1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588 | // IAIntWaveNlp.cpp
// Interval Assignment for Meshkit
//
#include "meshkit/IAIntWaveNlp.hpp"
#include <math.h>
#include <limits>
#include "meshkit/IAData.hpp"
#include "meshkit/IPData.hpp"
#include "meshkit/IASolution.hpp"
/* structure
constraints:
cosine wave for each sum-even constraint, forcing integrality
cosine wave for each primal variable, forcing integrality
*/
namespace MeshKit {
// constructor
IAIntWaveNlp::IAIntWaveNlp(const IAData *data_ptr, const IPData *ip_data_ptr, IASolution *solution_ptr, bool set_silent):
data(data_ptr), ipData(ip_data_ptr), solution(solution_ptr), baseNlp(data_ptr, solution_ptr),
base_n((int)data_ptr->num_variables()),
base_m((int)(data_ptr->constraints.size() + data_ptr->sumEvenConstraints.size())),
problem_n((int)data_ptr->I.size()),
problem_m((int)(data_ptr->constraints.size() + 2*data_ptr->sumEvenConstraints.size() + data_ptr->num_variables())),
wave_even_constraint_start((int)(data_ptr->constraints.size() + data_ptr->sumEvenConstraints.size())),
wave_int_constraint_start((int)(data_ptr->constraints.size() + 2*data_ptr->sumEvenConstraints.size())),
silent(set_silent), debugging(true), verbose(true) // true
{
printf("\nIAIntWaveNLP Problem size:\n");
printf(" number of variables: %d\n", problem_n);
printf(" number of base (equal, even>4) constraints: %d\n", base_m);
printf(" number of wave-even constraints: %lu\n", data_ptr->sumEvenConstraints.size());<--- %lu in format string (no. 1) requires 'unsigned long' but the argument type is 'size_t {aka unsigned long}'.
printf(" number of wave-int constraints: %d\n", data_ptr->num_variables());
printf(" total constraints: %d\n\n", problem_m);
}
IAIntWaveNlp::~IAIntWaveNlp() {data = NULL; ipData = NULL;}
// returns the size of the problem
bool IAIntWaveNlp::get_nlp_info(Index& n, Index& m, Index& nnz_jac_g,
Index& nnz_h_lag, IndexStyleEnum& index_style)
{
bool base_ok = baseNlp.get_nlp_info(n, m, nnz_jac_g, nnz_h_lag, index_style);
// n = number of variables = same as in base problem
// m = number of constraints = equality constraints(side_1=side_2) + even_constraints(sum>4) set by base, plus
// wave even constraints
// wave integrality constraints
m += (Index) data->sumEvenConstraints.size() + (Index) data->num_variables();
assert( m == problem_m );
if (debugging)
{
printf("IAIntWaveNlp::get_nlp_info\n");
printf("base m=%d, wave m=%d\n", base_m, m);
}
// nnz_jac_g = number of non-zero entries in the jacobian of the constraints
// equality constraints counted in the base program
// constraints for sum-even
// wave even constraints
const Index base_nnz_jac_g = nnz_jac_g;
int num_even_entries = 0;
for (std::vector<IAData::sumEvenConstraintRow>::const_iterator i=data->sumEvenConstraints.begin(); i != data->sumEvenConstraints.end(); ++i)
{
num_even_entries += i->M.size();
}
nnz_jac_g += num_even_entries;
// wave x-integer constraints
nnz_jac_g += data->num_variables();
if (debugging)
{
printf("nnz_jac_g = %d: base = %d, wave even = %d, wave int = %d\n",
nnz_jac_g, base_nnz_jac_g, num_even_entries, data->num_variables());
}
// hessian elements, second derivatives of objective and constraints
// objectives are double counted, so we do = here rather than +=
build_hessian();
nnz_h_lag = (Index) hessian_vector.size();
if (debugging)
{
printf("IAIntWaveNlp::get_nlp_info");
printf(" n=%d, m=%d, nnz_jac_g=%d, num_even_entrites=%d, nnz_h_lag=%d\n", n, m, nnz_jac_g, num_even_entries, nnz_h_lag);
}
return true && base_ok;
// need to change this if there are more variables, such as delta-minuses
}
// returns the variable bounds
bool IAIntWaveNlp::get_bounds_info(Index n, Number* x_l, Number* x_u,
Index m, Number* g_l, Number* g_u)
{
const bool base_ok = baseNlp.get_bounds_info(n, x_l, x_u, base_m, g_l, g_u);
for (unsigned int i = 0; i < data->sumEvenConstraints.size(); ++i)
{
// cos( pi * sum_evens) == 1
// equality makes ipopt think it is overdetermined, so use inequality :)
const int k = i + wave_even_constraint_start;
g_l[k] = 1.; // 1.
g_u[k] = MESHKIT_IA_upperUnbound; // 1.
