1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022 | //- Class: MemoryManager
//- Owner: Jim Hipp
//- Description: MemoryManager provides object information and stack
//- storage pointer management used in association with
//- MemoryBlock and MemoryAllocation classes.
//- Checked By:
//- Version:
// Modified 5/7/96 R W Ostensen: Fixed operator_new function as per recommendation
// from J Hipp. Eliminated assignment of headOfFreeList to wild pointer loaction when
// memAllocatnSize=1.
#include "MemoryBlock.hpp"
#include "MemoryManager.hpp"
#include "CubitMessage.hpp"
#include "ArrayBasedContainer.hpp"
#include "AppUtil.hpp"
#include <cassert>
#include <cstring>
#include <iostream>
#ifndef _WIN32
#include <unistd.h>
#endif
MemoryManager* MemoryManager::memoryManagerListHead = NULL;
// constructors
MemoryManager::MemoryManager() : useNew(false), objectName(NULL)
{
// do not allow default constructor (must assign objectSize)
assert(0);
}
MemoryManager::MemoryManager(const MemoryManager&) : useNew(false), objectName(NULL)
{
// do not allow copy
assert(0);
}
MemoryManager::MemoryManager(const char* name, size_t size, int mem_size,
int static_flag)
: useNew(true)
{
// allocate space for name and copy into buffer
if (name)
{
objectName = new char[std::strlen(name) + 1];
std::strcpy(objectName, name);
}
else
objectName = NULL;
// initialize manager parameters
staticManager = static_flag;
memBlockStack = NULL;
headOfFreeList = NULL;
assert(size >= sizeof(char*));
objectSize = size;
set_memory_allocation_increment(mem_size);
// attach new manager to static stack
next = memoryManagerListHead;
memoryManagerListHead = this;
}
// destructor
MemoryManager::~MemoryManager()
{
// delete objectName space and destroy block memory
delete [] objectName;
objectName = NULL;
destroy_memory(staticManager);
// find 'prev' manager pointer
MemoryManager* prev = NULL;
MemoryManager* mem_manager = memoryManagerListHead;
bool first = true;
while (mem_manager && mem_manager != this)
{
if (!first && mem_manager == memoryManagerListHead)
{
// XXX: We aren't in the list!?
std::cerr << "MemoryManager: corrupted list?" << std::endl;
return;
}
first = false;
prev = mem_manager;
mem_manager = mem_manager->next;
}
// remove memory manager from static list
if (!next)
{
if (!prev)
{
// no memory managers left
memoryManagerListHead = NULL;
}
else
{
// remove tail node
prev->next = NULL;
}
}
else
{
if (!prev)
{
// remove head node
memoryManagerListHead = next;
}
else
{
// remove intermediate node
prev->next = next;
}
}
}
// set memory block allocation increment
void MemoryManager::set_memory_allocation_increment(int mem_size)
{
// set memory allocation increment
if (mem_size <= 0)
{
memAllocatnSize = DEFAULT_MEMORY_ALLOC_SIZE;
}
else
{
memAllocatnSize = mem_size;
}
}
// destroy allocated block memory
void MemoryManager::destroy_memory(int static_flag)
{
// assert if this is not a static memory manager and some of it's objects
// are still in use
if (!static_flag) {
assert (!get_used_objects());
}
// else delete block memory if any was allocated
if (memBlockStack) delete memBlockStack;
// reset stack pointers to empty
headOfFreeList = NULL;
memBlockStack = NULL;
}
// return number of objects allocated
int MemoryManager::get_allocated_objects()
{
// return total number of objects allocated for this memory manager
