1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155 | //---------------------------------------------------------------------------
// Class Name: RStarTreeNode
// Description: Node of Rectangle tree. Contians many of the
// required functions for building the tree and traversing it.
// The algorithm was taken from the following paper:
// Norbert Beckmann, H. Kriegel, R. Schnieder, and B. Seegar,
// "The R*-tree: An Efficient and Robust Access Method
// for Points and Rectangles", Proceedings of ACM SIGMOD
// Int'l. Conf. on Management of Data, pp. 322-331, 1990.
// Creation Date: 7/21/02
// Owner: David R. White
//---------------------------------------------------------------------------
//---------------------------------
//Include Files
//---------------------------------
#include "RStarTreeNode.hpp"
#include "DLIList.hpp"
#include "CpuTimer.hpp"
//---------------------------
//Initialize Static Members
//---------------------------
#ifdef INLINE_TEMPLATES
#define MY_INLINE inline
#else
#define MY_INLINE
#endif
static int id = 0;
template <class Y> MY_INLINE RStarTreeNode<Y>::RStarTreeNode (Y data, double tol,
int max_children,
int min_children)
{
myId = id++;
maxChildren = max_children;
minChildren = min_children;
myChildrenNodes = new RStarTreeNode<Y>* [maxChildren];
int ii;
for ( ii = 0; ii < maxChildren; ii++ )
myChildrenNodes[ii] = (RStarTreeNode<Y>*) NULL;
if ( data == NULL )
{
PRINT_ERROR("Building RTree with null data is not allowed!\n");
assert(data != NULL);
}
myData = data;
myLevel = DATA_RSTARNODE;
CubitBox temp_box = data->bounding_box();
//Check to see if any of the min/max pairs are less than the tolerance.
//make them bigger if they are...
CubitVector min = temp_box.minimum();
CubitVector max = temp_box.maximum();
if ( max.x() - min.x() < tol )
{
min.x(min.x()-.6*tol);
max.x(max.x()+.6*tol);
}
if ( max.y() - min.y() < tol )
{
min.y(min.y()-.6*tol);
max.y(max.y()+.6*tol);
}
if ( max.z() - min.z() < tol )
{
min.z(min.z()-.6*tol);
max.z(max.z()+.6*tol);
}
myBoundingBox = new CubitBox(min, max);
myParent = NULL;
nextChildIndex = 0;
markedFlag = 0;
distIsBox = 1;
myDist = CUBIT_DBL_MAX;
}
template <class Y> MY_INLINE RStarTreeNode<Y>::RStarTreeNode (CubitBox &bounding_box,
int max_children,
int min_children)
{
myId = id++;
maxChildren = max_children;
minChildren = min_children;
myBoundingBox = new CubitBox(bounding_box);
myChildrenNodes = new RStarTreeNode<Y>* [maxChildren];<--- Class 'RStarTreeNode' does not have a copy constructor which is recommended since it has dynamic memory/resource allocation(s).<--- Class 'RStarTreeNode' does not have a operator= which is recommended since it has dynamic memory/resource allocation(s).<--- Class 'RStarTreeNode' does not have a copy constructor which is recommended since it has dynamic memory/resource allocation(s).<--- Class 'RStarTreeNode' does not have a operator= which is recommended since it has dynamic memory/resource allocation(s).
int ii;
for ( ii = 0; ii < maxChildren; ii++ )
myChildrenNodes[ii] = (RStarTreeNode<Y>*) NULL;
myData = NULL;
myLevel = UNSET_RSTARNODE;
myParent = NULL;
nextChildIndex = 0;
markedFlag = 0;
distIsBox = 1;
myDist = CUBIT_DBL_MAX;
}
//-----------------------------------------------------------
// Destructor
//-----------------------------------------------------------
template <class Y> MY_INLINE RStarTreeNode<Y>::~RStarTreeNode()
{
if ( myChildrenNodes )
delete [] myChildrenNodes;
if ( myBoundingBox )
delete myBoundingBox;
}
template <class Y> MY_INLINE void RStarTreeNode<Y>::validate_tree(int print)
{
int ii;
if (print )
{
PRINT_INFO("Parent %d: Children: ", myId);
for ( ii = 0; ii < num_children(); ii++ )
{
RStarTreeNode<Y> *curr_node = myChildrenNodes[ii];
PRINT_INFO("%d ", curr_node->myId);
}
PRINT_INFO("\n");
}
for ( ii = 0; ii < num_children(); ii++ )
{
RStarTreeNode<Y> *curr_node = myChildrenNodes[ii];
assert (curr_node->get_parent() == this );<--- Assert statement calls a function which may have desired side effects: 'get_parent'. [+]Non-pure function: 'get_parent' is called inside assert statement. Assert statements are removed from release builds so the code inside assert statement is not executed. If the code is needed also in release builds, this is a bug. <--- Assert statement calls a function which may have desired side effects: 'get_parent'. [+]Non-pure function: 'get_parent' is called inside assert statement. Assert statements are removed from release builds so the code inside assert statement is not executed. If the code is needed also in release builds, this is a bug.
curr_node->validate_tree(print);
}
return;
}
//-----------------------------------------------------------
// Algorithm: insert
// Insert a new index entry e into an R-Tree.
// I1. [Find postiion for new record] Invoke choose_sub_tree to select
// a leaf node in l, in which to place e.
// I2. [Add record to leaf node].a) If l has room for
// another entry, install E. b) Otherwise invoke overflow_treatment to
// insert e by reinserting in a different order or spliting l.
