1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
//---------------------------------------------------------------------------
// Class Name:  RStarTreeNode
// Description: Node of Rectangle tree.  Contians many of the
//              required functions for building the tree and traversing it.
// The algorithm was taken from the following paper:
//	      Norbert Beckmann, H. Kriegel, R. Schnieder, and B. Seegar,
//              "The R*-tree: An Efficient and Robust Access Method
//              for Points and Rectangles", Proceedings of ACM SIGMOD
//              Int'l. Conf. on Management of Data, pp. 322-331, 1990.

// Creation Date: 7/21/02
// Owner:  David R. White
//---------------------------------------------------------------------------

//---------------------------------
//Include Files
//---------------------------------
#include "RStarTreeNode.hpp"
#include "DLIList.hpp"
#include "CpuTimer.hpp"
//---------------------------
//Initialize Static Members
//---------------------------

#ifdef INLINE_TEMPLATES
#define MY_INLINE inline
#else
#define MY_INLINE
#endif
static int id = 0;

template <class Y> MY_INLINE RStarTreeNode<Y>::RStarTreeNode (Y data, double tol,
                                                      int max_children,
                                                      int min_children)
{
  myId = id++;
  maxChildren = max_children;
  minChildren = min_children;
  myChildrenNodes = new RStarTreeNode<Y>* [maxChildren];
  int ii;
  for ( ii = 0; ii < maxChildren; ii++ )
    myChildrenNodes[ii] = (RStarTreeNode<Y>*) NULL;
  if ( data == NULL )
  {
    PRINT_ERROR("Building RTree with null data is not allowed!\n");
    assert(data != NULL);
  }
  myData = data;
  myLevel = DATA_RSTARNODE;
  CubitBox temp_box = data->bounding_box();
    //Check to see if any of the min/max pairs are less than the tolerance.
    //make them bigger if they are...
  CubitVector min = temp_box.minimum();
  CubitVector max = temp_box.maximum();
  if ( max.x() - min.x() < tol )
  {
    min.x(min.x()-.6*tol);
    max.x(max.x()+.6*tol);
  }
  if ( max.y() - min.y() < tol )
  {
    min.y(min.y()-.6*tol);
    max.y(max.y()+.6*tol);
  }
  if ( max.z() - min.z() < tol )
  {
    min.z(min.z()-.6*tol);
    max.z(max.z()+.6*tol);
  }
  myBoundingBox = new CubitBox(min, max);
  myParent = NULL;
  nextChildIndex = 0;
  markedFlag = 0;
  distIsBox = 1;
  myDist = CUBIT_DBL_MAX;
}
template <class Y> MY_INLINE RStarTreeNode<Y>::RStarTreeNode (CubitBox &bounding_box,
                                                      int max_children,
                                                      int min_children)
{  
  myId = id++;
  maxChildren = max_children;
  minChildren = min_children;
  myBoundingBox = new CubitBox(bounding_box);
  myChildrenNodes = new RStarTreeNode<Y>* [maxChildren];<--- Class 'RStarTreeNode' does not have a copy constructor which is recommended since it has dynamic memory/resource allocation(s).<--- Class 'RStarTreeNode' does not have a operator= which is recommended since it has dynamic memory/resource allocation(s).<--- Class 'RStarTreeNode' does not have a copy constructor which is recommended since it has dynamic memory/resource allocation(s).<--- Class 'RStarTreeNode' does not have a operator= which is recommended since it has dynamic memory/resource allocation(s).
  int ii;
  for ( ii = 0; ii < maxChildren; ii++ )
    myChildrenNodes[ii] = (RStarTreeNode<Y>*) NULL;
  myData = NULL;
  myLevel = UNSET_RSTARNODE;
  myParent = NULL;
  nextChildIndex = 0;
  markedFlag = 0;
  distIsBox = 1;
  myDist = CUBIT_DBL_MAX;
}
//-----------------------------------------------------------
// Destructor
//-----------------------------------------------------------
template <class Y> MY_INLINE RStarTreeNode<Y>::~RStarTreeNode()
{
  if ( myChildrenNodes )
    delete [] myChildrenNodes;
  if ( myBoundingBox )
    delete myBoundingBox;
}
template <class Y> MY_INLINE void RStarTreeNode<Y>::validate_tree(int print)
{
	int ii;
   if (print )
          {
            PRINT_INFO("Parent %d: Children: ", myId);
            for ( ii = 0; ii < num_children(); ii++ )
            {
              RStarTreeNode<Y> *curr_node = myChildrenNodes[ii];
              PRINT_INFO("%d ", curr_node->myId);
            }
            PRINT_INFO("\n");
          }
	for ( ii = 0; ii < num_children(); ii++ )
	{
		RStarTreeNode<Y> *curr_node = myChildrenNodes[ii];
		assert (curr_node->get_parent() == this );
		curr_node->validate_tree(print);
	}
    return;
}
//-----------------------------------------------------------
// Algorithm: insert
//  Insert a new index entry e into an R-Tree.
//     I1. [Find postiion for new record] Invoke choose_sub_tree to select
//        a leaf node in l, in which to place e.
//     I2. [Add record to leaf node].a) If l has room for
//        another entry, install E. b) Otherwise invoke overflow_treatment to
//        insert e by reinserting in a different order or spliting l.
//     I3. [Propogate changes upward] Invoke adjust_tree on l, also passing ll
//        if a split was performed.
//     I4. [Grow Tree Taller] If node split propogation caused the root
//         to split create a new root whose children are the two resulting
//         nodes.
//-----------------------------------------------------------
template <class Y> MY_INLINE CubitStatus RStarTreeNode<Y>::insert(RStarTreeNode<Y> *e,
                                                                  RStarTreeNode<Y> *&new_root,
                                                                  int *overflow_flags,
                                                                  int levels)
{
  int print1=0;<--- Assignment 'print1=0', assigned value is 0<--- Assignment 'print1=0', assigned value is 0
  if ( print1 )<--- Condition 'print1' is always false<--- Condition 'print1' is always false
    this->validate_tree(print1);
  CubitStatus stat;
  new_root = NULL;//only set this if the root node changes.  Assume
    //that this RStarTreeNode object is the root...
  RStarTreeNode<Y> *root = this;
  