if (memBlockStack)
{
return (memBlockStack->get_memory_allocation() / objectSize);
}
else
{
return 0;
}
}
// return free objects
int MemoryManager::get_free_objects()
{
// return total number of free objects (allocated but not used) for this
// memory manager
if (headOfFreeList)
{
int i = 0;
char* list_ptr = headOfFreeList;
while (list_ptr)
{
i++;
list_ptr = *((char**) list_ptr);
}
return i;
}
else
{
return 0;
}
}
// return used objects
int MemoryManager::get_used_objects()
{
// return total number of used objects for this memory manager
return (get_allocated_objects() - get_free_objects());
}
// print allocation information to the command line
void MemoryManager::show_object_memory(const char* name)
{
int instance = 0;
// find all instances of memory managers for object: name
MemoryManager* mem_manager = memoryManagerListHead;
while (mem_manager)
{
if (!std::strcmp(mem_manager->objectName, name))
{
// if found then print pertinent memory allocation information
instance++;
if (instance > 1)
{
PRINT_INFO("\nObject Name(%d): %s\n\n", instance, name);
}
else
{
PRINT_INFO("\nObject Name: %s\n\n", name);
}
int a_obj = mem_manager->get_allocated_objects();
int f_obj = mem_manager->get_free_objects();
int u_obj = a_obj - f_obj;
PRINT_INFO(" Object Size: %lu Allocation Increment: %d\n\n",
(unsigned long)mem_manager->objectSize, mem_manager->memAllocatnSize);
PRINT_INFO(" Allocated Objects: %d (bytes) %d\n", a_obj,
a_obj * (int)(mem_manager->objectSize));
if (a_obj)
{
PRINT_INFO(" Free Objects: %d (bytes) %d (%d%%)\n", f_obj,
f_obj * (int)(mem_manager->objectSize),
(100*f_obj)/a_obj);
PRINT_INFO(" Used Objects: %d (bytes) %d (%d%%)\n", u_obj,
u_obj * (int)(mem_manager->objectSize),
(100*u_obj)/a_obj);
}
}
// get next memory manager
mem_manager = mem_manager->next;
}
// if none were found then announce
if (!instance)
{
PRINT_INFO("\nObject: %s was not found ...\n", name);
}
}
// show allocation for all memory manager objects
void MemoryManager::show_all_object_memory()
{
#if defined(MACOSX)
pid_t PID = getpid();
char command1[60];
unsigned long rss=0, vm=0;
FILE *pipe;
char buf[1024];
//get size of real memory
sprintf(command1,"ps -o rss -p %d | grep -v RSS",PID);
pipe = popen(command1, "r");
if (pipe)
{
fgets(buf, 1024, pipe);
rss = strtoul(buf, NULL, 0);
pclose(pipe);
}
//get size of virtual memory
sprintf(command1,"ps -o vsz -p %d | grep -v VSZ",PID);
pipe = popen(command1, "r");
if (pipe)
{
fgets(buf, 1024, pipe);
vm = strtoul(buf, NULL, 0);
pclose(pipe);
}
PRINT_INFO("Total memory = %lu\n", (unsigned long)vm );
PRINT_INFO("Resident memory = %lu\n", (unsigned long)rss );
/*
struct rusage my_rusage;
int ret_val = getrusage( RUSAGE_CHILDREN, &my_rusage );
if( ret_val == 0 )
{
PRINT_INFO("It was a success\n");
PRINT_INFO("Memory size = %d\n", my_rusage.ru_maxrss );
PRINT_INFO("Unshared data size = %d\n", my_rusage.ru_idrss);
PRINT_INFO("Integeral unshared data size = %d\n", my_rusage.ru_isrss);
PRINT_INFO("more values: %d %d %d %d %d %d %d %d %d %d %d \n",
my_rusage.ru_ixrss, my_rusage.ru_minflt, my_rusage.ru_majflt, my_rusage.ru_nswap,
my_rusage.ru_inblock, my_rusage.ru_oublock, my_rusage.ru_msgsnd, my_rusage.ru_msgrcv,
my_rusage.ru_nsignals, my_rusage.ru_nvcsw, my_rusage.ru_nivcsw );
}
else
PRINT_INFO("It was a failure\n");
*/
/*
int i, mib[4];