// I3. [Propogate changes upward] Invoke adjust_tree on l, also passing ll
// if a split was performed.
// I4. [Grow Tree Taller] If node split propogation caused the root
// to split create a new root whose children are the two resulting
// nodes.
//-----------------------------------------------------------
template <class Y> MY_INLINE CubitStatus RStarTreeNode<Y>::insert(RStarTreeNode<Y> *e,
RStarTreeNode<Y> *&new_root,
int *overflow_flags,
int levels)
{
int print1=0;<--- Assignment 'print1=0', assigned value is 0<--- Assignment 'print1=0', assigned value is 0
if ( print1 )<--- Condition 'print1' is always false<--- Condition 'print1' is always false
this->validate_tree(print1);
CubitStatus stat;
new_root = NULL;//only set this if the root node changes. Assume
//that this RStarTreeNode object is the root...
RStarTreeNode<Y> *root = this;
// I1. Invoke choose_sub_tree to select a leaf node l in which to place
//e
RStarTreeNode<Y> *l = choose_sub_tree(this, e);
assert(l->get_parent() != NULL || l == this );<--- Assert statement calls a function which may have desired side effects: 'get_parent'. [+]Non-pure function: 'get_parent' is called inside assert statement. Assert statements are removed from release builds so the code inside assert statement is not executed. If the code is needed also in release builds, this is a bug. <--- Null pointer dereference<--- Assert statement calls a function which may have desired side effects: 'get_parent'. [+]Non-pure function: 'get_parent' is called inside assert statement. Assert statements are removed from release builds so the code inside assert statement is not executed. If the code is needed also in release builds, this is a bug. <--- Null pointer dereference
//just test.
// make sure l is not null.
// make sure l is one level above e.
if ( l == NULL || l->get_leaf_level() != (e->get_leaf_level() + 1) )<--- Assuming that condition 'l==0' is not redundant<--- Assuming that condition 'l==0' is not redundant
{
PRINT_ERROR("Choosing leaf for inseartion into rtree failed.\n");
return CUBIT_FAILURE;
}
RStarTreeNode<Y> *ll = NULL;
//I2 a) If l has room for another entry install e.
if ( l->can_add() )
{
l->add_child(e, CUBIT_TRUE);
}
else
{
//Call the overflow.
stat = overflow_treatment(l, e, ll, root, new_root,
overflow_flags, levels);
if ( stat != CUBIT_SUCCESS )
return stat;
}
//adjust the bounding boxes and if needed
//create a new root...
assert(l->get_parent() != NULL || l == root || l == new_root );<--- Assert statement calls a function which may have desired side effects: 'get_parent'. [+]Non-pure function: 'get_parent' is called inside assert statement. Assert statements are removed from release builds so the code inside assert statement is not executed. If the code is needed also in release builds, this is a bug. <--- Assert statement calls a function which may have desired side effects: 'get_parent'. [+]Non-pure function: 'get_parent' is called inside assert statement. Assert statements are removed from release builds so the code inside assert statement is not executed. If the code is needed also in release builds, this is a bug.
int print = 0;<--- Assignment 'print=0', assigned value is 0<--- Assignment 'print=0', assigned value is 0<--- Assignment 'print=0', assigned value is 0<--- Assignment 'print=0', assigned value is 0
if ( new_root == NULL && print )<--- Condition 'print' is always false<--- Condition 'print' is always false
this->validate_tree(print);
else if ( new_root != NULL && print )<--- Condition 'print' is always false<--- Condition 'print' is always false
new_root->validate_tree(print);
stat = adjust_tree(l, ll, root, new_root,
overflow_flags, levels);
if ( stat!= CUBIT_SUCCESS )
return stat;
return CUBIT_SUCCESS;
}
//--------------------------------------------
// Algorithm: overflow_treatment
// Decides whether or not to do a reinsert or
// a split. Basically e should go into l, but
// there is no more room for it...
//--------------------------------------------
template <class Y> MY_INLINE
CubitStatus RStarTreeNode<Y>::overflow_treatment( RStarTreeNode<Y>* l,
RStarTreeNode<Y>* e,
RStarTreeNode<Y> *&ll,
RStarTreeNode<Y> *root,
RStarTreeNode<Y> *&new_root,
int *overflow_flags, int levels)
{
assert(l->get_parent() != NULL || l == root || l == new_root );<--- Assert statement calls a function which may have desired side effects: 'get_parent'. [+]Non-pure function: 'get_parent' is called inside assert statement. Assert statements are removed from release builds so the code inside assert statement is not executed. If the code is needed also in release builds, this is a bug. <--- Assert statement calls a function which may have desired side effects: 'get_parent'. [+]Non-pure function: 'get_parent' is called inside assert statement. Assert statements are removed from release builds so the code inside assert statement is not executed. If the code is needed also in release builds, this is a bug.
CubitStatus stat;
//Test is this level is not the root level.
if ( l->get_leaf_level() != (levels-1) && overflow_flags[l->get_leaf_level()] == 0)
{
//mark this level as having been reinserted...
overflow_flags[l->get_leaf_level()] = 1;
stat = reinsert(l,e,root,new_root,overflow_flags,levels);
if ( stat != CUBIT_SUCCESS )
return stat;
}
else
{
stat = split_node(l, e, ll);
if ( stat != CUBIT_SUCCESS )
return stat;
}
return stat;
}
//--------------------------------------------
// Private Algorithm: sort_center_distance
// Used for sorting in decreasing order (max first)
// rtree nodes based on their distance value.
