1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337 | // ia_main.cpp
// test IntervalMatching interface IAInterface for MeshKit
#include "TestUtil.hpp"
#include "meshkit/MKCore.hpp"
#include "meshkit/IAInterface.hpp"
#include "meshkit/IAVariable.hpp"
#include "meshkit/TFIMapping.hpp"
#include <stdio.h>
#include <iostream>
MeshKit::MKCore *mk;
MeshKit::IAInterface *new_ia_interface()
{
return
(MeshKit::IAInterface*) mk->construct_meshop("IntervalAssignment");
}
void delete_ia_interface(MeshKit::IAInterface *)
{
//nada, mk takes care of it
;
}
bool check_solution_correctness( MeshKit::IAInterface *ia_interface,
std::vector< std::pair<int,int> > &correct_solution)
{
const bool verbose_output = true;
const bool debug = false;
bool all_correct = true;
MeshKit::IAInterface::VariableVec::const_iterator b = ia_interface->variables_begin();
MeshKit::IAInterface::VariableVec::const_iterator e = ia_interface->variables_end();
MeshKit::IAInterface::VariableVec::const_iterator i = b;
unsigned int c = 0;
if (debug)
std::cout << "Checking Solution Correctness" << std::endl;
for ( ; i != e; ++i, ++c )
{
const MeshKit::IAVariable *v = *i;
assert(v);
const int x = v->get_solution();
assert(c < correct_solution.size() );
const int lo = correct_solution[c].first;
const int hi = correct_solution[c].second;
if (debug)
std::cout << "Checking variable " << c << " solution " << x << " in "
<< "[" << lo << "," << hi << "]?" << std::endl;
if (x < lo)
{
if (verbose_output)
std::cout << "ERROR: Variable " << c << " solution " << x << " BELOW "
<< "[" << lo << "," << hi << "]" << std::endl;
all_correct = false;
}
if (x > hi)
{
if (verbose_output)
std::cout << "ERROR: Variable " << c << " solution " << x << " ABOVE "
<< "[" << lo << "," << hi << "]" << std::endl;
all_correct = false;
}
}
if (debug)
std::cout << "done checking solution correctness." << std::endl;
return all_correct;
}
void set_decoupled_pairs(MeshKit::IAInterface *ia_interface,
int num_pairs, double goal1, double goal2,
std::vector< std::pair<int,int> > &correct_solution)
{
// trivial 2-sided mapping problem
// we can make multiple pairs, each pair is independent,
// and pair i (in 0..num_pairs-1) has sides with one curve each with goals
// i+goal1 and i+goal2,
//
// test scalability, relaxed nlp: 100,000 constraints in 1 second. milp: 40 variables in 1 second, grows exponentially!
for (int i = 0; i<num_pairs; ++i)
{
// goals x_{2i} = 2, x_{2i+1} = 2
// x_{2i}, goal: i + goal1
const double g1 = i + goal1;
const double g2 = i + goal2;
MeshKit::IAVariable *v1 = ia_interface->create_variable( NULL, MeshKit::SOFT, g1);
MeshKit::IAVariable *v2 = ia_interface->create_variable( NULL, MeshKit::SOFT, g2);
const double compromise = sqrt( g1 * g2 );
double lo = floor(compromise);
if ( ( compromise - lo ) < 0.1 )
--lo;
if ( lo < 1. )
lo = 1.;
double hi = ceil(compromise);
if ( (hi - compromise) < 0.1 )
++hi;
correct_solution.push_back( std::make_pair( lo, hi ) );
correct_solution.push_back( std::make_pair( lo, hi ) );
// constrain x_{2i} - x_{2i+1} = 0
MeshKit::IAInterface::IAVariableVec side1, side2;
side1.push_back(v1);
side2.push_back(v2);
ia_interface->constrain_sum_equal(side1, side2);
}
}
void set_mapping_chain( MeshKit::IAInterface *ia_interface, const int num_sides,
const bool grow_goal_by_i,
const int goal_m1, const int goal_m2,
const int num_curve_min, const int num_curve_max )
{
// test problem 3, sides with more than one variable, with random goals
printf("constructing coupled test problem - mapping chain\n");
srand(10234);
MeshKit::IAInterface::IAVariableVec side1, side2;
int num_vars = 0;
for (int i = 0; i<num_sides; ++i)
{
// move side2 to side1
side2.swap( side1 );
// create new side2
side2.clear();
assert( num_curve_min > 0 );
int num_curves = num_curve_min;
if ( num_curve_max > num_curve_min )
num_curves += (rand() % (1 + num_curve_max - num_curve_min) );
