1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894 | //-Class: TDSplitSurface.cpp
#include "TDSplitSurface.hpp"
#include "RefFace.hpp"
#include "RefEdge.hpp"
#include "RefVertex.hpp"
#include "CoEdge.hpp"
#include "Loop.hpp"
#include "GMem.hpp"
#include "CubitMessage.hpp"
TDSplitSurface::TDSplitSurface( int vertex_type )
{
vertexType = vertex_type;
sideA = NULL;
sideB = NULL;
sideC = NULL;
sideD = NULL;
}
TDSplitSurface::TDSplitSurface( RefFace *ref_face_ptr )
{
refFacePtr = ref_face_ptr;
sideA = NULL;
sideB = NULL;
sideC = NULL;
sideD = NULL;
}
TDSplitSurface::~TDSplitSurface()
{
if( sideA )
delete sideA;
if( sideB )
delete sideB;
if( sideC )
delete sideC;
if( sideD )
delete sideD;
}
CubitStatus
TDSplitSurface::add_coedges( DLIList<CoEdge*> &co_edge_list,
int side_interval[] )
{
int i;
co_edge_list.reset();
CoEdge *co_edge_ptr;
DLIList<CoEdge*> chain;
RefVertex *start_vertex_ptr;
// SIDE A
if( side_interval[0] == 0 )
{
co_edge_ptr = co_edge_list.get();
start_vertex_ptr = start_vertex( co_edge_ptr );
CubitVector tmp(start_vertex_ptr->coordinates());
sideA = new SSSide( refFacePtr, chain, &tmp );
}
else
{
for( i=side_interval[0]; i--; )
{
co_edge_ptr = co_edge_list.get_and_step();
chain.append( co_edge_ptr );
}
sideA = new SSSide( refFacePtr, chain );
}
chain.clean_out();
// SIDE B
if( side_interval[1] == 0 )
{
co_edge_ptr = co_edge_list.get();
start_vertex_ptr = start_vertex( co_edge_ptr );
CubitVector tmp(start_vertex_ptr->coordinates());
sideB = new SSSide( refFacePtr, chain, &tmp );
}
else
{
for( i=side_interval[1]; i--; )
{
co_edge_ptr = co_edge_list.get_and_step();
chain.append( co_edge_ptr );
}
sideB = new SSSide( refFacePtr, chain );
}
chain.clean_out();
// SIDE C
if( side_interval[2] == 0 )
{
co_edge_ptr = co_edge_list.get();
start_vertex_ptr = start_vertex( co_edge_ptr );
CubitVector tmp(start_vertex_ptr->coordinates());
sideC = new SSSide( refFacePtr, chain, &tmp );
}
else
{
for( i=side_interval[2]; i--; )
{
co_edge_ptr = co_edge_list.get_and_step();
chain.append( co_edge_ptr );
}
sideC = new SSSide( refFacePtr, chain );
}
chain.clean_out();
// SIDE D
if( side_interval[3] == 0 )
{
co_edge_ptr = co_edge_list.get();
start_vertex_ptr = start_vertex( co_edge_ptr );
CubitVector tmp(start_vertex_ptr->coordinates());
sideD = new SSSide( refFacePtr, chain, &tmp );
}
else
{
for( i=side_interval[3]; i--; )
{
co_edge_ptr = co_edge_list.get_and_step();
chain.append( co_edge_ptr );
}
sideD = new SSSide( refFacePtr, chain );
}
return CUBIT_SUCCESS;
}
CubitStatus
TDSplitSurface::add_a_coedges( DLIList<CoEdge*> &a_coedges,
RefVertex *start_vertex_ptr )
{
if( start_vertex_ptr == NULL )
sideA = new SSSide( refFacePtr, a_coedges );
else
{
// Collapsed side (for triangle)
CubitVector tmp(start_vertex_ptr->coordinates());
sideA = new SSSide( refFacePtr, a_coedges, &tmp );
}
return CUBIT_SUCCESS;
}
CubitStatus
TDSplitSurface::add_b_coedges( DLIList<CoEdge*> &b_coedges,
RefVertex *start_vertex_ptr )
{
if( start_vertex_ptr == NULL )
sideB = new SSSide( refFacePtr, b_coedges );
else
{
// Collapsed side (for triangle)
CubitVector tmp(start_vertex_ptr->coordinates());
sideB = new SSSide( refFacePtr, b_coedges, &tmp );
}
return CUBIT_SUCCESS;
}
CubitStatus