    // I1. Invoke choose_sub_tree to select a leaf node l in which to place
    //e
  RStarTreeNode<Y> *l = choose_sub_tree(this, e);
  assert(l->get_parent() != NULL || l == this );<--- Null pointer dereference<--- Null pointer dereference
  
    //just test.
    // make sure l is not null.
    // make sure l is one level above e.
  if ( l ==  NULL || l->get_leaf_level() != (e->get_leaf_level() + 1) )<--- Assuming that condition 'l==0' is not redundant<--- Assuming that condition 'l==0' is not redundant
  {
    PRINT_ERROR("Choosing leaf for inseartion into rtree failed.\n");
    return CUBIT_FAILURE;
  }
  RStarTreeNode<Y> *ll = NULL;
    //I2 a) If l has room for another entry install e.
  if ( l->can_add() )
  {
    l->add_child(e, CUBIT_TRUE);
  }
  else
  {
      //Call the overflow.
    stat = overflow_treatment(l, e, ll, root, new_root,
                              overflow_flags, levels);
    if ( stat != CUBIT_SUCCESS )
      return stat;
  }
    //adjust the bounding boxes and if needed
    //create a new root...
  assert(l->get_parent() != NULL || l == root || l == new_root );
  int print = 0;<--- Assignment 'print=0', assigned value is 0<--- Assignment 'print=0', assigned value is 0<--- Assignment 'print=0', assigned value is 0<--- Assignment 'print=0', assigned value is 0
  if ( new_root == NULL && print )<--- Condition 'print' is always false<--- Condition 'print' is always false
	  this->validate_tree(print);
  else if ( new_root != NULL && print )<--- Condition 'print' is always false<--- Condition 'print' is always false
	  new_root->validate_tree(print);

  stat = adjust_tree(l, ll, root, new_root,
                     overflow_flags, levels);
  if ( stat!= CUBIT_SUCCESS )
    return stat;
  return CUBIT_SUCCESS;
}
//--------------------------------------------
// Algorithm: overflow_treatment
// Decides whether or not to do a reinsert or
// a split.  Basically e should go into l, but
// there is no more room for it...
//--------------------------------------------
template <class Y> MY_INLINE
CubitStatus RStarTreeNode<Y>::overflow_treatment( RStarTreeNode<Y>* l,
                                                  RStarTreeNode<Y>* e,
                                                  RStarTreeNode<Y> *&ll,
                                                  RStarTreeNode<Y> *root,
                                                  RStarTreeNode<Y> *&new_root,
                                                  int *overflow_flags, int levels)
{
  assert(l->get_parent() != NULL || l == root || l == new_root );
  
  CubitStatus stat;
    //Test is this level is not the root level.
  if ( l->get_leaf_level() != (levels-1) && overflow_flags[l->get_leaf_level()] == 0)
  {
      //mark this level as having been reinserted...
    overflow_flags[l->get_leaf_level()] = 1;
    stat = reinsert(l,e,root,new_root,overflow_flags,levels);
    if ( stat != CUBIT_SUCCESS )
      return stat;
  }
  else
  {
    stat = split_node(l, e, ll);
    if ( stat != CUBIT_SUCCESS )
      return stat;
  }
  return stat;
}
//--------------------------------------------
// Private Algorithm: sort_center_distance
// Used for sorting in decreasing order (max first)
// rtree nodes based on their distance value.
//--------------------------------------------
template <class Y> MY_INLINE
int RStarTreeNode<Y>::sort_center_distance( RStarTreeNode<Y> *&n_1,
                                            RStarTreeNode<Y> *&n_2 )
{
  if ( n_1->get_dist() > n_2->get_dist() )
    return -1;
  else if ( n_1->get_dist() < n_2->get_dist() )
    return 1;
  else
    return 0;
}
//--------------------------------------------
// Private Algorithm: reinsert
// This algorithm chooses p nodes to remove
// from l and reinsert them into the tree.
//--------------------------------------------
template <class Y> MY_INLINE
CubitStatus RStarTreeNode<Y>::reinsert(RStarTreeNode<Y>* l,
                                   RStarTreeNode<Y>* e,
                                   RStarTreeNode<Y> *root,
                                   RStarTreeNode<Y> *&new_root,
                                   int *overflow_flags, int levels)
{
  DLIList <RStarTreeNode<Y>*> ordered_entries;
  RStarTreeNode<Y> *curr_node;
  CubitBox big_bound = l->bounding_box();
  big_bound |= e->bounding_box();
  CubitVector center_big = big_bound.center();
  CubitVector center_curr;
  double dist_sq;
  int ii;
  for ( ii = 0; ii < maxChildren; ii++)
  {
    curr_node = l->myChildrenNodes[ii];
    center_curr = curr_node->bounding_box().center();
    dist_sq = (center_curr-center_big).length_squared();
    curr_node->set_dist(dist_sq);
    ordered_entries.append(curr_node);
  }
  center_curr = e->bounding_box().center();
  dist_sq = (center_curr-center_big).length_squared();
  e->set_dist(dist_sq);
  ordered_entries.append(e);
  ordered_entries.sort( sort_center_distance );
    //Make sure the sorting worked...
  if (ordered_entries.get()->get_dist() < ordered_entries.next()->get_dist())
  {
    PRINT_ERROR("Sorting failed in R*Tree.\n");
    assert(0);
    return CUBIT_FAILURE;
  }
    //Calculate P.  The rstar tree says to use 30% of M.
    //I'll round up...
  double P = .3*maxChildren;
  int p = (int) (P+0.5);
  DLIList <RStarTreeNode<Y>*> reinsert_nodes;
  for ( ii = 0; ii < p; ii++ )
  {
    reinsert_nodes.append(ordered_entries.get_and_step());
  }
    //Now reverse the reinsert nodes, inorder to reinsert
    //the minimum distance ones first as the paper says
    //this far outperforms the max ones.
  reinsert_nodes.reverse();