//--------------------------------------------
template <class Y> MY_INLINE
int RStarTreeNode<Y>::sort_center_distance( RStarTreeNode<Y> *&n_1,
RStarTreeNode<Y> *&n_2 )
{
if ( n_1->get_dist() > n_2->get_dist() )
return -1;
else if ( n_1->get_dist() < n_2->get_dist() )
return 1;
else
return 0;
}
//--------------------------------------------
// Private Algorithm: reinsert
// This algorithm chooses p nodes to remove
// from l and reinsert them into the tree.
//--------------------------------------------
template <class Y> MY_INLINE
CubitStatus RStarTreeNode<Y>::reinsert(RStarTreeNode<Y>* l,
RStarTreeNode<Y>* e,
RStarTreeNode<Y> *root,
RStarTreeNode<Y> *&new_root,
int *overflow_flags, int levels)
{
DLIList <RStarTreeNode<Y>*> ordered_entries;
RStarTreeNode<Y> *curr_node;
CubitBox big_bound = l->bounding_box();
big_bound |= e->bounding_box();
CubitVector center_big = big_bound.center();
CubitVector center_curr;
double dist_sq;
int ii;
for ( ii = 0; ii < maxChildren; ii++)
{
curr_node = l->myChildrenNodes[ii];
center_curr = curr_node->bounding_box().center();
dist_sq = (center_curr-center_big).length_squared();
curr_node->set_dist(dist_sq);
ordered_entries.append(curr_node);
}
center_curr = e->bounding_box().center();
dist_sq = (center_curr-center_big).length_squared();
e->set_dist(dist_sq);
ordered_entries.append(e);
ordered_entries.sort( sort_center_distance );
//Make sure the sorting worked...
if (ordered_entries.get()->get_dist() < ordered_entries.next()->get_dist())
{
PRINT_ERROR("Sorting failed in R*Tree.\n");
assert(0);
return CUBIT_FAILURE;
}
//Calculate P. The rstar tree says to use 30% of M.
//I'll round up...
double P = .3*maxChildren;
int p = (int) (P+0.5);
DLIList <RStarTreeNode<Y>*> reinsert_nodes;
for ( ii = 0; ii < p; ii++ )
{
reinsert_nodes.append(ordered_entries.get_and_step());
}
//Now reverse the reinsert nodes, inorder to reinsert
//the minimum distance ones first as the paper says
//this far outperforms the max ones.
reinsert_nodes.reverse();
//remove these nodes from l.
CubitBoolean e_reinserted = CUBIT_FALSE;
for ( ii = 0; ii < p; ii++ )
{
curr_node = reinsert_nodes.get_and_step();
//remember e wasn't part of l anyways...
if ( curr_node == e )
{
e_reinserted = CUBIT_TRUE;
continue;
}
l->remove_child(curr_node);
curr_node->set_parent(NULL);
}
//ressize the bounding box.
if ( !e_reinserted )
{
l->add_child(e, CUBIT_FALSE);
}
l->recalc_b_box();
CubitStatus stat;
RStarTreeNode<Y> *changed_root = NULL;
for ( ii = 0; ii < p; ii++ )
{
curr_node = reinsert_nodes.get_and_step();
stat = root->insert(curr_node, new_root,
overflow_flags, levels);
if ( stat != CUBIT_SUCCESS || curr_node->get_parent() == NULL)
{
PRINT_ERROR("RStarTree::reinsert insertion failed.\n");
return stat;
}
if ( new_root != NULL )
{
changed_root = new_root;
root = new_root;
}
}
//if the root was split during this, like at one of the middle nodes,
//new root would get reset to null again. Soo, luckily we saved that
//change! Reassign changed_root to new_root.
if ( changed_root != NULL )
new_root = changed_root;
return CUBIT_SUCCESS;
}
//--------------------------------------------
// Algorithm: choose_sub_tree: Select a leaf node in which to place
// a new index entry e. Recursive search the subtrees of n
// until n is a leaf node.
//----------------------------------------------
template <class Y> MY_INLINE
RStarTreeNode<Y>* RStarTreeNode<Y>::choose_sub_tree( RStarTreeNode<Y>* n,
RStarTreeNode<Y>* e )
{
//If n is a leaf node, or one level greater than e,
//we are done.
if ( n->get_leaf_level() == (e->get_leaf_level() + 1) )
return n;
//Now choose the entry f in n (children of n that is)
//If the children of n are leaf nodes, then find the entry f in n
// whose rectangle needs least overlap enalargement to include the new data
// rectangle. Resolve ties by choosing the entry whose rectangle needs least
// are enlargement, then the entry with the rectangle of smallest area.
//Else Choose the entry f in n whose rectangle needs least area enlargment to include the new
//data rectangle. Resolve ties by choosing the entry with the rectangle of smallest area.
double min_enlargement = CUBIT_DBL_MAX, curr_enlargement;
double min_overlap = CUBIT_DBL_MAX, curr_overlap;
RStarTreeNode<Y> *curr_node;
int child_index = -1;
int ii;
CubitBox bounding_box;
for(ii = 0; (ii < maxChildren) && (n->myChildrenNodes[ii] != NULL); ii++ )
{
curr_node = n->myChildrenNodes[ii];
assert(curr_node->get_parent() != NULL );<--- Assert statement calls a function which may have desired side effects: 'get_parent'. [+]Non-pure function: 'get_parent' is called inside assert statement. Assert statements are removed from release builds so the code inside assert statement is not executed. If the code is needed also in release builds, this is a bug. <--- Assert statement calls a function which may have desired side effects: 'get_parent'. [+]Non-pure function: 'get_parent' is called inside assert statement. Assert statements are removed from release builds so the code inside assert statement is not executed. If the code is needed also in release builds, this is a bug.