TDSplitSurface::add_c_coedges( DLIList<CoEdge*> &c_coedges,
RefVertex *start_vertex_ptr )
{
if( start_vertex_ptr == NULL )
sideC = new SSSide( refFacePtr, c_coedges );
else
{
// Collapsed side (for triangle)
CubitVector tmp(start_vertex_ptr->coordinates());
sideC = new SSSide( refFacePtr, c_coedges, &tmp );
}
return CUBIT_SUCCESS;
}
CubitStatus
TDSplitSurface::add_d_coedges( DLIList<CoEdge*> &d_coedges,
RefVertex *start_vertex_ptr )
{
if( start_vertex_ptr == NULL )
sideD = new SSSide( refFacePtr, d_coedges );
else
{
// Collapsed side (for triangle)
CubitVector tmp(start_vertex_ptr->coordinates());
sideD = new SSSide( refFacePtr, d_coedges, &tmp );
}
return CUBIT_SUCCESS;
}
DLIList<CoEdge*> *
TDSplitSurface::get_a_coedges()
{
return sideA->co_edges();
}
DLIList<CoEdge*> *
TDSplitSurface::get_b_coedges()
{
return sideB->co_edges();
}
DLIList<CoEdge*> *
TDSplitSurface::get_c_coedges()
{
return sideC->co_edges();
}
DLIList<CoEdge*> *
TDSplitSurface::get_d_coedges()
{
return sideD->co_edges();
}
CubitStatus
TDSplitSurface::tessellate_sides( double tol, double fraction, double distance,
int num_segs,
DLIList<RefVertex*> &through_vertex_list )
{
// Sides B and D will use the graphics tessellation to build the
// param lists.
if( sideB->build_param_list_from_facets( tol ) == CUBIT_FAILURE )
return CUBIT_FAILURE;
if( sideD->build_param_list_from_facets( tol ) == CUBIT_FAILURE )
return CUBIT_FAILURE;
// Syncronize the lists so that we have the same number and evenly
// spaced tessellations on B and D sides
if( sideB->syncronize_lists( sideD, tol ) == CUBIT_FAILURE )
{
PRINT_ERROR( "Unable to interpolate split location.\n" );
return CUBIT_FAILURE;
}
// Sides A and C typically only need to retrieve the 50% location,
// but may have a location different than 50% or multiple locations.
// Note if num_segs>2 the fraction is ignored.
// Populate lists for side A
if( sideA->build_param_list( fraction, distance, num_segs, through_vertex_list )
== CUBIT_FAILURE )
return CUBIT_FAILURE;
// Populate lists for side C
if( distance != -1.0 )
distance = sideC->length()-distance;
if( sideC->build_param_list( 1.0-fraction, distance, num_segs,
through_vertex_list ) == CUBIT_FAILURE )
return CUBIT_FAILURE;
return CUBIT_SUCCESS;
}
RefVertex *
TDSplitSurface::start_vertex( CoEdge *co_edge_ptr )
{
RefEdge *ref_edge_ptr = co_edge_ptr->get_ref_edge_ptr();
if ( co_edge_ptr->get_sense() == CUBIT_REVERSED )
return ref_edge_ptr->end_vertex();
else
return ref_edge_ptr->start_vertex();
}
//================================================================================
// Description: A trivial class to hold two parameter values so that they
// can be stored in a DLIList. They are the min and max parameter
// space along the composite curve. (Split Surface Param)
// Author : Steve Storm
// Date : 2/3/2004
//================================================================================
SSParam::SSParam( double min, double max )
{
uMin = min;
uMax = max;
}
SSParam::~SSParam()
{
}
//================================================================================
// Description: This class (Split Surface Side) holds a chain of curves on one
// side of the surface. It is needed to handle queries using a
// composite curve concept.
