1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759 | //- Class: CubitVector
//- Description: This file defines the CubitVector class.
//- Owner: Greg Sjaardema
//- Checked by:
#include <math.h>
#include "CubitVector.hpp"
#include <string>
#include <stdexcept>
#include "CubitPlane.hpp"
#include "GeometryDefines.h"
#include "CubitBox.hpp"
// Define PI and TWO_PI
#undef PI
#ifdef M_PI
const double PI = M_PI;<--- Skipping configuration 'M_PI' since the value of 'M_PI' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
#else
const double PI = 3.14159265358979323846;
#endif
const double TWO_PI = 2.0 * PI;
CubitVector &CubitVector::length(const double new_length)
{
double length = this->length();
if(length > 1e-6)
{
xVal *= new_length / length;
yVal *= new_length / length;
zVal *= new_length / length;
}
return *this;
}
double CubitVector::distance_between_squared(const CubitVector& test_vector) const
{
double x = xVal - test_vector.xVal;
double y = yVal - test_vector.yVal;
double z = zVal - test_vector.zVal;
return(x*x + y*y + z*z);
}
double CubitVector::distance_between(const CubitVector& test_vector) const
{
double x = xVal - test_vector.xVal;
double y = yVal - test_vector.yVal;
double z = zVal - test_vector.zVal;
return(sqrt(x*x + y*y + z*z));
}
double CubitVector::distance_from_infinite_line(const CubitVector& point_on_line,
const CubitVector& line_direction) const
{
return sqrt(distance_from_infinite_line_squared(point_on_line, line_direction));
}
double CubitVector::distance_from_infinite_line_squared(
const CubitVector& point_on_line,
const CubitVector& line_direction) const
{
if (line_direction == CubitVector(0, 0, 0))
return distance_between_squared(point_on_line);
CubitVector v = *this - point_on_line;
double v_dot_d = v % line_direction;
return fabs(v.length_squared() - v_dot_d * v_dot_d / line_direction.length_squared());
}
// double CubitVector::distance_between(const CubitVector& test_vector, RefEdge* test_edge)
// {
// return( test_edge->get_arc_length(*this, test_vector) );
// }
void CubitVector::print_me()
{
printf("X: %f\n",xVal);
printf("Y: %f\n",yVal);
printf("Z: %f\n",zVal);
}
double CubitVector::interior_angle(const CubitVector &otherVector) const
{
double cosAngle = 0.0, angleRad = 0.0, len1, len2 = 0.0;
if (((len1 = this->length()) > 0) && ((len2 = otherVector.length()) > 0))
cosAngle = (*this % otherVector)/(len1 * len2);
else
{
if(len1<=0||len2<=0)
throw std::invalid_argument ("Length of 'this' or parameter must be > 0");
// assert(len1 > 0);
// assert(len2 > 0);
}
if ((cosAngle > 1.0) && (cosAngle < 1.0001))
{
cosAngle = 1.0;
angleRad = acos(cosAngle);
}
else if (cosAngle < -1.0 && cosAngle > -1.0001)
{
cosAngle = -1.0;
angleRad = acos(cosAngle);
}
else if (cosAngle >= -1.0 && cosAngle <= 1.0)
angleRad = acos(cosAngle);
else
{
if(cosAngle > -1.0001 && cosAngle < 1.0001)
throw std::invalid_argument ("cosAngle must be between -1.0001 and 1.0001");
// assert(cosAngle < 1.0001 && cosAngle > -1.0001);
}
return( (angleRad * 180.) / PI );
}
void CubitVector::xy_to_rtheta()
{
//careful about overwriting
double r_ = length();
double theta_ = atan2( yVal, xVal );
if (theta_ < 0.0)
theta_ += TWO_PI;
r( r_ );
theta( theta_ );
}
void CubitVector::rtheta_to_xy()
{
//careful about overwriting
double x_ = r() * cos( theta() );
double y_ = r() * sin( theta() );
x( x_ );
y( y_ );
}
void CubitVector::rotate(double angle, double )
{
xy_to_rtheta();
theta() += angle;
rtheta_to_xy();
}
void CubitVector::blow_out(double gamma, double rmin)
{
// if gamma == 1, then
// map on a circle : r'^2 = sqrt( 1 - (1-r)^2 )
// if gamma ==0, then map back to itself
// in between, linearly interpolate
xy_to_rtheta();
// r() = sqrt( (2. - r()) * r() ) * gamma + r() * (1-gamma);
if(gamma <= 0.0)
{
throw std::invalid_argument( "Gamma must be greater than zero" );
}
// the following limits should really be roundoff-based
if (r() > rmin*1.001 && r() < 1.001) {