    //remove these nodes from l.
  CubitBoolean e_reinserted = CUBIT_FALSE;
  
  for ( ii = 0; ii < p; ii++ )
  {
    curr_node = reinsert_nodes.get_and_step();
      //remember e wasn't part of l anyways...
    if ( curr_node == e )
    {
      e_reinserted = CUBIT_TRUE;
      continue;
    }
    l->remove_child(curr_node);
    curr_node->set_parent(NULL);
  }
    //ressize the bounding box.
  if ( !e_reinserted )
  {
    l->add_child(e, CUBIT_FALSE);
  }
  l->recalc_b_box();
  CubitStatus stat;
  RStarTreeNode<Y> *changed_root = NULL;
  for ( ii = 0; ii < p; ii++ )
  {
    curr_node = reinsert_nodes.get_and_step();
    stat = root->insert(curr_node, new_root,
                        overflow_flags, levels);
    if ( stat != CUBIT_SUCCESS || curr_node->get_parent() == NULL)
    {
      PRINT_ERROR("RStarTree::reinsert insertion failed.\n");
      return stat;
    }
    if ( new_root != NULL )
    {
      changed_root = new_root;
      root = new_root;
    }
  }
    //if the root was split during this, like at one of the middle nodes,
    //new root would get reset to null again.  Soo, luckily we saved that
    //change!  Reassign changed_root to new_root.
  if ( changed_root != NULL )
    new_root = changed_root;
  return CUBIT_SUCCESS;
}

//--------------------------------------------
// Algorithm: choose_sub_tree: Select a leaf node in which to place
// a new index entry e.  Recursive search the subtrees of n
// until n is a leaf node.
//----------------------------------------------
template <class Y> MY_INLINE
RStarTreeNode<Y>* RStarTreeNode<Y>::choose_sub_tree( RStarTreeNode<Y>* n,
                                                     RStarTreeNode<Y>* e )
{
    //If n is a leaf node, or one level greater than e,
    //we are done.
  if ( n->get_leaf_level() == (e->get_leaf_level() + 1) )
    return n;
    //Now choose the entry f in n (children of n that is)
    //If the children of n are leaf nodes, then find the entry f in n
    //  whose rectangle needs least overlap enalargement to include the new data
    //  rectangle.  Resolve ties by choosing the entry whose rectangle needs least
    //  are enlargement, then the entry with the rectangle of smallest area.
    //Else Choose the entry f in n whose rectangle needs least area enlargment to include the new
    //data rectangle.  Resolve ties by choosing the entry with the rectangle of smallest area.
  double min_enlargement = CUBIT_DBL_MAX, curr_enlargement;
  double min_overlap = CUBIT_DBL_MAX, curr_overlap;
  RStarTreeNode<Y> *curr_node;
  int child_index = -1;
  int ii;
  CubitBox bounding_box;
  for(ii = 0; (ii < maxChildren) && (n->myChildrenNodes[ii] != NULL); ii++  )
  {