// Author : Steve Storm
// Date : 2/3/2004
//================================================================================
SSSide::SSSide( RefFace *ref_face_ptr, DLIList<CoEdge*> &co_edges,
const CubitVector *collapsed_loc_ptr )
{
refFacePtr = ref_face_ptr;
isCollapsed = CUBIT_FALSE;
coEdgeChain = co_edges;
double param_low = 0.0;
paramHigh = 0.0;
int i;
CoEdge *co_edge_ptr;<--- The scope of the variable 'co_edge_ptr' can be reduced. [+]The scope of the variable 'co_edge_ptr' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
for( i=coEdgeChain.size(); i--; )
{
co_edge_ptr = coEdgeChain.get_and_step();
paramHigh += co_edge_ptr->get_ref_edge_ptr()->measure();
coEdgeParamList.append( new SSParam( param_low, paramHigh) );
param_low = paramHigh;
}
if( !coEdgeChain.size() )
{
// Need to add a single point to hold the location of this side
// ie., the side is collapsed (point of a triangle)
isCollapsed = CUBIT_TRUE;
assert( collapsed_loc_ptr != NULL );
paramHigh = 0.0;
coordList.append( new CubitVector( *collapsed_loc_ptr ) );
paramList.append( 0.0 );
}
}
SSSide::~SSSide()
{
// Free memory
while( coEdgeParamList.size() )
delete coEdgeParamList.pop();
while( coordList.size() )
delete coordList.pop();
}
CubitStatus
SSSide::position_from_u( double u_value, CubitVector &output_position)
{
if( isCollapsed )
{
output_position = *coordList.get();
return CUBIT_SUCCESS;
}
// Determine which CoEdge the given u is on
int i;
coEdgeChain.reset();
coEdgeParamList.reset();
CoEdge *co_edge_ptr = NULL;
SSParam *param_ptr = NULL;
double coedge_param_max;<--- The scope of the variable 'coedge_param_max' can be reduced. [+]The scope of the variable 'coedge_param_max' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
for( i=coEdgeChain.size(); i--; )
{
co_edge_ptr = coEdgeChain.get_and_step();
param_ptr = coEdgeParamList.get_and_step();
coedge_param_max = param_ptr->umax();
if( u_value <= coedge_param_max )
break;
}
// We have found the correct coedge. Get it's RefEdge.
// Subtract it's start parameter.
// We now have the distance along the curve to traverse.
RefEdge *ref_edge_ptr = co_edge_ptr->get_ref_edge_ptr();
double i_dist; // individual distance
i_dist = u_value - param_ptr->umin();
double ui_min, ui_max;
ref_edge_ptr->get_param_range( ui_min, ui_max );
if( co_edge_ptr->get_sense() == CUBIT_REVERSED )
i_dist = ref_edge_ptr->measure() - i_dist;
double ui = ref_edge_ptr->u_from_arc_length( ui_min, i_dist );
return ref_edge_ptr->position_from_u( ui, output_position );
}
CubitStatus
SSSide::u_from_position( const CubitVector &input_position, double &u )
{
if( isCollapsed )
{
u = 0.0;
return CUBIT_SUCCESS;
}
// First check each curve to determine which one the input position is on
int i;
coEdgeChain.reset();
coEdgeParamList.reset();
CoEdge *co_edge_ptr = NULL;
SSParam *param_ptr = NULL;
int found = 0;
CubitPointContainment pnt_containment;
for( i=coEdgeChain.size(); i--; )
{
co_edge_ptr = coEdgeChain.get_and_step();
param_ptr = coEdgeParamList.get_and_step();
pnt_containment = co_edge_ptr->get_ref_edge_ptr()->point_containment( input_position );
if( pnt_containment == CUBIT_PNT_ON )
{
found = 1;
break;
}
}
if( !found )
{
PRINT_ERROR( "Position %f, %f, %f not found on any curve.\n",
input_position.x(), input_position.y(), input_position.z() );
return CUBIT_FAILURE;
}
// Now we know which CoEdge it is on. Get the curve. Get the parameter of
// the individual curve.
RefEdge *ref_edge_ptr = co_edge_ptr->get_ref_edge_ptr();
double ui = ref_edge_ptr->u_from_position( input_position );
// Get the parameter of the composite curve
// Add the distance along the curve to its start param (umin)
double sum = param_ptr->umin();
double ui_min, ui_max;
ref_edge_ptr->get_param_range( ui_min, ui_max );
CubitSense sense = co_edge_ptr->get_sense();
double root_param = (sense == CUBIT_FORWARD) ? ui_min : ui_max;
double lfu = ( root_param < ui ) ?