r() = rmin + pow(r(), gamma) * (1.0 - rmin);
}
rtheta_to_xy();
}
void CubitVector::reflect_about_xaxis(double, double )
{
yVal = -yVal;
}
void CubitVector::scale_angle(double gamma, double )
{
const double r_factor = 0.3;
const double theta_factor = 0.6;
xy_to_rtheta();
// if neary 2pi, treat as zero
// some near zero stuff strays due to roundoff
if (theta() > TWO_PI - 0.02)
theta() = 0;
// the above screws up on big sheets - need to overhaul at the sheet level
if ( gamma < 1 )
{
//squeeze together points of short radius so that
//long chords won't cross them
theta() += (CUBIT_PI-theta())*(1-gamma)*theta_factor*(1-r());
//push away from center of circle, again so long chords won't cross
r( (r_factor + r()) / (1 + r_factor) );
//scale angle by gamma
theta() *= gamma;
}
else
{
//scale angle by gamma, making sure points nearly 2pi are treated as zero
double new_theta = theta() * gamma;
if ( new_theta < 2.5 * CUBIT_PI || r() < 0.2)
theta( new_theta );
}
rtheta_to_xy();
}
double CubitVector::vector_angle_quick(const CubitVector& vec1,
const CubitVector& vec2)
{
//- compute the angle between two vectors in the plane defined by this vector
// build yAxis and xAxis such that xAxis is the projection of
// vec1 onto the normal plane of this vector
// NOTE: vec1 and vec2 are Vectors from the vertex of the angle along
// the two sides of the angle.
// The angle returned is the right-handed angle around this vector
// from vec1 to vec2.
// NOTE: vector_angle_quick gives exactly the same answer as vector_angle below
// providing this vector is normalized. It does so with two fewer
// cross-product evaluations and two fewer vector normalizations.
// This can be a substantial time savings if the function is called
// a significant number of times (e.g Hexer) ... (jrh 11/28/94)
// NOTE: vector_angle() is much more robust. Do not use vector_angle_quick()
// unless you are very sure of the safety of your input vectors.
CubitVector ry = (*this) * vec1;
CubitVector rx = ry * (*this);
double x = vec2 % rx;
double y = vec2 % ry;
double angle;
if( x == 0.0 && y == 0.0 )
{
return 0.0;
}
angle = atan2(y, x);
if (angle < 0.0)
{
angle += TWO_PI;
}
// Sometimes angle was slightly less than zero,
// but adding TWO_PI puts us at exactly TWO_PI.
// More likely on optimized builds.
// "volatile" is to remove false precision
// maintained within the scope of this function
if((*(volatile double*)&angle) >= TWO_PI)
{
angle -= TWO_PI;
}
return angle;
}
CubitVector vectorRotate(const double angle,
const CubitVector &normalAxis,
const CubitVector &referenceAxis)
{
// A new coordinate system is created with the xy plane corresponding
// to the plane normal to the normal axis, and the x axis corresponding to
// the projection of the reference axis onto the normal plane. The normal
// plane is the tangent plane at the root point. A unit vector is
// constructed along the local x axis and then rotated by the given
// ccw angle to form the new point. The new point, then is a unit
// distance from the global origin in the tangent plane.
double x, y;
// project a unit distance from root along reference axis
CubitVector yAxis = normalAxis * referenceAxis;
CubitVector xAxis = yAxis * normalAxis;
yAxis.normalize();
xAxis.normalize();
x = cos(angle);
y = sin(angle);
xAxis *= x;
yAxis *= y;
return CubitVector(xAxis + yAxis);
}
double CubitVector::vector_angle(const CubitVector &vector1,
const CubitVector &vector2) const
{
// This routine does not assume that any of the input vectors are of unit
// length. This routine does not normalize the input vectors.
// Special cases:
// If the normal vector is zero length:
// If a new one can be computed from vectors 1 & 2:
// the normal is replaced with the vector cross product
// else the two vectors are colinear and zero or 2PI is returned.
// If the normal is colinear with either (or both) vectors
// a new one is computed with the cross products
// (and checked again).