for (int j = 0; j < num_curves; j++)
{
int goal_intervals = (1 + (rand() % goal_m1)) * (1 + (rand() % goal_m2));
if (grow_goal_by_i)
goal_intervals += num_vars;
MeshKit::IAVariable *v = ia_interface->create_variable( NULL, MeshKit::SOFT, goal_intervals);
side2.push_back(v);
}
// if we have two non-trivial opposite sides, then constrain them to be equal
if (side1.size() && side2.size())
{
ia_interface->constrain_sum_equal(side1, side2);
}
// add a sum-even constraint
if (i==0)
{
// printf("sum-even side: %d", i);
assert( side2.size() );
ia_interface->constrain_sum_even(side2);
}
// todo: try some hard-sets and non-trivial rhs
}
}
// sum-even constraints test problems
/*
// test problem 4, a simple sum-even constraint
int num_surfaces = 12; // 12
int num_curves_per_surface = 4; // 4
int num_shared_curves = 1; // 2
int num_curves = 0;
for (int i = 0; i < num_surfaces; ++i)
{
// gather the indices for the sum-even constraint
int start_curve = num_curves - num_shared_curves;
if (start_curve < 0)
start_curve = 0;
std::vector<int>curve_indices;
if (debugging)
printf("%d sum-even:",i);
for (int j = 0; j < num_curves_per_surface; ++j)
{
curve_indices.push_back(start_curve+j);
if (debugging)
printf(" %d",start_curve+j);
}
num_curves = start_curve + num_curves_per_surface;
const int rhs = 0; // test 0, -1
constrain_sum_even(curve_indices,rhs);
if (debugging)
printf(" =%d\n",rhs);
}
// assign random goals to the curves
for (int i = (int) I.size(); i < num_curves; ++i )
{
double goal = 1 + ((double) (rand() % 59)) / 10.; // 1 to 6.9
// force an odd sum for testing purposes
//if (i==0)
// goal += 1.;
I.push_back(goal);
}
*/
void test_one_pair()
{
MeshKit::IAInterface *ia_interface = new_ia_interface();
ia_interface->destroy_data();
std::vector< std::pair<int,int> > correct_solution;
set_decoupled_pairs(ia_interface, 1, 1, 3, correct_solution);
// set_decoupled_pairs(ia_interface, 1, 3.2, 12.1, correct_solution);
ia_interface->execute_this();
bool solution_correct = check_solution_correctness( ia_interface, correct_solution );
CHECK( solution_correct );
}
void test_many_pairs()
{
MeshKit::IAInterface *ia_interface = new_ia_interface();
ia_interface->destroy_data();
std::vector< std::pair<int,int> > correct_solution;
set_decoupled_pairs(ia_interface, 8, 3.2, 12.1, correct_solution);
set_decoupled_pairs(ia_interface, 1, 3.2, 12.1, correct_solution);
set_decoupled_pairs(ia_interface, 8, 7.7, 4.2, correct_solution);
set_decoupled_pairs(ia_interface, 40, 1.1, 5.2, correct_solution);
set_decoupled_pairs(ia_interface, 40, 1.6, 4.5, correct_solution);
set_decoupled_pairs(ia_interface, 4, 1.5, 1.5, correct_solution);
set_decoupled_pairs(ia_interface, 4, 1, 1, correct_solution);
ia_interface->execute_this();
bool solution_correct = check_solution_correctness( ia_interface, correct_solution );
CHECK( solution_correct );
delete_ia_interface( ia_interface );
}
void test_long_chain()
{
MeshKit::IAInterface *ia_interface = new_ia_interface();
ia_interface->destroy_data();
// test scalability: 20000 gives 20,000 constraints, 100,000 variables in 1 second relaxed solution
set_mapping_chain(ia_interface, 16000, false, 3, 15, 2, 11);
// goal distribution is gaussian in [1, 32]
ia_interface->execute_this();
// bool solution_defined = check_solution( ia_interface );
delete_ia_interface( ia_interface );
}
void test_growing_chain()
{
// test problem 2
// printf("constructing growing chain, coupled test problem\n");
MeshKit::IAInterface *ia_interface = new_ia_interface();
ia_interface->destroy_data();
// goals are 1, 2, 3, 4, ... 16
// one curve per side
set_mapping_chain(ia_interface, 16, true, 1, 1, 1, 1);
ia_interface->execute_this();
// bool solution_defined = check_solution( ia_interface );
delete_ia_interface( ia_interface );
}
void mapping_test() <--- The function 'mapping_test' is never used.