    curr_node = n->myChildrenNodes[ii];
	assert(curr_node->get_parent() != NULL );
    if ( curr_node->get_leaf_level() == (e->get_leaf_level() + 1) )
    {
      curr_overlap = calc_overlap(curr_node, e);
      if ( curr_overlap <= min_overlap )
      {
        if ( curr_overlap == min_overlap && child_index >= 0 )
        {
          double curr_enl = calc_enlargement(curr_node, e);
          double best_enl = calc_enlargement(n->get_child(ii), e);
          if ( curr_enl > best_enl )
            continue;
          if ( curr_enl == best_enl )
          {
              //only reset if the curr_node has a smaller volume.
            double curr_vol = volume(curr_node);
            double old_vol = volume(n->myChildrenNodes[child_index]);
            if ( old_vol < curr_vol )
              continue;
          }
        }
        child_index = ii;
        min_overlap = curr_overlap;
      }
    }
    else
    {
      curr_enlargement = calc_enlargement(curr_node, e);
      if ( curr_enlargement <= min_enlargement )
      {
        if ( curr_enlargement == min_enlargement && child_index >= 0 )
        {
            //only reset if the curr_node has a smaller volume.
          double curr_vol = volume(curr_node);
          double old_vol = volume(n->myChildrenNodes[child_index]);
          if ( old_vol < curr_vol )
            continue;
        }
        child_index = ii;
        min_enlargement = curr_enlargement;
      }
    }
  }
    //do error checking...
  if ( child_index == -1 || child_index >= maxChildren )
    return (RStarTreeNode<Y>*)NULL;
  RStarTreeNode<Y> *f = n->myChildrenNodes[child_index];
    //Now continue on...
  curr_node = choose_sub_tree(f,e);
  return curr_node;
}
//----------------------------------------------------------------------
// calc_overlap:  Calculate the total overlap between the add_to and the
//                children of current.
//----------------------------------------------------------------------
template <class Y> MY_INLINE double RStarTreeNode<Y>::calc_overlap(RStarTreeNode<Y> *current,
                                                                   RStarTreeNode<Y> *add_to)
{
  int ii, jj;
  CubitBox add_to_box = add_to->bounding_box();
  double total_volume = 0.0;
    //calculate the total overlap currently.
  CubitBox curr_child_box, other_child_box, temp_box;
  for ( ii = 0; ii < current->num_children(); ii++ )
  {
    curr_child_box = current->get_child(ii)->bounding_box();
    for ( jj = 0; jj < current->num_children(); jj++ )
    {
      if ( ii == jj )
        continue;
      temp_box = curr_child_box;
      other_child_box.reset(current->get_child(jj)->bounding_box());
      temp_box &= other_child_box;
      total_volume += volume(temp_box);
    }
  }
  double prev_total = total_volume;
    //add to it the overlap that would occur.
  for ( ii = 0; ii < current->num_children(); ii++ )
  {
    curr_child_box.reset( current->get_child(ii)->bounding_box());
    curr_child_box &= add_to_box;
    total_volume += volume(curr_child_box);
  }
    //now find the overlap enlargment, total - prev_total...
  return (total_volume-prev_total);
}

//----------------------------------------------------------------------
// calc_enlargement:  Calculate the enlargement required for increasing
// the bounding box of current so that it would encapsulate the bounding
// box of add_to.  So to do that, create the union of the two bounding
// boxes, then of that supper box subtrace the volume of the current.
// The result should be the volumetric difference between how much
// current has and how much it would need be or the enlargement.
//----------------------------------------------------------------------
template <class Y> MY_INLINE
double RStarTreeNode<Y>::calc_enlargement(RStarTreeNode<Y> *current, RStarTreeNode<Y> *add_to )
{
    //The enlargement area is the volume of the box that would
    //be the union of current and add_to minus the volume of the current.
  CubitBox curr_box = current->bounding_box();
  CubitBox add_to_box = add_to->bounding_box();
  CubitBox supper = curr_box;
    //Unite add_to_box to the curr_box.
  supper|= add_to_box;
  double area_big = volume(supper);
  return area_big - volume(current);
}
template <class Y> MY_INLINE
double RStarTreeNode<Y>::calc_enlargement(CubitBox &current, CubitBox &add_to )<--- Parameter 'add_to' can be declared with const<--- Parameter 'add_to' can be declared with const
{
    //The enlargement area is the volume of the box that would
    //be the union of current and add_to minus the volume of the current.
  CubitBox supper = current;
    // unite the add_to box.
  supper |= add_to;
  double area_big = volume(supper);
  return area_big - volume(current);
}
//------------------------------------------------------------------
// Algorithm: adjust_tree
// Description:  Ascend from a leaf node L to the root, adjusting covering
// bounding boxes and propagating nodes splits as necesary.
//------------------------------------------------------------------
template <class Y> MY_INLINE
CubitStatus RStarTreeNode<Y>::adjust_tree(RStarTreeNode<Y> *l, RStarTreeNode<Y> *ll,
                                          RStarTreeNode<Y> *root_node,
                                          RStarTreeNode<Y> *&new_root,
                                          int *overflow_flags,
                                          int levels)
{
  CubitStatus stat;
  //we need to move up the tree and correct things that have changed.
  if ( l == root_node )
  {
    if ( ll == NULL )
      return CUBIT_SUCCESS;
    else
    {
        //Create a new root node and store l and ll there
      CubitBox root_box = l->bounding_box();
      root_box |= ll->bounding_box();
      new_root = new RStarTreeNode<Y>(root_box, maxChildren, minChildren);
      int new_level = l->get_leaf_level() + 1;
      new_root->set_leaf_level(new_level);
      new_root->add_child(l, CUBIT_TRUE);
      new_root->add_child(ll, CUBIT_TRUE);
      return CUBIT_SUCCESS;
    }
  }
  else if ( l == new_root && ll == NULL )
  {
	  return CUBIT_SUCCESS;
  }
  else if ( l == new_root && ll != NULL )
  {
   //Create a new root node and store l and ll there
    CubitBox root_box = l->bounding_box();
    root_box |= ll->bounding_box();
    new_root = new RStarTreeNode<Y>(root_box, maxChildren, minChildren);
    int new_level = l->get_leaf_level() + 1;
    new_root->set_leaf_level(new_level);
    new_root->add_child(l, CUBIT_TRUE);
    new_root->add_child(ll, CUBIT_TRUE);
    return CUBIT_SUCCESS;
  }

