemFun)(arg1);
}
protected:
X& ptr;
void (X::*MemFun)(Param1);
Param1 arg1;
private:
const ClassFunctionTaskArg1& operator=(const ClassFunctionTaskArg1&);
ClassFunctionTaskArg1(const ClassFunctionTaskArg1&);
};
template <typename X, typename Param1, typename Param2>
struct ClassFunctionTaskArg2 : public Task
{
public:
ClassFunctionTaskArg2(X& _ptr, void (X::*_MemFun)(Param1, Param2), Param1 _arg1, Param2 _arg2)
: ptr(_ptr), MemFun(_MemFun), arg1(_arg1), arg2(_arg2) {}
void execute()
{
(ptr.*MemFun)(arg1, arg2);
}
protected:
X& ptr;
void (X::*MemFun)(Param1, Param2);
Param1 arg1;
Param2 arg2;
private:
const ClassFunctionTaskArg2& operator=(const ClassFunctionTaskArg2&);
ClassFunctionTaskArg2(const ClassFunctionTaskArg2&);
};
template <typename X, typename Param1, typename Arg1>
inline Task* create_task1(X& x, void (X::*fun)(Param1), Arg1 arg1)
{
Task* t = new ClassFunctionTaskArg1<X, Param1>(x, fun, arg1);
this->schedule(t);
return t;
}
template <typename X, typename Param1, typename Param2, typename Arg1, typename Arg2>
inline Task* create_task2(X& x, void (X::*fun)(Param1, Param2), Arg1 arg1, Arg2 arg2)
{
Task* t = new ClassFunctionTaskArg2<X, Param1, Param2>(x, fun, arg1, arg2);
this->schedule(t);
return t;
}
template <typename X, typename Param, typename Sequence, typename Iterator>
inline TaskGroup* create_taskgroup1(X& x, void (X::*fun)(Param), Sequence& seq)
{
TaskGroup* tg = new TaskGroup;
Iterator iter;
for(iter = seq.begin(); iter != seq.end(); ++iter)
{
Task* t = new ClassFunctionTaskArg1<X, Param>(x, fun, *iter);
tg->tasks.push_back(t);
}
this->schedule(tg);
return tg;
}
template <typename X, typename Param1, typename Param2, typename Sequence1, typename Sequence2, typename Iterator1, typename Iterator2>
inline TaskGroup* create_taskgroup2(X& x, void (X::*fun)(Param1, Param2), Sequence1& seq1, Sequence2& seq2)
{
if(seq1.size() != seq2.size())
return NULL;
TaskGroup* tg = new TaskGroup;
Iterator1 iter1;
Iterator2 iter2;
for(iter1 = seq1.begin(), iter2 = seq2.begin(); iter1 != seq1.end(); ++iter1, ++iter2)
{
Task* t = new ClassFunctionTaskArg2<X, Param1, Param2>(x, fun, *iter1, *iter2);
tg->tasks.push_back(t);
}
this->schedule(tg);
return tg;
}
public:
const char* get_base_type() const;
};
#endif // CUBITCONCURRENT_API_H_
|