1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582 | // file: IntersectionTool.cpp
// author: Michael Stephenson
//
#include <math.h>
#include "IntersectionTool.hpp"
#include "CubitVector.hpp"
#include "CubitMessage.hpp"
#include "GeometryDefines.h"
#include "DLIList.hpp"
// double IntersectionTool::distance_point_line(const double point[3],
// const double start[3],
// const double end[3],
// double &t)
// {
// int i;
// double distSq = 0.0;
// for (i = 0; i < 3; i++)
// distSq += (point[i] - end[i]) * (point[i] - end[i]);
// if (distSq < mTolerance) {
// t = 1.0;
// return 0.0;
// }
// distSq = 0.0;
// for (i = 0; i < 3; i++)
// distSq += (point[i] - start[i]) * (point[i] - start[i]);
// if (distSq < mTolerance) {
// t = 0.0;
// return 0.0;
// }
// double div = 0.0;
// for (i = 0; i < 3; i++)
// div += (end[i] - start[i]) * (end[i] - start[i]);
// if (div < mTolerance) {
// return -1.0;
// }
// t = sqrt(distSq)/div;
// double pt[3];
// for (i = 0; i < 3; i++)
// pt[i] = (end[i] - start[i]) * t + start[i];
// distSq = 0;
// for (i = 0; i < 3; i++)
// distSq += (point[i] - pt[i]) * (point[i] - pt[i]);
// return sqrt(distSq);
// }
double IntersectionTool::parametric_position(const double node[3],
const double pt1[3],
const double pt2[3])
{
int i;
double dist_sq, t;
// check for end-points
double p13[3];
for (i = 0; i < 3; i++)
p13[i] = node[i] - pt1[i];
dist_sq = p13[0] * p13[0] + p13[1] * p13[1] + p13[2] * p13[2];
if (dist_sq < mToleranceSquared) {
t = 0.0;
return t;
}
double p23[3];
for (i = 0; i < 3; i++)
p23[i] = node[i] - pt2[i];
dist_sq = p23[0] * p23[0] + p23[1] * p23[1] + p23[2] * p23[2];
if (dist_sq < mToleranceSquared) {
t = 1.0;
return t;
}
// t is parametric distance along vector p12
double p12[3];
for (i = 0; i < 3; i++)
p12[i] = pt2[i] - pt1[i];
// point1 and point2 are coincident if dot1 is zero
double dot1 = p12[0] * p12[0] + p12[1] * p12[1] + p12[2] * p12[2];
if (dot1 > -mToleranceSquared && dot1 < mToleranceSquared)
return CUBIT_DBL_MAX;
t = (p13[0] * p12[0] + p13[1] * p12[1] + p13[2] * p12[2]) / dot1;
if (t > -mTolerance && t < mTolerance)
t = 0.0;
else if ((t - 1.0) > -mTolerance &&
(t - 1.0) < mTolerance)
t = 1.0;
return t;
}
int IntersectionTool::point_on_polyline(CubitVector& pt, DLIList<CubitVector*> &pt_list,
double *tol_in)
{
int i, ret;
double t, distance;<--- The scope of the variable 'distance' can be reduced. [+]The scope of the variable 'distance' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
double pt_coords[3];
double line_coords1[3];
double line_coords2[3];
double tol = GEOMETRY_RESABS;
if(tol_in)
tol = *tol_in;
ret = 0;
pt_coords[0] = pt.x();
pt_coords[1] = pt.y();
pt_coords[2] = pt.z();
pt_list.reset();
CubitVector *last_pt = pt_list.get_and_step();
for(i=pt_list.size(); i>1; i--)
{
CubitVector *next_pt = pt_list.get_and_step();
line_coords1[0] = last_pt->x();
line_coords1[1] = last_pt->y();
line_coords1[2] = last_pt->z();
line_coords2[0] = next_pt->x();
line_coords2[1] = next_pt->y();
line_coords2[2] = next_pt->z();
distance = distance_point_line(pt_coords, line_coords1, line_coords2, t);
if(distance > -tol && distance < tol)
{
i = 1;
ret = 1;
}
else
last_pt = next_pt;
}
return ret;
}
double IntersectionTool::distance_point_line(const double node[3],
const double pt1[3],
const double pt2[3],
double &t)
{
double dist_sq;
int i;
double p12[3];
for (i = 0; i < 3; i++)
p12[i] = pt2[i] - pt1[i];
t = parametric_position(node, pt1, pt2);
if ( t == CUBIT_DBL_MAX )
return -1.;
//if ( t== 0.0 || t == 1.0)
// return 0.0;
// is t on vector p12 or its infinite extension
if (t < 0.0 || t > 1.0)
return -1.0;
// calculate point on p12
double p[3];
for (i = 0; i < 3; i++)