  RStarTreeNode<Y> *parent_node = l->get_parent();
  RStarTreeNode<Y> *new_group = NULL;
  if ( ll != NULL )
  {
      //We need to add ll to the parent if we can,
      //and then we need to update the parent's bounding box...
    if ( parent_node->can_add() )
    {
      parent_node->add_child(ll, CUBIT_FALSE);
        //we need to recalculate the bounding box for the
        //entire set since both l and ll were modified...
      parent_node->recalc_b_box();
    }
    else
    {
        //Now we must split the children of the parent. l should
        //already be in the chilren list of the paretn.  So send
        //to split node the parent_node and ll.
        //parent node during this process will have its b_box recalced.
      stat = overflow_treatment(parent_node, ll, new_group, root_node, new_root,
                                overflow_flags, levels);
      if ( stat != CUBIT_SUCCESS )
      {
        PRINT_ERROR("Problems splitting node during insertion to RTree.\n");
        return CUBIT_FAILURE;
      }
    }
  }
  else
  {
      //just recalulate the b_box for the parent_node.
    parent_node->recalc_b_box();
  }
  if ( parent_node->get_parent() == NULL && 
       parent_node != root_node &&
       parent_node != new_root )
  {
    PRINT_INFO("level = %d\n", parent_node->get_leaf_level());
    PRINT_INFO("levels = %d\n", levels);
    PRINT_ERROR("parent_node (%d) == NULL\n", parent_node->myId);
    PRINT_ERROR("And l (%d) ", l->myId);
    assert(0);
  }
  stat = adjust_tree(parent_node, new_group, root_node, new_root,
                     overflow_flags, levels);
  if ( stat != CUBIT_SUCCESS )
    return CUBIT_FAILURE;
  return CUBIT_SUCCESS;
}
template <class Y> MY_INLINE
int RStarTreeNode<Y>::sort_high_x(RStarTreeNode<Y> *&n_1,
                                  RStarTreeNode<Y> *&n_2 )
{
  CubitVector n_1_high = n_1->bounding_box().maximum();
  CubitVector n_2_high = n_2->bounding_box().maximum();

  if ( n_1_high.x() < n_2_high.x() )
    return -1;
  else if ( n_1_high.x() == n_2_high.x() )
    return 0;
  else
    return 1;
}
template <class Y> MY_INLINE
int RStarTreeNode<Y>::sort_high_y(RStarTreeNode<Y> *&n_1,
                                  RStarTreeNode<Y> *&n_2 )
{
  CubitVector n_1_high = n_1->bounding_box().maximum();
  CubitVector n_2_high = n_2->bounding_box().maximum();

  if ( n_1_high.y() < n_2_high.y() )
    return -1;
  else if ( n_1_high.y() == n_2_high.y() )
    return 0;
  else
    return 1;
}
template <class Y> MY_INLINE
int RStarTreeNode<Y>::sort_high_z(RStarTreeNode<Y> *&n_1,
                                  RStarTreeNode<Y> *&n_2 )
{
  CubitVector n_1_high = n_1->bounding_box().maximum();
  CubitVector n_2_high = n_2->bounding_box().maximum();

  if ( n_1_high.z() < n_2_high.z() )
    return -1;
  else if ( n_1_high.z() == n_2_high.z() )
    return 0;
  else
    return 1;
}
template <class Y> MY_INLINE
int RStarTreeNode<Y>::sort_low_x(RStarTreeNode<Y> *&n_1,
                                 RStarTreeNode<Y> *&n_2 )
{
  CubitVector n_1_low = n_1->bounding_box().minimum();
  CubitVector n_2_low = n_2->bounding_box().minimum();

  if ( n_1_low.x() < n_2_low.x() )
    return -1;
  else if ( n_1_low.x() == n_2_low.x() )
    return 0;
  else
    return 1;
}
template <class Y> MY_INLINE
int RStarTreeNode<Y>::sort_low_y(RStarTreeNode<Y> *&n_1,
                                 RStarTreeNode<Y> *&n_2 )
{
  CubitVector n_1_low = n_1->bounding_box().minimum();
  CubitVector n_2_low = n_2->bounding_box().minimum();

  if ( n_1_low.y() < n_2_low.y() )
    return -1;
  else if ( n_1_low.y() == n_2_low.y() )
    return 0;
  else
    return 1;
}
template <class Y> MY_INLINE
int RStarTreeNode<Y>::sort_low_z(RStarTreeNode<Y> *&n_1,
                                 RStarTreeNode<Y> *&n_2 )
{
  CubitVector n_1_low = n_1->bounding_box().minimum();
  CubitVector n_2_low = n_2->bounding_box().minimum();

  if ( n_1_low.z() < n_2_low.z() )
    return -1;
  else if ( n_1_low.z() == n_2_low.z() )
    return 0;
  else
    return 1;
}
  
//------------------------------------------------------------------
// Algorithm: split_node
// This function is rather tricky since it really isn't well
// described Beckmann's paper very well.  I looked at other online
// docs and descriptions and came to the current implementation.
// As I understand it the current function does the following:
// First descide which axis the nodes should be split along.
// To accomplish this the nodes that are going to be split (the
// children of l and the node e), are added to two lists.  The lists
// are then sorted according to their high and low values along
// the three axis.  Then for each  each high and low,
// d distributions are created with possible groupings.
// Where d = (maxChildren -2*minChildren +2). These distributions are
// then used to calculate the total margin for each axis.  The axis
// with the minimum margin is selected.  While calculating the margins
// for each distribution, the best "distribution" for each axis is also
// selected.  The best distribution will be the one that has the minimum
// overlap over the entire set of distributions, and high and low sets.
// When the axis is chosen, the correct distribution is then also stored
// or known.  The function then splits l into l and ll.
//------------------------------------------------------------------
template <class Y> MY_INLINE
CubitStatus RStarTreeNode<Y>::split_node( RStarTreeNode<Y> *l,
                                          RStarTreeNode<Y> *e,
                                          RStarTreeNode<Y> *&ll )
{
    int ii;
    //create a new list containing all the nodes we want to split.
      //create two lists.
  DLIList <RStarTreeNode<Y>*> ordered_low, ordered_high;
  for ( ii = 0; ii < maxChildren; ii++)
  {
    ordered_low.append(l->myChildrenNodes[ii]);
    ordered_high.append(l->myChildrenNodes[ii]);
  }
  ordered_low.append(e);
  ordered_high.append(e);
    //the input list contains all of the nodes.