}
for (int i = 0; i < data->num_variables(); ++i)
{
// cos( 2 pi x) == 1
const int k = i+ wave_int_constraint_start;
g_l[k] = 1.; // 1.
g_u[k] = MESHKIT_IA_upperUnbound; // 1.
}
return true && base_ok;
}
// returns the initial point for the problem
bool IAIntWaveNlp::get_starting_point(Index n, bool init_x, Number* x_init,
bool init_z, Number* z_L, Number* z_U,
Index m, bool init_lambda,
Number* lambda)
{
// Minimal info is starting values for x, x_init
// Improvement: we can provide starting values for the dual variables if we wish
assert(init_x == true);
assert(init_z == false);
assert(init_lambda == false);
// initialize x to the relaxed solution
for (Index i=0; i<n; ++i)
{
x_init[i] = ipData->relaxedSolution[i];
}
return true;
}
// returns the value of the objective function
bool IAIntWaveNlp::eval_f(Index n, const Number* x, bool new_x, Number& obj_value)
{
baseNlp.eval_f(base_n,x,new_x,obj_value);
return true;
}
// return the gradient of the objective function grad_{x} f(x)
bool IAIntWaveNlp::eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f)
{
return baseNlp.eval_grad_f(n, x, new_x, grad_f);
}
// return the value of the constraints: g(x)
bool IAIntWaveNlp::eval_g(Index n, const Number* x, bool new_x, Index m, Number* g)
{
if (debugging)
printf("IAIntWaveNlp::eval_g\n");
bool base_ok = baseNlp.eval_g(base_n, x, new_x, base_m, g);
// cos( pi * sum_evens) == 1
for (unsigned int i = 0; i < data->sumEvenConstraints.size(); ++i)
{
const int k = i + wave_even_constraint_start;
double s = baseNlp.eval_even_sum(i,x);
const double gk = eval_g_int_s(s); // e.g. cos( PI * s );
g[k] = gk;
if (debugging)
{
printf("IAIntWaveNlp::eval_g wave even constraint %d(%d), sum = %f, g = %f\n",<--- %d in format string (no. 1) requires 'int' but the argument type is 'unsigned int'.
i, k, s, gk );
}
}
// cos( 2 pi x) == 1
for (int i = 0; i < data->num_variables(); ++i)
{
const int k = i + wave_int_constraint_start;
const double gk = eval_g_int_x(x[i]); // e.g. cos( 2. * PI * x[i] );
g[k] = gk;
if (debugging)
{
printf("IAIntWaveNlp::eval_g wave int constraint %d(%d), x_%d = %f, g = %f\n",
i, k, i, x[i], gk );
}
}
if (debugging)
printf("IAIntWaveNlp::eval_g done.\n");
return true && base_ok;
}
// return the structure or values of the jacobian
bool IAIntWaveNlp::eval_jac_g(Index n, const Number* x, bool new_x,
Index m, Index nele_jac, Index* iRow, Index *jCol,
Number* values)
{
if (debugging)
{
printf("IAIntWaveNlp::eval_jac_g");
if (values)
printf(" values\n");
else
printf(" structure\n");
}
int base_nele_jac = baseNlp.get_neleJac(); // might be 0 if not computed yet, values == NULL
bool base_ok = baseNlp.eval_jac_g(base_n, x, new_x, base_m, base_nele_jac, iRow, jCol, values);
base_nele_jac = baseNlp.get_neleJac(); // set to true value
int k = base_nele_jac;
printf("base_nele_jac = %d, nele_jac = %d\n", base_nele_jac, nele_jac); // should be +1 for each equal and even constraint entry
if (values == NULL)
{
// return the structure of the jacobian
// g = cos( pi * sum_evens) == 1
// g' = -pi * sin ( pi * sum_evens ), for each of the variables contributing to the sum
if (debugging)
{
printf("base entries: ");
for (int bi = 0; bi < k; ++bi)
{
printf(" %d (%d,%d)", bi, iRow[bi], jCol[bi]);
}
printf("\nwave even non-zero entries: ");
}
for (unsigned int i = 0; i< data->sumEvenConstraints.size(); ++i)
{
for (unsigned int j = 0; j < data->sumEvenConstraints[i].M.size(); ++j)
{
iRow[k] = i + wave_even_constraint_start;
jCol[k] = data->sumEvenConstraints[i].M[j].col;
if (debugging)
{
printf(" %d (%d,%d)", k, iRow[k], jCol[k]);
}
++k;
}
}
// g = cos( 2 pi x) == 1
// g' = - 2 pi sin ( 2 pi x ), for x_i
if (debugging)
{
printf("\nwave int non-zero entries: ");
}
for (int i=0; i<data->num_variables(); ++i)
{
iRow[k] = i + wave_int_constraint_start;
jCol[k] = i;
if (debugging)
{
printf(" %d (%d,%d)", k, iRow[k], jCol[k]);
}
++k;
}
if (debugging)
{
printf("\n");
printf("k = %d, nele_jac = %d\n", k, nele_jac);
}
assert(k == nele_jac);
}
else
{
// return the values of the jacobian of the constraints
// g = cos( pi * sum_evens) == 1
// g' = -pi * coeff_i * sin ( pi * sum_evens ), for each of the variables x_i contributing to the sum
if (debugging)
{
printf("base values: ");
for (int bi = 0; bi < k; ++bi)
{
printf(" %d (%f)", bi, values[bi]);
}
printf("\nwave even non-zero jacobian values: ");
}
for (unsigned int i = 0; i< data->sumEvenConstraints.size(); ++i)
{
const double s = baseNlp.eval_equal_sum(i, x);
const double jac_gk = eval_jac_int_s(s); // e.g. -PI * cos( PI * s );
if (debugging)
printf("\n%d even wave: ", i);<--- %d in format string (no. 1) requires 'int' but the argument type is 'unsigned int'.