// Check for zero length normal vector
CubitVector normal = *this;
double normal_lensq = normal.length_squared();
double len_tol = 0.0000001;
if( normal_lensq <= len_tol )
{
// null normal - make it the normal to the plane defined by vector1
// and vector2. If still null, the vectors are colinear so check
// for zero or 180 angle.
normal = vector1 * vector2;
normal_lensq = normal.length_squared();
if( normal_lensq <= len_tol )
{
double cosine = vector1 % vector2;
if( cosine > 0.0 ) return 0.0;
else return CUBIT_PI;
}
}
//Trap for normal vector colinear to one of the other vectors. If so,
//use a normal defined by the two vectors.
double dot_tol = 0.985;
double dot = vector1 % normal;
if( dot * dot >= vector1.length_squared() * normal_lensq * dot_tol )
{
normal = vector1 * vector2;
normal_lensq = normal.length_squared();
//Still problems if all three vectors were colinear
if( normal_lensq <= len_tol )
{
double cosine = vector1 % vector2;
if( cosine >= 0.0 ) return 0.0;
else return CUBIT_PI;
}
}
else
{
//The normal and vector1 are not colinear, now check for vector2
dot = vector2 % normal;
if( dot * dot >= vector2.length_squared() * normal_lensq * dot_tol )
{
normal = vector1 * vector2;
}
}
// Assume a plane such that the normal vector is the plane's normal.
// Create yAxis perpendicular to both the normal and vector1. yAxis is
// now in the plane. Create xAxis as the perpendicular to both yAxis and
// the normal. xAxis is in the plane and is the projection of vector1
// into the plane.
normal.normalize();
CubitVector yAxis = normal;
yAxis *= vector1;
double y = vector2 % yAxis;
// yAxis memory slot will now be used for xAxis
yAxis *= normal;
double x = vector2 % yAxis;
// assert(x != 0.0 || y != 0.0);
if( x == 0.0 && y == 0.0 )
{
return 0.0;
}
double angle = atan2(y, x);
if (angle < 0.0)
{
angle += TWO_PI;
}
// Sometimes angle was slightly less than zero,
// but adding TWO_PI puts us at exactly TWO_PI.
// More likely on optimized builds.
// "volatile" is to remove false precision
// maintained within the scope of this function
if((*(volatile double*)&angle) >= TWO_PI)
{
angle -= TWO_PI;
}
return angle;
}
CubitBoolean CubitVector::within_tolerance( const CubitVector &vectorPtr2,
double tolerance) const
{
return (( fabs (this->xVal - vectorPtr2.xVal) < tolerance) &&
( fabs (this->yVal - vectorPtr2.yVal) < tolerance) &&
( fabs (this->zVal - vectorPtr2.zVal) < tolerance)
);
}
CubitBoolean CubitVector::within_scaled_tolerance(const CubitVector &v2, double tol) const
{
if (tol < 0)
tol = -tol;
return (((fabs (xVal - v2.xVal) < tol) || (((xVal > 0) == (v2.xVal > 0)) && fabs(xVal) > tol && fabs(v2.xVal/xVal - 1) < tol)) &&
((fabs (yVal - v2.yVal) < tol) || (((yVal > 0) == (v2.yVal > 0)) && fabs(yVal) > tol && fabs(v2.yVal/yVal - 1) < tol)) &&
((fabs (zVal - v2.zVal) < tol) || (((zVal > 0) == (v2.zVal > 0)) && fabs(zVal) > tol && fabs(v2.zVal/zVal - 1) < tol))
);
}
CubitBoolean CubitVector::about_equal(const CubitVector &w,
const double relative_tolerance,
const double absolute_tolerance ) const
{
if ( absolute_tolerance == 0. &&
relative_tolerance == 0. )
{
if ( xVal == w.xVal &&
yVal == w.yVal &&
zVal == w.zVal )
return CUBIT_TRUE;
}
else
{
const CubitVector diff = *this - w;
const double diff_size = diff.length_squared();
const double a_tol_size = absolute_tolerance * absolute_tolerance;
// catches v == w
if ( diff_size <= a_tol_size )
return CUBIT_TRUE;
if ( relative_tolerance > 0. )
{
const CubitVector sum = *this + w;
const double sum_size = sum.length_squared();
const double r_tol_size = relative_tolerance * relative_tolerance;
if ( 4. * diff_size <= sum_size * r_tol_size )
// Q: why this formula?
// A: because if v = 1,0,eps, w = 1,0,0, then
// diff_size = eps^2
// sum_size = about 4.