if ( curr_node->get_leaf_level() == (e->get_leaf_level() + 1) )
{
curr_overlap = calc_overlap(curr_node, e);
if ( curr_overlap <= min_overlap )
{
if ( curr_overlap == min_overlap && child_index >= 0 )
{
double curr_enl = calc_enlargement(curr_node, e);
double best_enl = calc_enlargement(n->get_child(ii), e);
if ( curr_enl > best_enl )
continue;
if ( curr_enl == best_enl )
{
//only reset if the curr_node has a smaller volume.
double curr_vol = volume(curr_node);
double old_vol = volume(n->myChildrenNodes[child_index]);
if ( old_vol < curr_vol )
continue;
}
}
child_index = ii;
min_overlap = curr_overlap;
}
}
else
{
curr_enlargement = calc_enlargement(curr_node, e);
if ( curr_enlargement <= min_enlargement )
{
if ( curr_enlargement == min_enlargement && child_index >= 0 )
{
//only reset if the curr_node has a smaller volume.
double curr_vol = volume(curr_node);
double old_vol = volume(n->myChildrenNodes[child_index]);
if ( old_vol < curr_vol )
continue;
}
child_index = ii;
min_enlargement = curr_enlargement;
}
}
}
//do error checking...
if ( child_index == -1 || child_index >= maxChildren )
return (RStarTreeNode<Y>*)NULL;
RStarTreeNode<Y> *f = n->myChildrenNodes[child_index];
//Now continue on...
curr_node = choose_sub_tree(f,e);
return curr_node;
}
//----------------------------------------------------------------------
// calc_overlap: Calculate the total overlap between the add_to and the
// children of current.
//----------------------------------------------------------------------
template <class Y> MY_INLINE double RStarTreeNode<Y>::calc_overlap(RStarTreeNode<Y> *current,
RStarTreeNode<Y> *add_to)
{
int ii, jj;
CubitBox add_to_box = add_to->bounding_box();
double total_volume = 0.0;
//calculate the total overlap currently.
CubitBox curr_child_box, other_child_box, temp_box;
for ( ii = 0; ii < current->num_children(); ii++ )
{
curr_child_box = current->get_child(ii)->bounding_box();
for ( jj = 0; jj < current->num_children(); jj++ )
{
if ( ii == jj )
continue;
temp_box = curr_child_box;
other_child_box.reset(current->get_child(jj)->bounding_box());
temp_box &= other_child_box;
total_volume += volume(temp_box);
}
}
double prev_total = total_volume;
//add to it the overlap that would occur.
for ( ii = 0; ii < current->num_children(); ii++ )
{
curr_child_box.reset( current->get_child(ii)->bounding_box());
curr_child_box &= add_to_box;
total_volume += volume(curr_child_box);
}
//now find the overlap enlargment, total - prev_total...
return (total_volume-prev_total);
}
//----------------------------------------------------------------------
// calc_enlargement: Calculate the enlargement required for increasing
// the bounding box of current so that it would encapsulate the bounding
// box of add_to. So to do that, create the union of the two bounding
// boxes, then of that supper box subtrace the volume of the current.
// The result should be the volumetric difference between how much
// current has and how much it would need be or the enlargement.
//----------------------------------------------------------------------
template <class Y> MY_INLINE
double RStarTreeNode<Y>::calc_enlargement(RStarTreeNode<Y> *current, RStarTreeNode<Y> *add_to )
{
//The enlargement area is the volume of the box that would
//be the union of current and add_to minus the volume of the current.
CubitBox curr_box = current->bounding_box();
CubitBox add_to_box = add_to->bounding_box();
CubitBox supper = curr_box;
//Unite add_to_box to the curr_box.
supper|= add_to_box;
double area_big = volume(supper);
return area_big - volume(current);
}
template <class Y> MY_INLINE
double RStarTreeNode<Y>::calc_enlargement(CubitBox ¤t, CubitBox &add_to )<--- Parameter 'add_to' can be declared with const<--- Parameter 'add_to' can be declared with const
{
//The enlargement area is the volume of the box that would
//be the union of current and add_to minus the volume of the current.
CubitBox supper = current;
// unite the add_to box.
supper |= add_to;
double area_big = volume(supper);
return area_big - volume(current);
}
//------------------------------------------------------------------
// Algorithm: adjust_tree
// Description: Ascend from a leaf node L to the root, adjusting covering
// bounding boxes and propagating nodes splits as necesary.
//------------------------------------------------------------------
template <class Y> MY_INLINE
CubitStatus RStarTreeNode<Y>::adjust_tree(RStarTreeNode<Y> *l, RStarTreeNode<Y> *ll,
RStarTreeNode<Y> *root_node,
RStarTreeNode<Y> *&new_root,
int *overflow_flags,
int levels)
{
CubitStatus stat;
//we need to move up the tree and correct things that have changed.