size_t len;
struct kinfo_proc kp;
len = 4;
sysctlnametomib("kern.proc.pid", mib, &len);
len = sizeof(kp);
int pid = getpid();
mib[3] = pid;
if (sysctl(mib, 4, &kp, &len, NULL, 0) == -1)
{
perror("sysctl");
PRINT_INFO("Got problems\n");
}
else if (len > 0)
{
PRINT_INFO("The call was successful!!!\n");
}
*/
/*
int i, mib[4];
size_t len;
struct kinfo_proc kp;
len = 4;
sysctlnametomib("kern.proc.pid", mib, &len);
for (i = 0; i < 100; i++)
{
mib[3] = i;
len = sizeof(kp);
if (sysctl(mib, 4, &kp, &len, NULL, 0) == -1)
perror("sysctl");
else if (len > 0)
PRINT_INFO("Call was successful!\n");
}
*/
#endif
#if defined(CUBIT_LINUX)
unsigned long vm, rss;
process_mem_usage( vm, rss );
unsigned long read, write;
process_file_io( read, write );
PRINT_INFO("Total memory = %lu\n", vm );
PRINT_INFO("Resident memory = %lu\n", rss );
PRINT_INFO("Bytes read = %lu\n", read );
PRINT_INFO("Bytes written = %lu\n", write );
#endif
/*
long int a_obj_byte_total = 0;
long int f_obj_byte_total = 0;
long int u_obj_byte_total = 0;
// loop over all memory managers
PRINT_INFO("\nDynamic Memory Allocation per Object\n\n");
MemoryManager* mem_manager = memoryManagerListHead;
while (mem_manager) {
long int a_obj = mem_manager->get_allocated_objects();
long int f_obj = mem_manager->get_free_objects();
long int u_obj = a_obj - f_obj;
if (a_obj) {
// sum total allocated memory parameters (bytes)
a_obj_byte_total += a_obj * mem_manager->objectSize;
f_obj_byte_total += f_obj * mem_manager->objectSize;
u_obj_byte_total += u_obj * mem_manager->objectSize;
}
mem_manager = mem_manager->next;
}
mem_manager = memoryManagerListHead;
while (mem_manager)
{
// print pertinent memory allocation information
long int a_obj = mem_manager->get_allocated_objects();
long int f_obj = mem_manager->get_free_objects();
long int u_obj = a_obj - f_obj;
if (a_obj)
{
PRINT_INFO("\nObject Name: %s\n\n", mem_manager->objectName);
PRINT_INFO(" Object Size: %d Allocation Increment: %d\n\n",
mem_manager->objectSize, mem_manager->memAllocatnSize);
if (a_obj_byte_total != 0)
{
PRINT_INFO(" Allocated Objects: %ld (bytes) %ld (%d%% of Total)\n",
a_obj, a_obj * mem_manager->objectSize,
int((100.0*a_obj * mem_manager->objectSize)/a_obj_byte_total));
PRINT_INFO(" Free Objects: %ld (bytes) %ld (%d%%)\n", f_obj,
f_obj * mem_manager->objectSize,
int((100.0*f_obj)/a_obj));
PRINT_INFO(" Used Objects: %ld (bytes) %ld (%d%%)\n", u_obj,
u_obj * mem_manager->objectSize,
int((100.0*u_obj)/a_obj));
}
else
{
PRINT_INFO(" Allocated Objects: %ld (bytes) %ld (100%% of Total)\n",
a_obj, a_obj * mem_manager->objectSize);
PRINT_INFO(" Free Objects: %ld (bytes) %ld (100%%)\n", f_obj,
f_obj * mem_manager->objectSize);
PRINT_INFO(" Used Objects: %ld (bytes) %ld (100%%)\n", u_obj,
u_obj * mem_manager->objectSize);
}
}
mem_manager = mem_manager->next;
}
// print total memory allocation information
char sizechar;
PRINT_INFO("\nTotal Memory Allocation Information\n\n");
int divisor;
if (a_obj_byte_total > 10000000) {
sizechar = 'M';
divisor = 1000000;
}
else {
sizechar = 'K';
divisor = 1000;
}
PRINT_INFO(" Allocated Memory: %ld%c (%ld bytes)\n", a_obj_byte_total/divisor,
sizechar, a_obj_byte_total);
if (a_obj_byte_total)
{
PRINT_INFO(" Free Memory: %ld%c (%d%%)\n", f_obj_byte_total/divisor, sizechar,
int((100.0*f_obj_byte_total)/a_obj_byte_total));