// and function returns true if eps^2 <= tolerance^2
return CUBIT_TRUE;
}
}
return CUBIT_FALSE;
}
void CubitVector::orthogonal_vectors( CubitVector &vector2,
CubitVector &vector3 ) const
{
double x[3];
unsigned short i = 0;
unsigned short imin = 0;
double rmin = 1.0E20;
unsigned short iperm1[3];
unsigned short iperm2[3];
unsigned short cont_flag = 1;
double vec1[3], vec2[3];
double rmag;<--- The scope of the variable 'rmag' can be reduced. [+]The scope of the variable 'rmag' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
// Copy the input vector and normalize it
CubitVector vector1 = *this;
vector1.normalize();
// Initialize perm flags
iperm1[0] = 1; iperm1[1] = 2; iperm1[2] = 0;
iperm2[0] = 2; iperm2[1] = 0; iperm2[2] = 1;
// Get into the array format we can work with
vector1.get_xyz( vec1 );
while (i<3 && cont_flag )
{
if (fabs(vec1[i]) < 1e-6)
{
vec2[i] = 1.0;
vec2[iperm1[i]] = 0.0;
vec2[iperm2[i]] = 0.0;
cont_flag = 0;
}
if (fabs(vec1[i]) < rmin)
{
imin = i;
rmin = fabs(vec1[i]);
}
++i;
}
if (cont_flag)
{
x[imin] = 1.0;
x[iperm1[imin]] = 0.0;
x[iperm2[imin]] = 0.0;
// Determine cross product
vec2[0] = vec1[1] * x[2] - vec1[2] * x[1];
vec2[1] = vec1[2] * x[0] - vec1[0] * x[2];
vec2[2] = vec1[0] * x[1] - vec1[1] * x[0];
// Unitize
rmag = sqrt(vec2[0]*vec2[0] + vec2[1]*vec2[1] + vec2[2]*vec2[2]);
vec2[0] /= rmag;
vec2[1] /= rmag;
vec2[2] /= rmag;
}
// Copy 1st orthogonal vector into CubitVector vector2
vector2.set( vec2 );
// Cross vectors to determine last orthogonal vector
vector3 = vector1 * vector2;
return;
}
//- Find next point from this point using a direction and distance
void CubitVector::next_point( const CubitVector &direction,
double distance, CubitVector& out_point ) const
{
CubitVector my_direction = direction;
my_direction.normalize();
// Determine next point in space
out_point.x( xVal + (distance * my_direction.xVal) );
out_point.y( yVal + (distance * my_direction.yVal) );
out_point.z( zVal + (distance * my_direction.zVal) );
return;
}
//- Project this vector onto the plane specified by the input plane normal
void CubitVector::project_to_plane( const CubitVector &planenormal )
{
CubitVector tmp = planenormal;
tmp.normalize();
// Cross the vector with the normal to get a vector on the plane
CubitVector planevec = tmp * (*this);
// Cross the vector on the plane with the normal to get the
// projection of the vector on the plane
*this = planevec * tmp;
}
//============================================================================
// Function: barycentric_coordinates
// Author: mlstate
// Description: compute the barycentric coordinates of a point w.r.t. to a
// triangle.
//============================================================================
bool CubitVector::barycentric_coordinates
(
const CubitVector &v1,
const CubitVector &v2,
const CubitVector &v3,
const CubitVector &point,
double &coord_A,
double &coord_B,
double &coord_C
)
{
return private_barycentric_coordinates(true, v1, v2, v3, point, coord_A, coord_B, coord_C );
}
//============================================================================
// Function: private_barycentric_coordinates
// Author: mlstate
// Description: compute the barycentric coordinates of a point w.r.t. to a
// triangle. The private version.