p[i] = pt1[i] + t * p12[i];
// return distance from node to point on p12
dist_sq = 0.0;
for (i = 0; i < 3; i++)
dist_sq += (p[i] - node[i]) * (p[i] - node[i]);
return sqrt(dist_sq);
}
CubitBoolean IntersectionTool::ray_tri_test(const double start[3],
const double dir[3],
const double vert0[3],
const double vert1[3],
const double vert2[3],
double &t, double &u, double &v)
{
int i;
// find vectors for two edges sharing vert0
double edge1[3];
double edge2[3];
for (i = 0; i < 3; i++) {
edge1[i] = vert1[i] - vert0[i];
edge2[i] = vert2[i] - vert0[i];
}
// calculate determinate
double pvec[3];
pvec[0] = dir[1] * edge2[2] - dir[2] * edge2[1];
pvec[1] = dir[2] * edge2[0] - dir[0] * edge2[2];
pvec[2] = dir[0] * edge2[1] - dir[1] * edge2[0];
double det =
edge1[0] * pvec[0] + edge1[1] * pvec[1] + edge1[2] * pvec[2];
// if determinate is near zero, the ray is in plane of triangle
if (det > -mTolerance && det < mTolerance) {
return CUBIT_FALSE;
}
// calculate distance from vert0 to ray origin
double tvec[3];
for (i = 0; i < 3; i++)
tvec[i] = start[i] - vert0[i];
// calculate U parameter and test bounds
double inv_det = 1.0/det;
u = (tvec[0] * pvec[0] + tvec[1] * pvec[1] + tvec[2] * pvec[2]) * inv_det;
if (u > -mTolerance && u < mTolerance) u = 0.0;
else if ((u - 1.0) > -mTolerance &&
(u - 1.0) < mTolerance) u = 1.0;
if (u < 0.0 || u > 1.0) {
return CUBIT_FALSE;
}
// calculate V parameter and test bounds
double qvec[3];
qvec[0] = tvec[1] * edge1[2] - tvec[2] * edge1[1];
qvec[1] = tvec[2] * edge1[0] - tvec[0] * edge1[2];
qvec[2] = tvec[0] * edge1[1] - tvec[1] * edge1[0];
v = (dir[0] * qvec[0] + dir[1] * qvec[1] + dir[2] * qvec[2]) * inv_det;
if (v > -mTolerance && v < mTolerance) v = 0.0;
else if ((v - 1.0) > -mTolerance &&
(v - 1.0) < mTolerance) v = 1.0;
if (v < 0.0 || (u + v - 1.0) > mTolerance) {
return CUBIT_FALSE;
}
// calculate T, ray intersects triangle
t = (edge2[0] * qvec[0] + edge2[1] * qvec[1] +
edge2[2] * qvec[2]) * inv_det;
if (t > -mTolerance && t < mTolerance) t = 0.0;
else if ((t - 1.0) > -mTolerance &&
(t - 1.0) < mTolerance) t = 1.0;
return CUBIT_TRUE;
}
CubitBoolean IntersectionTool::skew_line_test(const double start1[3],
const double end1[3],
const double start2[3],
const double end2[3],
double &t, double &u)
{
t = -1.0;
u = -1.0;
int i;
double p13[3], p43[3];
for (i = 0; i < 3; i++) {
p13[i] = start1[i] - start2[i];
p43[i] = end2[i] - start2[i];
}
double len_sq1 = p43[0] * p43[0] + p43[1] * p43[1] + p43[2] * p43[2];
if (len_sq1 < mToleranceSquared)
return CUBIT_FALSE;
double p21[3];
for (i = 0; i < 3; i++) {
p21[i] = end1[i] - start1[i];
}
double len_sq2 = p21[0] * p21[0] + p21[1] * p21[1] + p21[2] * p21[2];
if (len_sq2 < mToleranceSquared)
return CUBIT_FALSE;
double fact;
if (len_sq2 < len_sq1) fact = 10.0/sqrt(len_sq1);
else fact = 10.0/sqrt(len_sq2);
for (i = 0; i < 3; i++) {
p13[i] *= fact;
p43[i] *= fact;
p21[i] *= fact;
}
double d1343, d4321, d1321, d4343, d2121;
d1343 = p13[0] * p43[0] + p13[1] * p43[1] + p13[2] * p43[2];
d4321 = p43[0] * p21[0] + p43[1] * p21[1] + p43[2] * p21[2];
d1321 = p13[0] * p21[0] + p13[1] * p21[1] + p13[2] * p21[2];
d4343 = p43[0] * p43[0] + p43[1] * p43[1] + p43[2] * p43[2];
d2121 = p21[0] * p21[0] + p21[1] * p21[1] + p21[2] * p21[2];
double denom = d2121 * d4343 - d4321 * d4321;
if (denom > -mTolerance && denom < mTolerance)
return CUBIT_FALSE;
double numer = d1343 * d4321 - d1321 * d4343;
t = numer / denom;
if (t > -mTolerance && t < mTolerance) t = 0.0;
else if ((t - 1.0) > -mTolerance &&
(t - 1.0) < mTolerance) t = 1.0;
if (t < 0.0 || t > 1.0)
return CUBIT_FALSE;
u = (d1343 + d4321 * t) / d4343;
if (u > -mTolerance && u < mTolerance) u = 0.0;
else if ((u - 1.0) > -mTolerance &&