PRINT_INFO(" Used Memory: %ld%c (%d%%)\n", u_obj_byte_total/divisor,
sizechar,
int((100.0*u_obj_byte_total)/a_obj_byte_total));
}
#ifndef JANUS
#ifndef _WIN32
struct rusage r_usage;
AppUtil::instance()->apputil_getrusage(r_usage);
PRINT_INFO(" (System reports %ld%c used, incl. executable)\n",
r_usage.ru_maxrss*getpagesize()/divisor, sizechar);
#else
PRINT_INFO("\n");
#endif // _WIN32
#endif // JANUS
// print DLList non-Pool allocation information
PRINT_INFO("\nTotal non-pool ArrayBasedContainer memory allocation = %u%c\n"
"Maximum non-pool ArrayBasedContainer memory allocated = %u%c\n",
ArrayBasedContainer::current_allocated_memory()/divisor, sizechar,
ArrayBasedContainer::maximum_allocated_memory()/divisor, sizechar);
*/
#if 0
// print HOOPS memory usage
long allocated = 0;
long in_use = 0;
// DrawingTool::instance()->show_memory(allocated, in_use);
if (allocated != 0)
PRINT_INFO("\nGraphics subsystem memory: Allocated = %u%c (%d bytes)\n"
" In-Use = %u%c (%d%%)\n",
allocated/divisor, sizechar, allocated,
in_use/divisor, sizechar, int((100.0*in_use)/allocated));
else
PRINT_INFO("\nGraphics subsystem memory: Allocated = %u%c (%d bytes)\n"
" In-Use = %u%c (100%%)\n",
allocated/divisor, sizechar, allocated,
in_use/divisor, sizechar);
#endif
}
// compress memory for the requested object
int MemoryManager::compress_object_memory(const char* name)
{
// find all instances of memory managers for object: name
int found = 0;
int saved_memory = 0;<--- Variable 'saved_memory' is assigned a value that is never used.
MemoryManager* mem_manager = memoryManagerListHead;
while (mem_manager)
{
if (!std::strcmp(mem_manager->objectName, name))
{
// if found then compress memory
saved_memory += mem_manager->compress_memory();<--- Variable 'saved_memory' is assigned a value that is never used.
found = 1;
}
mem_manager = mem_manager->next;
}
return found;
}
// compress all object memory
int MemoryManager::compress_all_object_memory()
{
// find all instances of memory managers
int saved_memory = 0;
MemoryManager* mem_manager = memoryManagerListHead;
MemoryManager* block_manager = NULL;
while (mem_manager)
{
if (!std::strcmp(mem_manager->objectName, "MemoryBlock"))
{
// save block_manager until end
block_manager = mem_manager;
}
else
{
// compress memory
saved_memory += mem_manager->compress_memory();
}
mem_manager = mem_manager->next;
}
if (block_manager)
{
saved_memory += block_manager->compress_memory();
}
return saved_memory;
}
// generic operator new call
void* MemoryManager::operator_new(size_t size)
{
if (useNew) return malloc(size);
// send requests of "wrong" size to ::new
try
{
if (size != objectSize) return ::new char[size];
}
catch(...)
{
return (void*) NULL;
}
// get new element from head of free list
char* p = headOfFreeList;
try
{
if(!p)
{
// allocate new block
int block_size = memAllocatnSize * size;
char* new_block = ::new char[block_size];
if (!new_block) return (void*) NULL;
// link new elements to form the free list
int fill_limit = (memAllocatnSize - 1) * size;
for (int j = 0; j < fill_limit; j += size)
{
*((char**) &new_block[j]) = &new_block[j + size];
}
*((char**) &new_block[fill_limit]) = (char*) NULL;
// assign new element
p = new_block;
// save new block to memory block stack
memBlockStack = new MemoryBlock(memBlockStack, new_block, block_size);
}
}
catch(...)