//============================================================================
bool CubitVector::private_barycentric_coordinates
(
bool adjust_on_fail,
const CubitVector &v1,
const CubitVector &v2,
const CubitVector &v3,
const CubitVector &point,
double &coord_A,
double &coord_B,
double &coord_C
)
{
#define DETERM3(p1,q1,p2,q2,p3,q3) ((q3)*((p2)-(p1)) + \
(q2)*((p1)-(p3)) + \
(q1)*((p3)-(p2)))
if ( CubitVector::colinear(v1, v2, v3) )
{
return false;
}
CubitPlane tri_plane;
tri_plane.mk_plane_with_points( v1, v2, v3 );
CubitVector pt = tri_plane.project( point );
double area2;
CubitVector normal = tri_plane.normal();
double tol = CUBIT_RESABS;
CubitVector absnorm( fabs(normal.x()), fabs(normal.y()), fabs(normal.z()) );
// project to the closest coordinate plane so we only have to do this in 2D
if (absnorm.x() >= absnorm.y() && absnorm.x() >= absnorm.z())
{
area2 = DETERM3(v1.y(), v1.z(),
v2.y(), v2.z(),
v3.y(), v3.z());
if (fabs(area2) < tol)
{
if ( adjust_on_fail )
{
return attempt_barycentric_coordinates_adjustment(v1, v2, v3, point,
coord_A, coord_B,
coord_C);
}
return false;
}
coord_A = ( DETERM3( pt.y(), pt.z(),
v2.y(), v2.z(),
v3.y(), v3.z() ) / area2 );
coord_B = ( DETERM3( v1.y(), v1.z(),
pt.y(), pt.z(),
v3.y(), v3.z() ) / area2 );
coord_C = ( DETERM3( v1.y(), v1.z(),
v2.y(), v2.z(),
pt.y(), pt.z() ) / area2 );
}
else if(absnorm.y() >= absnorm.x() && absnorm.y() >= absnorm.z())
{
area2 = DETERM3(v1.x(), v1.z(),
v2.x(), v2.z(),
v3.x(), v3.z());
if (fabs(area2) < tol)
{
if ( adjust_on_fail )
{
return attempt_barycentric_coordinates_adjustment(v1, v2, v3, point,
coord_A, coord_B,
coord_C);
}
return false;
}
coord_A = ( DETERM3( pt.x(), pt.z(),
v2.x(), v2.z(),
v3.x(), v3.z() ) / area2 );
coord_B = ( DETERM3( v1.x(), v1.z(),
pt.x(), pt.z(),
v3.x(), v3.z() ) / area2 );
coord_C = ( DETERM3( v1.x(), v1.z(),
v2.x(), v2.z(),
pt.x(), pt.z() ) / area2 );
}
else
{
area2 = DETERM3(v1.x(), v1.y(),
v2.x(), v2.y(),
v3.x(), v3.y());
if (fabs(area2) < tol)
{
if ( adjust_on_fail )
{
return attempt_barycentric_coordinates_adjustment(v1, v2, v3, point,
coord_A, coord_B,
coord_C);
}
return false;
}
coord_A = ( DETERM3( pt.x(), pt.y(),
v2.x(), v2.y(),
v3.x(), v3.y() ) / area2 );
coord_B = ( DETERM3( v1.x(), v1.y(),
pt.x(), pt.y(),
v3.x(), v3.y() ) / area2 );
coord_C = ( DETERM3( v1.x(), v1.y(),
v2.x(), v2.y(),
pt.x(), pt.y() ) / area2 );
}
return true;
}
bool CubitVector::attempt_barycentric_coordinates_adjustment
(
const CubitVector &v1,
const CubitVector &v2,
const CubitVector &v3,
const CubitVector &point,
double &coord_A,
double &coord_B,
double &coord_C
)
{
#if 0
CubitVector v1_adjusted = v1-point;
CubitVector v2_adjusted = v2-point;
CubitVector v3_adjusted = v3-point;
CubitVector origin(0,0,0);
return private_barycentric_coordinates(false,
v1_adjusted, v2_adjusted, v3_adjusted, origin,
coord_A, coord_B, coord_C);
#else
CubitBox bbox(v1);
bbox |= v2;
bbox |= v3;
double dist2 = bbox.diagonal().length();
CubitVector v1_adjusted = v1 / dist2;
CubitVector v2_adjusted = v2 / dist2;
CubitVector v3_adjusted = v3 / dist2;
CubitVector point_adjusted = point / dist2;
return private_barycentric_coordinates(false,
v1_adjusted, v2_adjusted, v3_adjusted, point_adjusted,
coord_A, coord_B, coord_C);
#endif
}
bool CubitVector::colinear( const CubitVector &p0,
const CubitVector &p1,
const CubitVector &p2 )
{
CubitVector v1 = p1 - p0;
CubitVector v2 = p2 - p0;
v1.normalize();
v2.normalize();
// If the 3 points are collinear, then the cross product of these two
// vectors will yield a null vector (one whose length is zero).
CubitVector norm = v1 * v2;
if(norm.length() <= CUBIT_RESABS)
{
return true;
}
return false;
}
void CubitVector::project_to_line_segment
(
const CubitVector &pt0,
const CubitVector &pt1
)
{
CubitVector v0 = pt1-pt0;
CubitVector v1 = *this-pt0;
double len = v0.normalize();
double dot = v0%v1;
CubitVector close_pt;
if ( dot <= 0 )
close_pt = pt0;
else if ( dot >= len )
close_pt = pt1;
else
close_pt = pt0 + dot *v0;
set(close_pt);
}
|