if ( l == root_node )
{
if ( ll == NULL )
return CUBIT_SUCCESS;
else
{
//Create a new root node and store l and ll there
CubitBox root_box = l->bounding_box();
root_box |= ll->bounding_box();
new_root = new RStarTreeNode<Y>(root_box, maxChildren, minChildren);
int new_level = l->get_leaf_level() + 1;
new_root->set_leaf_level(new_level);
new_root->add_child(l, CUBIT_TRUE);
new_root->add_child(ll, CUBIT_TRUE);
return CUBIT_SUCCESS;
}
}
else if ( l == new_root && ll == NULL )
{
return CUBIT_SUCCESS;
}
else if ( l == new_root && ll != NULL )
{
//Create a new root node and store l and ll there
CubitBox root_box = l->bounding_box();
root_box |= ll->bounding_box();
new_root = new RStarTreeNode<Y>(root_box, maxChildren, minChildren);
int new_level = l->get_leaf_level() + 1;
new_root->set_leaf_level(new_level);
new_root->add_child(l, CUBIT_TRUE);
new_root->add_child(ll, CUBIT_TRUE);
return CUBIT_SUCCESS;
}
RStarTreeNode<Y> *parent_node = l->get_parent();
RStarTreeNode<Y> *new_group = NULL;
if ( ll != NULL )
{
//We need to add ll to the parent if we can,
//and then we need to update the parent's bounding box...
if ( parent_node->can_add() )
{
parent_node->add_child(ll, CUBIT_FALSE);
//we need to recalculate the bounding box for the
//entire set since both l and ll were modified...
parent_node->recalc_b_box();
}
else
{
//Now we must split the children of the parent. l should
//already be in the chilren list of the paretn. So send
//to split node the parent_node and ll.
//parent node during this process will have its b_box recalced.
stat = overflow_treatment(parent_node, ll, new_group, root_node, new_root,
overflow_flags, levels);
if ( stat != CUBIT_SUCCESS )
{
PRINT_ERROR("Problems splitting node during insertion to RTree.\n");
return CUBIT_FAILURE;
}
}
}
else
{
//just recalulate the b_box for the parent_node.
parent_node->recalc_b_box();
}
if ( parent_node->get_parent() == NULL &&
parent_node != root_node &&
parent_node != new_root )
{
PRINT_INFO("level = %d\n", parent_node->get_leaf_level());
PRINT_INFO("levels = %d\n", levels);
PRINT_ERROR("parent_node (%d) == NULL\n", parent_node->myId);
PRINT_ERROR("And l (%d) ", l->myId);
assert(0);
}
stat = adjust_tree(parent_node, new_group, root_node, new_root,
overflow_flags, levels);
if ( stat != CUBIT_SUCCESS )
return CUBIT_FAILURE;
return CUBIT_SUCCESS;
}
template <class Y> MY_INLINE
int RStarTreeNode<Y>::sort_high_x(RStarTreeNode<Y> *&n_1,
RStarTreeNode<Y> *&n_2 )
{
CubitVector n_1_high = n_1->bounding_box().maximum();
CubitVector n_2_high = n_2->bounding_box().maximum();
if ( n_1_high.x() < n_2_high.x() )
return -1;
else if ( n_1_high.x() == n_2_high.x() )
return 0;
else
return 1;
}
template <class Y> MY_INLINE
int RStarTreeNode<Y>::sort_high_y(RStarTreeNode<Y> *&n_1,
RStarTreeNode<Y> *&n_2 )
{
CubitVector n_1_high = n_1->bounding_box().maximum();
CubitVector n_2_high = n_2->bounding_box().maximum();
if ( n_1_high.y() < n_2_high.y() )
return -1;
else if ( n_1_high.y() == n_2_high.y() )
return 0;
else
return 1;
}
template <class Y> MY_INLINE
int RStarTreeNode<Y>::sort_high_z(RStarTreeNode<Y> *&n_1,
RStarTreeNode<Y> *&n_2 )
{
CubitVector n_1_high = n_1->bounding_box().maximum();
CubitVector n_2_high = n_2->bounding_box().maximum();
if ( n_1_high.z() < n_2_high.z() )
return -1;
else if ( n_1_high.z() == n_2_high.z() )
return 0;
else
return 1;
}
template <class Y> MY_INLINE
int RStarTreeNode<Y>::sort_low_x(RStarTreeNode<Y> *&n_1,
RStarTreeNode<Y> *&n_2 )
{
CubitVector n_1_low = n_1->bounding_box().minimum();
CubitVector n_2_low = n_2->bounding_box().minimum();
if ( n_1_low.x() < n_2_low.x() )
return -1;
else if ( n_1_low.x() == n_2_low.x() )
return 0;
else
return 1;
}
template <class Y> MY_INLINE
int RStarTreeNode<Y>::sort_low_y(RStarTreeNode<Y> *&n_1,
RStarTreeNode<Y> *&n_2 )
{
CubitVector n_1_low = n_1->bounding_box().minimum();
CubitVector n_2_low = n_2->bounding_box().minimum();
if ( n_1_low.y() < n_2_low.y() )
return -1;
else if ( n_1_low.y() == n_2_low.y() )
return 0;
else
return 1;
}
template <class Y> MY_INLINE
int RStarTreeNode<Y>::sort_low_z(RStarTreeNode<Y> *&n_1,
RStarTreeNode<Y> *&n_2 )
{
CubitVector n_1_low = n_1->bounding_box().minimum();
CubitVector n_2_low = n_2->bounding_box().minimum();
if ( n_1_low.z() < n_2_low.z() )
return -1;
else if ( n_1_low.z() == n_2_low.z() )
return 0;
else
return 1;
}
//------------------------------------------------------------------
// Algorithm: split_node
// This function is rather tricky since it really isn't well
// described Beckmann's paper very well. I looked at other online
// docs and descriptions and came to the current implementation.
// As I understand it the current function does the following:
// First descide which axis the nodes should be split along.
// To accomplish this the nodes that are going to be split (the
// children of l and the node e), are added to two lists. The lists
// are then sorted according to their high and low values along
// the three axis. Then for each each high and low,
// d distributions are created with possible groupings.