ref_edge_ptr->length_from_u( root_param, ui ) :
ref_edge_ptr->length_from_u( ui, root_param );
u = sum + fabs( lfu );
return CUBIT_SUCCESS;
}
// Same as above function but curve is known
CubitStatus
SSSide::u_from_position( const CubitVector &input_position,
CoEdge *co_edge_ptr, SSParam *param,
double &u )
{
if( isCollapsed )
{
u = 0.0;
return CUBIT_SUCCESS;
}
RefEdge *ref_edge_ptr = co_edge_ptr->get_ref_edge_ptr();
double ui = ref_edge_ptr->u_from_position( input_position );
// Get the parameter of the composite curve
double sum = param->umin();
double ui_min, ui_max;
ref_edge_ptr->get_param_range( ui_min, ui_max );
CubitSense sense = co_edge_ptr->get_sense();
double root_param = (sense == CUBIT_FORWARD) ? ui_min : ui_max;
double lfu = ( root_param < ui ) ?
ref_edge_ptr->length_from_u( root_param, ui ) :
ref_edge_ptr->length_from_u( ui, root_param );
u = sum + fabs( lfu );
return CUBIT_SUCCESS;
}
CubitBoolean
SSSide::is_vertex_on( RefVertex *ref_vertex_ptr )
{
if( isCollapsed )
{
// Compare coordinates
CubitVector *side_coord = coordList.get();
if( side_coord->about_equal( ref_vertex_ptr->coordinates() ) )
return CUBIT_TRUE;
else
return CUBIT_FALSE;
}
// Check if it is on each coedge
CubitVector ref_coords = ref_vertex_ptr->coordinates();
CubitPointContainment pnt_containment;
int i;
CoEdge *co_edge_ptr;
coEdgeChain.reset();
for( i=coEdgeChain.size(); i--; )
{
co_edge_ptr = coEdgeChain.get_and_step();
pnt_containment = co_edge_ptr->get_ref_edge_ptr()->
point_containment( ref_coords );
if( pnt_containment == CUBIT_PNT_ON )
return CUBIT_TRUE;
}
return CUBIT_FALSE;
}
CubitStatus
SSSide::build_param_list_from_facets( double tolerance )
{
if( isCollapsed )
return CUBIT_SUCCESS;
int i, j, num_pnts;<--- The scope of the variable 'num_pnts' can be reduced. [+]The scope of the variable 'num_pnts' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
CoEdge *co_edge_ptr;
SSParam *param_ptr;
double param;
CubitVector vec, *vec_ptr;
coEdgeChain.reset();
coEdgeParamList.reset();
co_edge_ptr = coEdgeChain.get();
param_ptr = coEdgeParamList.get();
// Get the first coordinate
if( co_edge_ptr->get_sense() == CUBIT_FORWARD )
vec = co_edge_ptr->get_ref_edge_ptr()->start_coordinates();
else
vec = co_edge_ptr->get_ref_edge_ptr()->end_coordinates();
// Add to list
if( u_from_position( vec, co_edge_ptr, param_ptr, param ) == CUBIT_FAILURE )
return CUBIT_FAILURE;
paramList.append( param );
for( i=coEdgeChain.size(); i--; )
{
DLIList<CubitVector*> temp_vec_list;
co_edge_ptr = coEdgeChain.get_and_step();
param_ptr = coEdgeParamList.get_and_step();
GMem *g_mem = new GMem;
co_edge_ptr->get_ref_edge_ptr()->get_graphics( *g_mem, tolerance );
num_pnts = g_mem->pointListCount;
GPoint* point_list = g_mem->point_list();
for( j=0; j<num_pnts; j++ )
{
vec_ptr = new CubitVector(
point_list[j].x, point_list[j].y, point_list[j].z );
temp_vec_list.append( vec_ptr );
}
delete g_mem;
if( co_edge_ptr->get_sense() == CUBIT_REVERSED )
temp_vec_list.reverse();
// Calculate corresponding parameter values
temp_vec_list.reset();
// Skip the first point since already in the list
vec_ptr = temp_vec_list.get_and_step();
for( j=1; j<num_pnts; j++ )
{
vec_ptr = temp_vec_list.get_and_step();
if( u_from_position( *vec_ptr, co_edge_ptr, param_ptr, param )
== CUBIT_FAILURE )
return CUBIT_FAILURE;
paramList.append( param );
}
while( temp_vec_list.size() )
delete temp_vec_list.pop();
}
// Extremes of paramList should be 0.0 and paramHigh - force them to
// these values exactly. This avoids some slight roundoff errors that
// can cause an extra split point close to the start or end of a surface
// that won't even be cleaned up in syncronize_lists. This causes
// unexpected results at the start or end of the split.