{
return (void*) NULL;
}
//assign head of free list and return p
headOfFreeList = *((char**) p);
return (void*) p;
}
// generic operator delete call
void MemoryManager::operator_delete(void *deadObject, size_t size)
{
if (useNew)
{
free(deadObject);
return;
}
// requests of "wrong" size to ::delete
if (size != objectSize)
{
::delete [] ((char*) deadObject);
return;
}
// attach dead element to head of free list
char* delete_object = (char*) deadObject;
*((char**) delete_object) = headOfFreeList;
headOfFreeList = delete_object;
}
// compress memory blocks
int MemoryManager::compress_memory()
{
// if free objects exist then begin compression algorithm
if (headOfFreeList)
{
// find total number of memory blocks attached to stack
int n_blocks = 0;
MemoryBlock* mem_block = memBlockStack;
while (mem_block)
{
n_blocks++;
mem_block = mem_block->next_block();
}
if (n_blocks == 0)
{
// no available memory to free ... return 0
// this is here for safety ... n_blocks should never be zero if
// headOfFreeList is not Null
return 0;
}
else
{
// first determine if all objects are free ... if so then perform
// the easy compression routine
if (!get_used_objects())
{
// all objects are free ... delete all blocks
int n_bytes = memBlockStack->get_memory_allocation();
destroy_memory(staticManager);
// return freed memory
return n_bytes;
}
// else perform the complex routine to remove those memory blocks that
// have all free elements
// begin by constructing an integer array for each memory block to
// tally the number of free objects that each block contains
// if there are a lot of blocks, we can save a huge amount of
// time by looking in the last few blocks that contained an
// element.
const int use_cache = n_blocks > 8;
int i, j, k;
i = j = k = 0;
const int cache_size = 4;
MemoryBlock* mem_block_sav[cache_size];
int i_sav[cache_size];
for ( i = cache_size; i--; )
{
mem_block_sav[i] = NULL;
i_sav[i] = 0;
}
int found = 0;<--- Variable 'found' is assigned a value that is never used.
mem_block = NULL;
char* list_ptr = NULL;
unsigned int* free_tally = new unsigned int [n_blocks];
for (i = 0; i < n_blocks; i++) free_tally[i] = 0;
// loop through free list tallying free elements
list_ptr = headOfFreeList;
while (list_ptr)
{
// find memory block that owns this element
// check last few blocks for speed
found = CUBIT_FALSE;
if ( use_cache )
{
for ( i = 0; i < cache_size; i++ )
{
mem_block = mem_block_sav[i];
if ( mem_block &&
list_ptr >= mem_block->get_block() &&
list_ptr < (mem_block->get_block() +
mem_block->block_size()) )
{
k = i_sav[i];
free_tally[k]++;
found = CUBIT_TRUE;
break;
}
}
}
if ( !found )
{
// search through all blocks
mem_block = memBlockStack;
for (i = 0; i < n_blocks; i++)
{
if ((list_ptr >= mem_block->get_block()) &&
(list_ptr < (mem_block->get_block() + mem_block->block_size())))
{
// increment tally and exit
free_tally[i]++;
// save
if ( use_cache && mem_block_sav[j] != mem_block )
{
mem_block_sav[j] = mem_block;
i_sav[j] = i;
if ( ++j >= cache_size )
j = 0;
}
break;
}
// get next memory block
mem_block = mem_block->next_block();
}
}
// get next element
list_ptr = *((char**) list_ptr);
}
// zero tally for memory blocks that cannot be removed ... those that
// have some used elements
int all_blocks = 0;
mem_block = memBlockStack;
for (i = 0; i < n_blocks; i++)
{
if (free_tally[i] != (mem_block->block_size() / objectSize))
{
free_tally[i] = 0;
all_blocks++;
}
mem_block = mem_block->next_block();
}
if (all_blocks == n_blocks)
{
// no memory can be saved ... all blocks have some used elements
// return 0
delete [] free_tally;
return 0;
}
// adjust free list pointers to remove those that belong to
// memory blocks that can be deleted
char* prev_ptr = NULL;
list_ptr = headOfFreeList;
while (list_ptr)
{
// find memory block that owns this element
// check last few blocks for speed
found = CUBIT_FALSE;
if ( use_cache )
{
for ( i = 0; i < cache_size; i++ )
{
mem_block = mem_block_sav[i];
if ( mem_block &&
list_ptr >= mem_block->get_block() &&
list_ptr < (mem_block->get_block() +
mem_block->block_size()) )
{
k = i_sav[i];