// Where d = (maxChildren -2*minChildren +2). These distributions are
// then used to calculate the total margin for each axis. The axis
// with the minimum margin is selected. While calculating the margins
// for each distribution, the best "distribution" for each axis is also
// selected. The best distribution will be the one that has the minimum
// overlap over the entire set of distributions, and high and low sets.
// When the axis is chosen, the correct distribution is then also stored
// or known. The function then splits l into l and ll.
//------------------------------------------------------------------
template <class Y> MY_INLINE
CubitStatus RStarTreeNode<Y>::split_node( RStarTreeNode<Y> *l,
RStarTreeNode<Y> *e,
RStarTreeNode<Y> *&ll )
{
int ii;
//create a new list containing all the nodes we want to split.
//create two lists.
DLIList <RStarTreeNode<Y>*> ordered_low, ordered_high;
for ( ii = 0; ii < maxChildren; ii++)
{
ordered_low.append(l->myChildrenNodes[ii]);
ordered_high.append(l->myChildrenNodes[ii]);
}
ordered_low.append(e);
ordered_high.append(e);
//the input list contains all of the nodes.
int d = maxChildren - 2*minChildren + 2;
//Now do the first step, choose the split axis.
//loop over each dimension.
double local_margin, min_margin = CUBIT_DBL_MAX;<--- The scope of the variable 'local_margin' can be reduced. [+]The scope of the variable 'local_margin' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level. <--- The scope of the variable 'local_margin' can be reduced. [+]The scope of the variable 'local_margin' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
DLIList<RStarTreeNode<Y>*> best_group_1, best_group_2;
for ( ii = 0; ii < 3; ii++ )
{
//Sort the lists according to the high and low dimension.
//Both lists are ordered lowest to highest however.
switch(ii)
{
case(0):
//this is the x dimension.
ordered_low.sort(sort_low_x);
ordered_high.sort(sort_high_x);
break;
case(1):
//this is the y dimension.
ordered_low.sort(sort_low_y);
ordered_high.sort(sort_high_y);
break;
case(2):
//this is the z dimension.
ordered_low.sort(sort_low_z);
ordered_high.sort(sort_high_z);
break;
}
//Now loop over the distributions and sum the margins for the
//different distributions. The axis where the sum of its margins
//is minimal is the correct axis.
int k;
local_margin = 0.0;
double min_overlap = CUBIT_DBL_MAX;
double min_volume = CUBIT_DBL_MAX;
DLIList<RStarTreeNode<Y>*> group_1_low, group_1_high, local_best_1;
DLIList<RStarTreeNode<Y>*> group_2_low, group_2_high, local_best_2;
//just do this so that the code can look familar with the paper.
int m = minChildren;
int M = maxChildren;
//Also determine with distribution is best among these in this axis.
//Store those groups in case this axis is optimum.
for ( k = 0; k < d; k++ )
{
//build the 4 groups...
int jj;
group_1_low.clean_out();
group_2_low.clean_out();
group_1_high.clean_out();
group_2_high.clean_out();
for ( jj = 0; jj < (m-1+k); jj++ )
{
group_1_low.append(ordered_low.next(jj));
group_1_high.append(ordered_high.next(jj));
}
for ( jj = (m-1+k); jj < (M+1); jj++ )
{
group_2_low.append(ordered_low.next(jj));
group_2_high.append(ordered_high.next(jj));
}
assert(group_1_low.size() + group_2_low.size() == M+1 );
//Okay we have the groups. Now calculate the metrics.
//First find the bounding boxes for the groups.
CubitBox group_1_low_box = super_box(group_1_low);
CubitBox group_2_low_box = super_box(group_2_low);
CubitBox group_1_high_box = super_box(group_1_high);
CubitBox group_2_high_box = super_box(group_2_high);
local_margin += margin(group_1_low_box);
local_margin += margin(group_2_low_box);
local_margin += margin(group_1_high_box);
local_margin += margin(group_2_high_box);
//Okay now that we have the margin, that is the portion of the
//code for choosing the correct axis. Now make sure if this axis
//is the right one, we find the right distribution.
double overlap_low, overlap_high;
//remember &= is the overlap or intersection and the volume calculates
//the volume of the overlap or intersection.
overlap_low = volume(group_1_low_box &= group_2_low_box);
overlap_high = volume(group_1_high_box &= group_2_high_box);
CubitBoolean use_low = (overlap_low < overlap_high)? CUBIT_TRUE : CUBIT_FALSE;
double temp_overlap = use_low ? overlap_low : overlap_high;
//Choose the best distribution based on the mininum distribution
if ( temp_overlap < min_overlap )
{
min_overlap = temp_overlap;
if ( use_low )
{
local_best_1 = group_1_low;
local_best_2 = group_2_low;
}
else
{
local_best_1 = group_1_high;
local_best_2 = group_2_high;
}
}
//break ties based on the smallest volumes.
else if ( temp_overlap == min_overlap )
{
//supposed to resolve this by choosing the one with the minimum area.
double tmp_vol;
if ( use_low ){
tmp_vol = volume(group_1_low_box);
tmp_vol += volume(group_2_low_box);
}
else {
tmp_vol = volume(group_1_high_box);
tmp_vol += volume(group_2_high_box);
}
if ( tmp_vol < min_volume )
{
min_volume = tmp_vol;
if ( use_low )
{
local_best_1 = group_1_low;
local_best_2 = group_2_low;
}
else
{
local_best_1 = group_1_high;
local_best_2 = group_2_high;
}
}
}
}
//After the margin has been sumed for the entire distributions,
//choose the axis with the min margin. Note I'm not storing the
//axis because for each distribution I'm also chosing the local
//best based on overlap. Store that local best as the overal all
//best. It only gets stored if the axis is optimum...