paramList.reset();
double first_param = paramList.get_and_back();
double last_param = paramList.get();
paramList.reset();
if( first_param > last_param )
{
paramList.change_to( paramHigh );
paramList.back();
paramList.change_to( 0.0 );
}
else
{
paramList.change_to( 0.0 );
paramList.back();
paramList.change_to( paramHigh );
}
return CUBIT_SUCCESS;
}
CubitStatus
SSSide::build_param_list( double fraction, double distance, int num_segs,
DLIList<RefVertex*> &through_vertex_list )
{
int i;
double frac, param;
// Add paramList.size to account for potential collapsed edge that already
// has an item in the list
for( i=1+paramList.size(); i<num_segs; i++ )
{
// Example locations (we need to fill middle only): 0 1 2 3 4
if( num_segs > 2 )
frac = (double)i/num_segs;
else if( through_vertex_list.size() )
{
int j;
int found = 0;
through_vertex_list.reset();
for( j=through_vertex_list.size(); j--; )
{
RefVertex *ref_vertex_ptr = through_vertex_list.get_and_step();
if( is_vertex_on( ref_vertex_ptr ) )
{
coordList.append( new CubitVector( ref_vertex_ptr->coordinates() ) );
if( u_from_position( ref_vertex_ptr->coordinates(), param ) == CUBIT_FAILURE )
return CUBIT_FAILURE;
paramList.append( param );
found = 1;
// Keep track of vertices that were used - we can give a warning when
// done if some weren't used.
TDSplitSurface *tdss = (TDSplitSurface *)ref_vertex_ptr->
get_TD(&TDSplitSurface::is_split_surface);
if( !tdss )
ref_vertex_ptr->add_TD( new TDSplitSurface( 0 ) );
break;
}
}
if( found )
continue;
else
frac = fraction;
}
else
frac = fraction;
if( distance != -1.0 )
{
if( distance > paramHigh )
{
PRINT_ERROR( "Surface %d is not wide enough to support split distance of %f\n",
refFacePtr->id(), distance );
return CUBIT_FAILURE;
}
param = distance;
}
else
param = frac*paramHigh;
paramList.append( param );
CubitVector vec;
if( position_from_u( param, vec ) == CUBIT_FAILURE )
return CUBIT_FAILURE;
coordList.append( new CubitVector( vec ) );
}
return CUBIT_SUCCESS;
}
CubitStatus
SSSide::syncronize_lists( SSSide *other_side, double param_tol )
{
// This will syncronize paramList in "this" and other_side, also
// update coordList correspondingly in both.
// Note: sideB and sideD (which we are operating on here) will contain the
// corner coords (sideA and sideC just contain the interior coords)
// This should never happen but check anyway
if( paramHigh == 0.0 && other_side->paramHigh == 0.0 )
return CUBIT_FAILURE;
paramList.reset();
other_side->paramList.reset();
DLIList<double> other_param_list = other_side->paramList;
int i;
double param;
// Reverse other_param_list (which is on side D) so that it is going in the
// same direction as this paramList (side B)
other_param_list.reset();
for( i=other_param_list.size(); i--; )
{
param = other_param_list.get();
other_param_list.change_to( other_side->paramHigh - param );
other_param_list.step();
}
other_param_list.reverse(); // May make sort faster
// Parameter lists must be "scaled" to match
double this_factor = 1.0;
double other_factor = 1.0;
double scale_factor = 1.0;
// Only scale if neither side is a zero length side and sides are not equal
// in length
if( !isCollapsed && !other_side->is_collapsed() &&
other_side->paramHigh != paramHigh )
{
// Use longer side as "baseline" - it may have more "features"
// so we will be sure to capture those
if( paramHigh > other_side->paramHigh )
{
other_param_list.reset();
other_factor = paramHigh/other_side->paramHigh;
scale_factor = other_factor;
for( i=other_param_list.size(); i--; )
{
param = other_param_list.get();
other_param_list.change_to( param*other_factor );
other_param_list.step();
}
}
else
{
paramList.reset();
this_factor = other_side->paramHigh/paramHigh;
scale_factor = this_factor;
for( i=paramList.size(); i--; )
{
param = paramList.get();
paramList.change_to( param*this_factor );
paramList.step();
}
}
}
DLIList<double> combined_param_list = paramList;
combined_param_list.merge_unique( other_param_list );
// This should never happen, but check anyway
if( combined_param_list.size() < 2 )