{
MeshKit::IAInterface *ia_interface = new_ia_interface();
ia_interface->destroy_data();
std::string file_name = TestDir + "/../../../data/quadface.stp";
//std::string file_name = TestDir + "/../../../data/brick.stp";
printf("opening %s\n", file_name.c_str());
mk->load_geometry_mesh(file_name.c_str(), NULL);
//check the number of geometrical edges
MeshKit::MEntVector surfs, loops;
mk->get_entities_by_dimension(2, surfs);
MeshKit::ModelEnt *this_surf = (*surfs.rbegin());
// request a specific size
mk->sizing_function(0.1, true);
moab::Range curves;
this_surf->boundary(1, curves); // Moab? Find the right function call
CHECK_EQUAL(4, (int)curves.size());
// assume curves are ordered 0 to 3 contiguously around the surface
// or perhaps 0, 1 are opposite, and 2, 3 are opposite?
// for (MeshKit::MEntVector::iterator vit = curves.begin(); ...
MeshKit::ModelEnt* me_curves[4] = {0,0,0,0};
// convert moab entity handles to ModelEnt* and place in me_curves... ask Tim how
MeshKit::MEntVector side1, side2;
side1.push_back(me_curves[0]); side2.push_back(me_curves[2]);
ia_interface->constrain_sum_equal(ia_interface->make_constraint_group(side1),
ia_interface->make_constraint_group(side2));
side1.clear(); side2.clear();
side1.push_back(me_curves[1]); side2.push_back(me_curves[3]);
ia_interface->constrain_sum_equal(ia_interface->make_constraint_group(side1),
ia_interface->make_constraint_group(side2));
// if there are loops, and the loops have strictly less than 4 curves, then
// ia_interface->constrain_sum_even( ia_interface->make_constraint_group(curves in loop) );
//now, do the TFIMapping
// MeshKit::TFIMapping *tm = // tm unused
(MeshKit::TFIMapping*) mk->construct_meshop("TFIMapping", surfs);
mk->setup_and_execute();
delete_ia_interface( ia_interface );
}
int main(int argv, char* argc[])
{
// currently unable to create more than one mk called IntervalAssignment
mk = new MeshKit::MKCore();
int one_pair = RUN_TEST(test_one_pair);
// run same test twice to check data clearing integrity
int one_pair2 = RUN_TEST(test_one_pair);
int many_pairs = RUN_TEST(test_many_pairs);
int growing_chain = RUN_TEST(test_growing_chain);
int long_chain = RUN_TEST(test_long_chain);
// int expt = RUN_TEST(test_exception);
// int succ = RUN_TEST(test_success);
int map_res = 0; // RUN_TEST(mapping_test);
delete mk;
int success = one_pair + one_pair2 + many_pairs + growing_chain + long_chain + map_res; // + !abrt + !expt + succ;
return success;
}
|