if ( local_margin < min_margin )
{
min_margin = local_margin;
best_group_1 = local_best_1;
best_group_2 = local_best_2;
}
}
//Okay now we have the groups. Clean out l, create ll.
l->flush(best_group_1.get()->bounding_box());
l->add_child(best_group_1.get_and_step(), CUBIT_FALSE);
l->set_leaf_level(e->get_leaf_level() + 1);
for ( ii = 1; ii < best_group_1.size(); ii++ )
l->add_child(best_group_1.get_and_step(), CUBIT_TRUE);
ll = new RStarTreeNode<Y>(best_group_2.get()->bounding_box(),
maxChildren, minChildren);
ll->add_child(best_group_2.get_and_step(), CUBIT_FALSE);
ll->set_leaf_level(l->get_leaf_level());
for ( ii = 1; ii < best_group_2.size(); ii++ )
ll->add_child(best_group_2.get_and_step(), CUBIT_TRUE);
return CUBIT_SUCCESS;
}
//-----------------------------------------------
//Private Function: Margin
// Calculates the margin of bounding box.
//-----------------------------------------------
template <class Y> MY_INLINE
double RStarTreeNode<Y>::margin(CubitBox &bounding_box)<--- Parameter 'bounding_box' can be declared with const<--- Parameter 'bounding_box' can be declared with const
{
double margin = 4*(bounding_box.x_range() + bounding_box.y_range()
+ bounding_box.z_range());
return margin;
}
//-----------------------------------------------
//Private Function: super_box
// Calculates the overall bounding box of the rtree
// nodes in the list.
//-----------------------------------------------
template <class Y> MY_INLINE
CubitBox RStarTreeNode<Y>::super_box(DLIList<RStarTreeNode<Y>*> &node_list)
{
int ii;
CubitBox bounding_box = node_list.get_and_step()->bounding_box();
for ( ii = 1; ii < node_list.size(); ii++ )
{
bounding_box |= node_list.get_and_step()->bounding_box();
}
return bounding_box;
}
template <class Y> MY_INLINE void RStarTreeNode<Y>::flush( CubitBox &new_box )
{
int ii;
nextChildIndex = 0;
for ( ii = 0; ii < maxChildren; ii++ )
myChildrenNodes[ii] = NULL;
delete myBoundingBox;
myBoundingBox = new CubitBox(new_box);
}
template <class Y> MY_INLINE void RStarTreeNode<Y>::add_child(RStarTreeNode<Y> *child_node,
CubitBoolean recalc_b_box)
{
assert(nextChildIndex < maxChildren && child_node != NULL );
myChildrenNodes[nextChildIndex] = child_node;
//update the bounding box. by uniting with child node...
if ( recalc_b_box )
{
CubitBox *old_box = myBoundingBox;
myBoundingBox = new CubitBox( *old_box |= child_node->bounding_box());
delete old_box;
}
nextChildIndex++;
child_node->set_parent(this);
}
template <class Y> MY_INLINE CubitBoolean RStarTreeNode<Y>::can_add()
{
if (nextChildIndex >= maxChildren )
return CUBIT_FALSE;
else
return CUBIT_TRUE;
}
template <class Y> MY_INLINE int RStarTreeNode<Y>::space_left()
{
return maxChildren - nextChildIndex;
}
template <class Y> MY_INLINE void RStarTreeNode<Y>::recalc_b_box()
{
if(myLevel == DATA_RSTARNODE )
return;
int ii;
CubitBox temp_box;
CubitBoolean is_first = CUBIT_TRUE;
for ( ii = 0; ii < nextChildIndex; ii++ )
{
if ( is_first )
{
is_first = CUBIT_FALSE;
temp_box = myChildrenNodes[ii]->bounding_box();
}
else
temp_box |= myChildrenNodes[ii]->bounding_box();
}
delete myBoundingBox;
myBoundingBox = new CubitBox(temp_box);
return;
}
//-------------------------------------------------------------
// Algorithm: remove. Remove index record e from an R-tree.
// D1) [Find node containing record]. Invoke find_leaf to locate
// the leaf node l containing e. Stop if the record was not
// found.
// D2) [Delete record.] Remove e from l.
// D3) [Propagate changes.] Invoke CondenseTree, passing L.
// D4) [Shorten tree.] If the root node has only one child
// after the tree has been adjusted, make the child the new
// root.
//-------------------------------------------------------------
template <class Y> MY_INLINE CubitBoolean RStarTreeNode<Y>::remove( Y e,
RStarTreeNode<Y> *&new_root,
CubitBoolean &delete_root)
{
//D1) Find node containting record.
RStarTreeNode<Y> *l = NULL;
CubitBox my_box = e->bounding_box();
CubitStatus stat = find_leaf(e, my_box, this, l);
if ( l == NULL || stat != CUBIT_SUCCESS )
return CUBIT_FALSE;
//Now l is the RStarTreeNode that holds the actual data (a DATA_RSTARNODE)
//not a leaf. This was done for efficiency.
RStarTreeNode<Y> *data_node = l;
l = data_node->get_parent();
//D2) [Delete record] Remove e from l.
//remove the data node from the children and delete
//the node.
l->remove_child(data_node);
delete data_node;
//D3) [Propogate Changes].
stat = condense_tree(l, this, new_root);<--- Variable 'stat' is assigned a value that is never used.<--- Variable 'stat' is assigned a value that is never used.