(u - 1.0) < mTolerance) u = 1.0;
if (u < 0.0 || u > 1.0)
return CUBIT_FALSE;
return CUBIT_TRUE;
}
CubitStatus IntersectionTool::closest_points_on_segments( CubitVector &p0,
CubitVector &p1,
CubitVector &p2,
CubitVector &p3,
CubitVector &point_1,
CubitVector &point_2,
double &sc, double &tc)
{
CubitVector u = p1 - p0;
CubitVector v = p3 - p2;
CubitVector w = p0 - p2;
double a = u%u; //|u| always >= 0
double b = u%v;
double c = v%v; //|v| always >= 0
double d = u%w;
double e = v%w;
double D = a*c - b*b; // always >= 0
double sN, sD = D; // sc = sN / sD, default sD = D >= 0
double tN, tD = D; // tc = tN / tD, default tD = D >= 0
// compute the line parameters of the two closest points
if (D < GEOMETRY_RESABS) { // the lines are almost parallel
sN = 0.0;
tN = e;
tD = c;
}
else { // get the closest points on the infinite lines
sN = (b*e - c*d);
tN = (a*e - b*d);
if (sN < 0) { // sc < 0 => the s=0 edge is visible
sN = 0.0;
tN = e;
tD = c;
}
else if (sN > sD) { // sc > 1 => the s=1 edge is visible
sN = sD;
tN = e + b;
tD = c;
}
}
if (tN < 0) { // tc < 0 => the t=0 edge is visible
tN = 0.0;
// recompute sc for this edge
if (-d < 0)
sN = 0.0;
else if (-d > a)
sN = sD;
else {
sN = -d;
sD = a;
}
}
else if (tN > tD) { // tc > 1 => the t=1 edge is visible
tN = tD;
// recompute sc for this edge
if ((-d + b) < 0)
sN = 0;
else if ((-d + b) > a)
sN = sD;
else {
sN = (-d + b);
sD = a;
}
}
sc = CUBIT_DBL_MAX;
tc = CUBIT_DBL_MAX;
//If these are going to be zero then do it...
if ( sN < CUBIT_RESABS && sN > -CUBIT_RESABS )
sc = 0.0;
if ( tN < CUBIT_RESABS && tN > -CUBIT_RESABS )
tc = 0.0;
// finally do the division to get sc and tc
if ( sD < CUBIT_RESABS && sD > -CUBIT_RESABS && sc != 0.0 )
{
PRINT_ERROR("About to divide by zero in closest_points_on_segments.\n");
return CUBIT_FAILURE;
}
if ( tD < CUBIT_RESABS && tD > -CUBIT_RESABS && tc != 0.0 )
{
PRINT_ERROR("About to divide by zero in closest_points_on_segments.\n");
return CUBIT_FAILURE;
}
if ( sc != 0.0 )
sc = sN / sD;
if ( tc != 0.0 )
tc = tN / tD;
point_1 = p0 + sc*u;
point_2 = p2 + tc*v;
return CUBIT_SUCCESS;
}
int IntersectionTool::intersect_triangle_with_ray( CubitVector &ray_origin, CubitVector &ray_direction,
const CubitVector *p0, const CubitVector *p1, const CubitVector *p2,
CubitVector* point, double &distance, int &edge_hit )
{
// This algorithm can be found at http://geometryalgorithms.com/
CubitVector n; // triangle vectors
CubitVector w0, w; // ray vectors
double a, b; // params to calc ray-plane intersect
double tol = GEOMETRY_RESABS;
// get triangle edge vectors and plane normal
CubitVector u( p1->x() - p0->x(),
p1->y() - p0->y(),
p1->z() - p0->z()); //(*p1-*p0);
CubitVector v( p2->x() - p0->x(),
p2->y() - p0->y(),
p2->z() - p0->z()); // = (*p2-*p0);
n = u * v; // cross product to get normal
if (n.length_squared() == 0) // triangle is degenerate
return -1; // do not deal with this case
//dir = R.P1 - R.P0; // ray direction vector
//w0 = R.P0 - T.V0;
w0 = CubitVector(ray_origin.x() - p0->x(),
ray_origin.y() - p0->y(),
ray_origin.z() - p0->z());
a = -(n%w0);
b = (n%ray_direction);
if (fabs(b) < tol) { // ray is parallel to triangle plane
if (a == 0) // ray lies in triangle plane
return 2;
else return 0; // ray disjoint from plane
}
// get intersect point of ray with triangle plane
distance = a / b;
if (distance < 0.0) // ray goes away from triangle
return 0; // => no intersect
// for a segment, also test if (r > 1.0) => no intersect
point->set(ray_origin + distance * ray_direction); // intersect point of ray and plane
// set distance to be absolute distance (if ray_direction was a unit vector)
distance = distance * ray_direction.length();
// is point inside facet?