  int d = maxChildren - 2*minChildren + 2;

    //Now do the first step, choose the split axis.
    //loop over each dimension.
  double local_margin, min_margin = CUBIT_DBL_MAX;
  DLIList<RStarTreeNode<Y>*> best_group_1, best_group_2;
  
  for ( ii = 0; ii < 3; ii++ )
  {
      //Sort the lists according to the high and low dimension.
      //Both lists are ordered lowest to highest however.
    switch(ii)
    {
      case(0):
          //this is the x dimension.
        ordered_low.sort(sort_low_x);
        ordered_high.sort(sort_high_x);
        break;
      case(1):
          //this is the y dimension.
        ordered_low.sort(sort_low_y);
        ordered_high.sort(sort_high_y);
        break;
      case(2):
          //this is the z dimension.
        ordered_low.sort(sort_low_z);
        ordered_high.sort(sort_high_z);
        break;
    }
      //Now loop over the distributions and sum the margins for the
      //different distributions.  The axis where the sum of its margins
      //is minimal is the correct axis.
    int k;
    local_margin = 0.0;
    double min_overlap = CUBIT_DBL_MAX;
    double min_volume = CUBIT_DBL_MAX;
    DLIList<RStarTreeNode<Y>*> group_1_low, group_1_high, local_best_1;
    DLIList<RStarTreeNode<Y>*> group_2_low, group_2_high, local_best_2;
      //just do this so that the code can look familar with the paper.
    int m = minChildren;
    int M = maxChildren;
      //Also determine with distribution is best among these in this axis.
      //Store those groups in case this axis is optimum.
    for ( k = 0; k < d; k++ )
    {
        //build the 4 groups...
      int jj;
      group_1_low.clean_out();
      group_2_low.clean_out();
      group_1_high.clean_out();
      group_2_high.clean_out();
      for ( jj = 0; jj < (m-1+k); jj++ )
      {
        group_1_low.append(ordered_low.next(jj));
        group_1_high.append(ordered_high.next(jj));
      }
      for ( jj = (m-1+k); jj < (M+1); jj++ )
      {
        group_2_low.append(ordered_low.next(jj));
        group_2_high.append(ordered_high.next(jj));
      }
      assert(group_1_low.size() + group_2_low.size() == M+1 );
        //Okay we have the groups.  Now calculate the metrics.
        //First find the bounding boxes for the groups.
      CubitBox group_1_low_box = super_box(group_1_low);
      CubitBox group_2_low_box = super_box(group_2_low);
      CubitBox group_1_high_box = super_box(group_1_high);
      CubitBox group_2_high_box = super_box(group_2_high);
      
      local_margin += margin(group_1_low_box);
      local_margin += margin(group_2_low_box);
      local_margin += margin(group_1_high_box);
      local_margin += margin(group_2_high_box);
        //Okay now that we have the margin, that is the portion of the
        //code for choosing the correct axis.  Now make sure if this axis
        //is the right one, we find the right distribution.

      double overlap_low, overlap_high;
        //remember &= is the overlap or intersection and the volume calculates
        //the volume of the overlap or intersection.
      overlap_low = volume(group_1_low_box &= group_2_low_box);
      overlap_high = volume(group_1_high_box &= group_2_high_box);
      CubitBoolean use_low = (overlap_low < overlap_high)? CUBIT_TRUE : CUBIT_FALSE;
      double temp_overlap = use_low ? overlap_low : overlap_high;
        //Choose the best distribution based on the mininum distribution
      if ( temp_overlap < min_overlap )
      {
        min_overlap = temp_overlap;
        if ( use_low )
        {
          local_best_1 = group_1_low;
          local_best_2 = group_2_low;
        }
        else
        {
          local_best_1 = group_1_high;
          local_best_2 = group_2_high;
        }
      }
        //break ties based on the smallest volumes.
      else if ( temp_overlap == min_overlap )
      {
          //supposed to resolve this by choosing the one with the minimum area.
        double tmp_vol;
        if ( use_low ){
          tmp_vol = volume(group_1_low_box);
          tmp_vol += volume(group_2_low_box);
        }
        else {
          tmp_vol = volume(group_1_high_box);
          tmp_vol += volume(group_2_high_box);
        }
        if ( tmp_vol < min_volume )
        {
          min_volume = tmp_vol;
          if ( use_low )
          {
            local_best_1 = group_1_low;
            local_best_2 = group_2_low;
          }
          else
          {
            local_best_1 = group_1_high;
            local_best_2 = group_2_high;
          }
        }
      }
    }
      //After the margin has been sumed for the entire distributions,
      //choose the axis with the min margin.  Note I'm not storing the
      //axis because for each distribution I'm also chosing the local
      //best based on overlap.  Store that local best as the overal all
      //best.  It only gets stored if the axis is optimum...
    if ( local_margin < min_margin )
    {
      min_margin = local_margin;
      best_group_1 = local_best_1;
      best_group_2 = local_best_2;
    }
  }
    //Okay now we have the groups.  Clean out l, create ll.
  l->flush(best_group_1.get()->bounding_box());
  l->add_child(best_group_1.get_and_step(), CUBIT_FALSE);
  l->set_leaf_level(e->get_leaf_level() + 1);
  for ( ii = 1; ii < best_group_1.size(); ii++ )
    l->add_child(best_group_1.get_and_step(), CUBIT_TRUE);
  ll = new RStarTreeNode<Y>(best_group_2.get()->bounding_box(),
                        maxChildren, minChildren);
  ll->add_child(best_group_2.get_and_step(), CUBIT_FALSE);
  ll->set_leaf_level(l->get_leaf_level());
  for ( ii = 1; ii < best_group_2.size(); ii++ )
    ll->add_child(best_group_2.get_and_step(), CUBIT_TRUE);