//D4) [Shorten the tree].
RStarTreeNode<Y> *root = this;
if ( new_root != NULL )
root = new_root;
if ( root->num_children() == 1 )
{
new_root = root->get_child(0);
new_root->set_parent((RStarTreeNode<Y>*)NULL);
delete_root = CUBIT_TRUE;
}
return CUBIT_TRUE;
}
template <class Y> MY_INLINE CubitStatus RStarTreeNode<Y>::find_leaf( Y e,
CubitBox &e_box,
RStarTreeNode<Y> *t,
RStarTreeNode<Y> *&l )
{
int ii;
CubitStatus stat;
l = NULL;
int loop_size = t->num_children();
RStarTreeNode<Y> *curr_node;
if ( t->get_leaf_level() > LEAF_RSTARNODE )
{
for ( ii = 0; ii < loop_size; ii++ )
{
curr_node = t->get_child(ii);
if ( curr_node == NULL )
{
PRINT_ERROR("Problems finding boxes in range.\n");
assert(curr_node != NULL);
return CUBIT_FAILURE;
}
if ( e_box.overlap(GEOMETRY_RESABS, curr_node->bounding_box()) )
{
//okay now search through this now.
stat = find_leaf(e, e_box,curr_node,l);<--- Variable 'stat' is assigned a value that is never used.<--- Variable 'stat' is assigned a value that is never used.
if ( l != NULL )
return CUBIT_SUCCESS;
}
}
}
else if ( t->is_leaf() )
{
//search through the children for e.
for ( ii = 0; ii < loop_size; ii++ )
{
curr_node = t->get_child(ii);
if ( curr_node == NULL )
{
PRINT_ERROR("Problems finding boxes in range.\n");
assert(curr_node != NULL);
return CUBIT_FAILURE;
}
if ( curr_node->get_data() == e )
{
l = curr_node;
return CUBIT_SUCCESS;
}
}
}
return CUBIT_SUCCESS;
}
template <class Y> MY_INLINE CubitBoolean RStarTreeNode<Y>::remove_child( RStarTreeNode<Y> *child )
{
//first find which item this child is at.
int ii;
int index_child = -1;
int loop_size = this->num_children();
for ( ii = 0; ii < loop_size; ii++ )
{
if ( myChildrenNodes[ii] == child )
index_child = ii;
}
if ( index_child == -1 )
return CUBIT_FALSE;
//Now we need to bubble the array from this point
//upward.
for ( ii = index_child; ii < loop_size-1; ii++ )
{
myChildrenNodes[ii] = myChildrenNodes[ii+1];
}
//decrement the position of the next available child.
nextChildIndex--;
//now go from nextChildIndex to the end and make sure it is
//null.
for (ii = nextChildIndex; ii < maxChildren; ii++ )
myChildrenNodes[ii] = NULL;
return CUBIT_TRUE;
}
//--------------------------------------------------------------------------
// Algorithm: condense_tree
// Given a leaf node l from which an entry has been deleted, eliminate
// the node if it has too few entries and relocate its entries. Propagate
// node elimination upaward as necessary. Adjust all covering rectangles
// on the path to the root, making them smaller if possible.
// CT1) [Initialize] Set n=l, Set q, the set of eliminated nodes, to be
// empty.
// CT2) [Find parent entry] If n is the root, go to CT6. Otherwise
// let p be the parent of n, and let en be n's entry in p.
// CT3) [Eliminate under-full node.] If n has fewer than minChildren,
// delete en from p and add n to set q.
// CT4) [Adjust covering rectangle] If n has not been eliminated, adjust
// en's bounding box to tightly contain all entries in n.
// CT5) [Move up one level in tree] Set n=p, and repeat from CT2.
// CT6) [Reinsert orphaned entries]. Reinsert all entries of nodes in set q.
// entries from eliminated leaf nodes are re-inserted in tree leaves
// as described in algorithm insert, but entries from higher-level
// nodes must be placed higher in the tree so that leaves of their
// dependent subtrees will be on the same level as leaves of the
// main tree.
//--------------------------------------------------------------------------
template <class Y> MY_INLINE CubitStatus RStarTreeNode<Y>::condense_tree(RStarTreeNode<Y> *l,
RStarTreeNode<Y> *root,
RStarTreeNode<Y> *&new_root )
{
int ii;
new_root = NULL;
//CT1)
RStarTreeNode<Y> *n = l, *p;
DLIList <RStarTreeNode<Y>*> set_q;
//CT2)
while ( n != root )
{
p = n->get_parent();
if ( n->num_children() < minChildren )
{
//CT3
//take these children and add them to set_q.
for ( ii = 0;ii < n->num_children(); ii++ )
set_q.append(n->get_child(ii));
//remove n from p.
p->remove_child(n);
//delete n.
delete n;
//now continue on.
}
else
{
//CT4
n->recalc_b_box();
}
//CT5
n = p;
}
//now reinsert all nodes in set_q.
RStarTreeNode<Y> *curr_node, *temp_root;<--- The scope of the variable 'curr_node' can be reduced. [+]The scope of the variable 'curr_node' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level. <--- The scope of the variable 'curr_node' can be reduced. [+]The scope of the variable 'curr_node' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
temp_root = root;
for (ii = set_q.size(); ii > 0; ii-- )
{
curr_node = set_q.get_and_step();
temp_root->insert(curr_node, new_root);
if ( new_root != NULL )
temp_root = new_root;
}
if ( temp_root != root )
new_root = temp_root;
return CUBIT_SUCCESS;
}
|