return CUBIT_FAILURE;
// Sort the list from low to high
combined_param_list.sort();
// Remove near values
param_tol = param_tol*scale_factor; // Scale tolerance to length
double prev_param;<--- Shadowed declaration
combined_param_list.reset();
prev_param = combined_param_list.get_and_step();
for( i=combined_param_list.size()-2; i--; )
{
param = combined_param_list.get();
if( fabs(param - prev_param) < param_tol )
{
combined_param_list.change_to( -1.0 );
}
else
{
prev_param = param;
}
combined_param_list.step();
}
combined_param_list.remove_all_with_value(-1.0);
// We need to check if there are near coincident points at the end of the list
combined_param_list.last();
prev_param = combined_param_list.get_and_back();
param = combined_param_list.get();
// Use 10.0 * GEOMETRY_RESABS because Granite cannot handle points
// any closer together when making a spline
if( fabs( prev_param-param ) < 10.0*GEOMETRY_RESABS*scale_factor )
{
// Remove the second to last value
combined_param_list.last();
combined_param_list.back();
combined_param_list.remove();
if( combined_param_list.size() < 2 )
return CUBIT_FAILURE;
}
// Also check if there are near coincident points anywhere along the
// other (shorter) side (very doubtful, but check anyway)
if( scale_factor > 1.0 )
{
param_tol = 10.0*GEOMETRY_RESABS*scale_factor;
double prev_param;<--- Shadow variable
combined_param_list.reset();
prev_param = combined_param_list.get_and_step();
for( i=combined_param_list.size()-2; i--; )
{
param = combined_param_list.get();
if( fabs(param - prev_param) < param_tol )
{
combined_param_list.change_to( -1.0 );
}
else
{
prev_param = param;
}
combined_param_list.step();
}
combined_param_list.remove_all_with_value(-1.0);
}
// Update this paramList
if( isCollapsed )
{
// This is a collapsed triangle side, so just stuff it with the proper
// number of params and coordinates
paramList.clean_out();
for( i=combined_param_list.size(); i--; )
paramList.append( 0.0 );
// It will already have one coordinate - copy it to the others
CubitVector *vec;
vec = coordList.get();
for( i=combined_param_list.size()-1; i--; )
coordList.append( new CubitVector( *vec ) );
}
else
{
paramList.clean_out();
paramList = combined_param_list;
// Generate this coordList.
CubitVector vec;
paramList.reset();
for( i=paramList.size(); i--; )
{
param = paramList.get();
param = param/this_factor; // Normalize it
paramList.change_to( param ); // Set proper value in paramList
position_from_u( param, vec );
coordList.append( new CubitVector( vec ) );
paramList.step();
}
}
// Do the same for the other side
if( other_side->is_collapsed() )
{
// This is a collapsed triangle side, so just stuff it with the proper
// number of params and coordinates
other_side->paramList.clean_out();
for( i=combined_param_list.size(); i--; )
other_side->paramList.append( 0.0 );
// It will already have one coordinate - copy it to the others
CubitVector *vec;
vec = other_side->coordList.get();
for( i=combined_param_list.size()-1; i--; )
other_side->coordList.append( new CubitVector( *vec ) );
}
else
{
combined_param_list.reset();
for( i=combined_param_list.size(); i--; )
{
param = combined_param_list.get();
combined_param_list.change_to( other_side->paramHigh-param/other_factor );
combined_param_list.step();
}
combined_param_list.reverse();
CubitVector vec;
other_side->paramList.clean_out();
other_side->paramList = combined_param_list;
combined_param_list.reset();
for( i=combined_param_list.size(); i--; )
{
param = combined_param_list.get_and_step();
other_side->position_from_u( param, vec );
other_side->coordList.append( new CubitVector( vec ) );
}
}
return CUBIT_SUCCESS;
}
//================================================================================
// Description: This class holds data on vertices for split across extend
// Author : Steve Storm
// Date : 10/7/2007
//================================================================================
TDSplitSurfaceExtend::TDSplitSurfaceExtend()
{
successFlg = CUBIT_FALSE;
}
TDSplitSurfaceExtend::~TDSplitSurfaceExtend()
{
}
|