  return CUBIT_SUCCESS;
}
//-----------------------------------------------
//Private Function: Margin
//  Calculates the margin of bounding box.
//-----------------------------------------------
template <class Y> MY_INLINE
double RStarTreeNode<Y>::margin(CubitBox &bounding_box)<--- Parameter 'bounding_box' can be declared with const<--- Parameter 'bounding_box' can be declared with const
{
  double margin = 4*(bounding_box.x_range() + bounding_box.y_range()
                     + bounding_box.z_range());
  return margin;
}
//-----------------------------------------------
//Private Function: super_box
//  Calculates the overall bounding box of the rtree
//  nodes in the list.
//-----------------------------------------------
template <class Y> MY_INLINE
CubitBox RStarTreeNode<Y>::super_box(DLIList<RStarTreeNode<Y>*> &node_list)
{
  int ii;
  CubitBox bounding_box = node_list.get_and_step()->bounding_box();
  for ( ii = 1; ii < node_list.size(); ii++ )
  {
    bounding_box |= node_list.get_and_step()->bounding_box();
  }
  return bounding_box;
}

template <class Y> MY_INLINE void RStarTreeNode<Y>::flush( CubitBox &new_box )
{
  int ii;
  nextChildIndex = 0;
  for ( ii = 0; ii < maxChildren; ii++ )
    myChildrenNodes[ii] = NULL;
  delete myBoundingBox;
  myBoundingBox = new CubitBox(new_box);
}
template <class Y> MY_INLINE void RStarTreeNode<Y>::add_child(RStarTreeNode<Y> *child_node,
                                                CubitBoolean recalc_b_box)
{
  assert(nextChildIndex < maxChildren && child_node != NULL );
  myChildrenNodes[nextChildIndex] = child_node;
    //update the bounding box. by uniting with child node...
  if ( recalc_b_box )
  {
    CubitBox *old_box = myBoundingBox;
    myBoundingBox = new CubitBox( *old_box |= child_node->bounding_box());
    delete old_box;
  }
  nextChildIndex++;
  child_node->set_parent(this);
}
template <class Y> MY_INLINE CubitBoolean RStarTreeNode<Y>::can_add()
{
  if (nextChildIndex >= maxChildren )
    return CUBIT_FALSE;
  else
    return CUBIT_TRUE;
}
template <class Y> MY_INLINE int RStarTreeNode<Y>::space_left()
{
  return maxChildren - nextChildIndex;
}
template <class Y> MY_INLINE void RStarTreeNode<Y>::recalc_b_box()
{
  if(myLevel == DATA_RSTARNODE )
    return;
  int ii;
  CubitBox temp_box;
  CubitBoolean is_first = CUBIT_TRUE;
  for ( ii = 0; ii < nextChildIndex; ii++ )
  {
    if ( is_first )
    {
      is_first = CUBIT_FALSE;
      temp_box = myChildrenNodes[ii]->bounding_box();
    }
    else
      temp_box |= myChildrenNodes[ii]->bounding_box();
  }
  delete myBoundingBox;
  myBoundingBox = new CubitBox(temp_box);
  return;
}
//-------------------------------------------------------------
// Algorithm: remove.  Remove index record e from an R-tree.
//   D1)  [Find node containing record].  Invoke find_leaf to locate
//        the leaf node l containing e.  Stop if the record was not
//        found.
//   D2)  [Delete record.]  Remove e from l.
//   D3)  [Propagate changes.]  Invoke CondenseTree, passing L.
//   D4)  [Shorten tree.]  If the root node has only one child
//        after the tree has been adjusted, make the child the new
//        root.
//-------------------------------------------------------------
template <class Y> MY_INLINE CubitBoolean RStarTreeNode<Y>::remove( Y e,
                                                      RStarTreeNode<Y> *&new_root,
                                                      CubitBoolean &delete_root)
{
    //D1) Find node containting record.
  RStarTreeNode<Y> *l = NULL;
  CubitBox my_box = e->bounding_box();
  CubitStatus stat = find_leaf(e, my_box, this, l);
  if ( l == NULL || stat != CUBIT_SUCCESS )
    return CUBIT_FALSE;
    //Now l is the RStarTreeNode that holds the actual data (a DATA_RSTARNODE)
    //not a leaf.  This was done for efficiency.
  RStarTreeNode<Y> *data_node = l;
  l = data_node->get_parent();
    //D2) [Delete record]  Remove e from l.
  