found = CUBIT_TRUE;
break;
}
}
}
if ( !found )
{
mem_block = memBlockStack;
for (i = 0; i < n_blocks; i++)
{
if ((list_ptr >= mem_block->get_block()) &&
(list_ptr < (mem_block->get_block() + mem_block->block_size())))
{
k = i;
// save
if ( use_cache && mem_block_sav[j] != mem_block )
{
mem_block_sav[j] = mem_block;
i_sav[j] = i;
if ( ++j >= cache_size )
j = 0;
}
break;
}
// get next memory block
mem_block = mem_block->next_block();
}
}
if (free_tally[k])
{
// remove element
if (prev_ptr)
{
*((char**) prev_ptr) = *((char**) list_ptr);
}
else
{
headOfFreeList = *((char**) list_ptr);
}
}
else
{
// advance prev_ptr
prev_ptr = list_ptr;
}
// get next element
list_ptr = *((char**) list_ptr);
}
// delete all memory blocks that have free_tally[i] > 0
i = 0;
int save_bytes = 0;
MemoryBlock* prev_block = NULL;
mem_block = memBlockStack;
while (mem_block)
{
if (free_tally[i])
{
// set previous MemoryBlocks next pointer to skip this block
if (prev_block)
{
prev_block->next_block(mem_block->next_block());
}
else
{
memBlockStack = mem_block->next_block();
}
// set MemoryBlock next pointer to NULL to avoid recusive delete
// update saved memory and delete mem_block
mem_block->next_block((MemoryBlock*) NULL);
save_bytes += mem_block->block_size();
delete mem_block;
// update mem_block to point to new current MemoryBlock
if (prev_block)
{
mem_block = prev_block->next_block();
}
else
{
mem_block = memBlockStack;
}
}
else
{
// if block wasn't removed then update previous and current blocks
prev_block = mem_block;
mem_block = mem_block->next_block();
}
// increment to next block (used by free_tally array)
++i;
}
// return freed memory (bytes)
delete [] free_tally;
return save_bytes;
}
}
else
{
// no memory allocated ... return 0
return 0;
}
}
void MemoryManager::process_mem_usage(unsigned long &vm_usage, unsigned long &resident_set)
{
#if defined(CUBIT_LINUX)
using std::ios_base;
using std::ifstream;
using std::string;
vm_usage = 0;
resident_set = 0;
// 'file' stat seems to give the most reliable results
//
ifstream stat_stream("/proc/self/stat",ios_base::in);
// dummy vars for leading entries in stat that we don't care about
//
string pid, comm, state, ppid, pgrp, session, tty_nr;
string tpgid, flags, minflt, cminflt, majflt, cmajflt;
string utime, stime, cutime, cstime, priority, nice;
string O, itrealvalue, starttime;
// the two fields we want...virtual memory size and resident memory size
//
unsigned long vsize;
long rss;
stat_stream >> pid >> comm >> state >> ppid >> pgrp >> session >> tty_nr
>> tpgid >> flags >> minflt >> cminflt >> majflt >> cmajflt
>> utime >> stime >> cutime >> cstime >> priority >> nice
>> O >> itrealvalue >> starttime >> vsize >> rss; // don't care about the rest
long page_size_kb = sysconf(_SC_PAGE_SIZE) / 1024; // in case x86-64 is configured to use 2MB pages
vm_usage = vsize / 1024;
resident_set = rss * page_size_kb;
#else
vm_usage = 0;
resident_set = 0;
#endif
}
void MemoryManager::process_file_io(unsigned long &read, unsigned long &write )
{
#if defined(CUBIT_LINUX)
using std::ios_base;
using std::ifstream;
using std::string;
read = 0;
write = 0;
// 'file' stat seems to give the most reliable results
//
ifstream stat_stream("/proc/self/io",ios_base::in);
// dummy vars for leading entries in stat that we don't care about
//
string char1, char2;
//----------------------Getting two numbers out of this file
// I/O counter: chars read
//The number of bytes which this task has caused to be read from storage. This
//is simply the sum of bytes which this process passed to read() and pread().
//It includes things like tty IO and it is unaffected by whether or not actual
//physical disk IO was required (the read might have been satisfied from
//pagecache)
// I/O counter: chars written
//The number of bytes which this task has caused, or shall cause to be written
//to disk. Similar caveats apply here as with rchar.
unsigned long tmp_read, tmp_write;
stat_stream >> char1 >> tmp_read >> char2 >> tmp_write; //don't care about the rest
read = tmp_read;
write = tmp_write;
#else
read = 0;
write = 0;
#endif
}
|