double uu, uv, vv, wu, wv, D;
uu = u%u;
uv = u%v;
vv = v%v;
//w = *I - T.V0;
w = CubitVector(point->x() - p0->x(),
point->y() - p0->y(),
point->z() - p0->z());
wu = w%u;
wv = w%v;
D = uv * uv - uu * vv;
// get and test parametric coords
double s, t;
s = (uv * wv - vv * wu) / D;
if (s < 0.0 || s > 1.0) // point is outside facet
return 0;
t = (uv * wu - uu * wv) / D;
if (t < 0.0 || (s + t) > 1.0) // point is outside facet
return 0;
if (s==0)
edge_hit = 2; //lies along v, edge #2
if (t==0)
edge_hit = 1; //lies along u, edge #1
if (s+t==1)
edge_hit = 3; //lies along edge #3
// note:
// if s and t are both 0, hit the point p0
// if s=1 and t=0, hit point p1
// if s=0 and t=1, hit point p2
return 1; // point is in facet
}
int IntersectionTool::intersect_segment_with_ray( CubitVector &ray_origin, CubitVector &ray_direction,
const CubitVector *p0, const CubitVector *p1,
CubitVector* point, double &hit_distance, int &point_hit, double tol )
{
// This algorithm can be found at http://geometryalgorithms.com/
if (tol == 0.0)
tol = GEOMETRY_RESABS;
CubitVector u = CubitVector(*p0, *p1);
CubitVector v = ray_direction;
v.normalize();
CubitVector w = CubitVector(ray_origin, *p0);
double sc, tc; // sc is fraction along facet edge, tc is distance along ray
double a = u%u; // always >= 0
double b = u%v;
double c = v%v; // always >= 0
double d = u%w;
double e = v%w;
double D = a*c - b*b; // always >= 0
// compute the line parameters of the two closest points
if (D < tol)
{
// the lines are almost parallel
sc = 0.0;
tc = (b>c ? d/b : e/c); // use the largest denominator
}
else
{
sc = (b*e - c*d) / D;
tc = (a*e - b*d) / D;
}
// get the difference of the two closest points
CubitVector dP = CubitVector(w + (sc * u) - (tc * v)); // = <0 0 0> if intersection
double distance = sqrt(dP % dP); // return the closest distance (0 if intersection)
point->set(*p0 + (sc * u));
hit_distance = tc; //distance from origin to intersection point
if (distance < tol)
{
//check if parallel (infinite intersection)
if (D < tol)
return 2;
//check if on edge
if (sc <= 1.0 && sc >= 0.0)
{
if (sc==0)
point_hit = 1; //hit point p0
if (sc==1)
point_hit = 2; //hit point p1
return 1;
}
else
return 0;
}
return 0;
}
int IntersectionTool::intersect_point_with_ray( CubitVector &ray_origin, CubitVector &ray_direction,
const CubitVector* point, double &distance, double tol)
{
if (tol == 0.0)
tol = GEOMETRY_RESABS;
//Does the ray pass through the Point?
// Calc distance from ray origin to Point.
// Then compute coord's of point along ray that distance.
// Calc distance between Point and this ray-point. If less than tolerance, a hit.
CubitVector pointB;
double dist1 = point->distance_between(ray_origin);
ray_origin.next_point(ray_direction, dist1, pointB);
if ( pointB.distance_between_squared(*point) <= (tol*tol) )
{
distance = dist1;
return 1;
}
return 0;
}
|