    //remove the data node from the children and delete
    //the node.
  l->remove_child(data_node);
  delete data_node;

    //D3) [Propogate Changes].
  stat = condense_tree(l, this, new_root);<--- Variable 'stat' is assigned a value that is never used.<--- Variable 'stat' is assigned a value that is never used.
    //D4) [Shorten the tree].
  RStarTreeNode<Y> *root = this;
  if ( new_root != NULL )
    root = new_root;
  if ( root->num_children() == 1 )
  {
    new_root = root->get_child(0);
    new_root->set_parent((RStarTreeNode<Y>*)NULL);
    delete_root = CUBIT_TRUE;
  }
  return CUBIT_TRUE;
}
template <class Y> MY_INLINE CubitStatus RStarTreeNode<Y>::find_leaf( Y e,
                                                        CubitBox &e_box,
                                                        RStarTreeNode<Y> *t,
                                                        RStarTreeNode<Y> *&l )
{
  int ii;
  CubitStatus stat;
  l = NULL;
  int loop_size = t->num_children();
  RStarTreeNode<Y> *curr_node;
  if ( t->get_leaf_level() > LEAF_RSTARNODE )
  {
    for ( ii = 0; ii < loop_size; ii++ )
    {
      curr_node = t->get_child(ii);
      if ( curr_node == NULL )
      {
        PRINT_ERROR("Problems finding boxes in range.\n");
        assert(curr_node != NULL);
        return CUBIT_FAILURE;
      }
      if ( e_box.overlap(GEOMETRY_RESABS, curr_node->bounding_box()) )
      {
          //okay now search through this now.
        stat = find_leaf(e, e_box,curr_node,l);<--- Variable 'stat' is assigned a value that is never used.<--- Variable 'stat' is assigned a value that is never used.
        if ( l != NULL )
          return CUBIT_SUCCESS;
      }
    }
  }
  else if ( t->is_leaf() )
  {
      //search through the children for e.
    for ( ii = 0; ii < loop_size; ii++ )
    {
      curr_node = t->get_child(ii);
      if ( curr_node == NULL )
      {
        PRINT_ERROR("Problems finding boxes in range.\n");
        assert(curr_node != NULL);
        return CUBIT_FAILURE;
      }
      if ( curr_node->get_data() == e )
      {
        l = curr_node;
        return CUBIT_SUCCESS;
      }
    }
  }
  return CUBIT_SUCCESS;
}
template <class Y> MY_INLINE CubitBoolean RStarTreeNode<Y>::remove_child( RStarTreeNode<Y> *child )
{
    //first find which item this child is at.
  int ii;
  int index_child = -1;
  int loop_size = this->num_children();
  for ( ii = 0; ii < loop_size; ii++ )
  {
    if ( myChildrenNodes[ii] == child )
      index_child = ii;
  }
  if ( index_child == -1 )
    return CUBIT_FALSE;
    //Now we need to bubble the array from this point
    //upward.
  for ( ii = index_child; ii < loop_size-1; ii++ )
  {
    myChildrenNodes[ii] = myChildrenNodes[ii+1];
  }
    //decrement the position of the next available child.
  nextChildIndex--;
    //now go from nextChildIndex to the end and make sure it is
    //null.
  for (ii = nextChildIndex; ii < maxChildren; ii++ )
    myChildrenNodes[ii] = NULL;
  
  return CUBIT_TRUE;
}
//--------------------------------------------------------------------------
// Algorithm: condense_tree
//  Given a leaf node l from which an entry has been deleted, eliminate
//  the node if it has too few entries and relocate its entries.  Propagate
//  node elimination upaward as necessary.  Adjust all covering rectangles
//  on the path to the root, making them smaller if possible.
//  CT1) [Initialize]  Set n=l, Set q, the set of eliminated nodes, to be
//       empty.
//  CT2) [Find parent entry]  If n is the root, go to CT6.  Otherwise
//       let p be the parent of n, and let en be n's entry in p.
//  CT3) [Eliminate under-full node.] If n has fewer than minChildren,
//       delete en from p and add n to set q.
//  CT4) [Adjust covering rectangle]  If n has not been eliminated, adjust
//       en's bounding box to tightly contain all entries in n.
//  CT5) [Move up one level in tree] Set n=p, and repeat from CT2.
//  CT6) [Reinsert orphaned entries].  Reinsert all entries of nodes in set q.
//       entries from eliminated leaf nodes are re-inserted in tree leaves
//       as described in algorithm insert, but entries from higher-level
//       nodes must be placed higher in the tree so that leaves of their
//       dependent subtrees will be on the same level as leaves of the
//       main tree.
//--------------------------------------------------------------------------
template <class Y> MY_INLINE CubitStatus RStarTreeNode<Y>::condense_tree(RStarTreeNode<Y> *l,
                                                           RStarTreeNode<Y> *root,
                                                           RStarTreeNode<Y> *&new_root )
{
  int ii;
  new_root = NULL;
    //CT1)
  RStarTreeNode<Y> *n = l, *p;
  DLIList <RStarTreeNode<Y>*> set_q;
    //CT2)
  while ( n != root )
  {
    p = n->get_parent();
    if ( n->num_children() < minChildren )
    {
        //CT3
        //take these children and add them to set_q.
      for ( ii = 0;ii < n->num_children(); ii++ )
        set_q.append(n->get_child(ii));
        //remove n from p.
      p->remove_child(n);
        //delete n.
      delete n;
        //now continue on.
    }
    else
    {
        //CT4
      n->recalc_b_box();
    }
      //CT5
    n = p;
  }
    //now reinsert all nodes in set_q.
  RStarTreeNode<Y> *curr_node, *temp_root;
  temp_root = root;
  for (ii = set_q.size(); ii > 0; ii-- )
  {
    curr_node = set_q.get_and_step();
    temp_root->insert(curr_node, new_root);
    if ( new_root != NULL )
      temp_root = new_root;
  }
  if ( temp_root != root )
    new_root = temp_root;
  return CUBIT_SUCCESS;
}