for (unsigned int j = 0; j < data->sumEvenConstraints[i].M.size(); ++j)
{
const double coeff = data->sumEvenConstraints[i].M[j].val;
values[k++] = coeff * jac_gk;
if (debugging)
{
printf(" %d: x_%d gradient %f * %f = %f\n", k-1,
data->sumEvenConstraints[i].M[j].col, coeff, jac_gk, coeff * jac_gk);
}
}
}
if (debugging)
printf("\n");
// g = cos( 2 pi x) == 1
// g' = - 2 pi sin ( 2 pi x ), for x_i
if (debugging)
{
printf("\nwave int non-zero jacobian values: ");
}
for (int i=0; i<data->num_variables(); ++i)
{
const double jac_gk = eval_jac_int_x(x[i]); // e.g. -2. * PI * sin( 2. * PI * x[i] );
values[k++] = jac_gk;
if (debugging)
{
printf("\n%d: x_%d (%f) gradient %f", k-1, i, x[i], jac_gk);
}
}
if (debugging)
printf("\n");
assert(k == nele_jac);
}
return true && base_ok;
}
IAIntWaveNlp::SparseMatrixEntry::SparseMatrixEntry(const int iset, const int jset, const int kset)
{
if ( jset > iset )
{
i = jset;
j = iset;
}
else
{
i = iset;
j = jset;
}
k = kset;
assert(j <= i);
}
void IAIntWaveNlp::add_hessian_entry( int i, int j, int &k )
{
SparseMatrixEntry sme(i, j, k);
if (hessian_map.insert( std::make_pair(sme.key(), sme) ).second)
{
hessian_vector.push_back( sme );
++k;
assert( (int) hessian_vector.size() == k );
assert( (int) hessian_map.size() == k );
}
// else it was already inserted, nothing to do
}
int IAIntWaveNlp::SparseMatrixEntry::n(0);
void IAIntWaveNlp::build_hessian()
{
// only build once
if (hessian_vector.size())
return;
hessian_vector.clear();
hessian_map.clear();
SparseMatrixEntry::n = data->num_variables();
int kk = 0;
// objective function hessian - the main diagonal
// important to add these first and in this order, for baseNlp to do the right thing
for (int i = 0; i < data->num_variables(); ++i)
{
add_hessian_entry( i, i, kk );
}
assert( kk == data->num_variables() );
// sum_evens
// g = cos( pi * sum_evens) == 1
// g' = -pi * sin ( pi * sum_evens ), for each of the variables contributing to the sum
// g''= -pi^2 cos ( pi * sum_evens ), for each pair of variables contributing to the sum
// assuming all the coefficients are 1
for (unsigned int c = 0; c< data->sumEvenConstraints.size(); ++c)
{
for (unsigned int i = 0; i < data->sumEvenConstraints[c].M.size(); ++i)
{
int ii = data->sumEvenConstraints[c].M[i].col;
for (unsigned int j = 0; j <=i; ++j)
{
int jj = data->sumEvenConstraints[c].M[j].col;
add_hessian_entry( ii, jj, kk );
}
}
}
// x integer
// these are just the diagonals again, already added so skip
// nele_hess = hessian_vector.size();
if (debugging)
{
printf("==========\nBuilt Hessian\n");
print_hessian();
printf("==========\n");
}
}
int IAIntWaveNlp::get_hessian_k( int i, int j )
{
if ( i == j )
return i;
SparseMatrixEntry sme(i, j, -1 );
SparseMatrixEntry &entry = hessian_map[ sme.key() ];
return entry.k;
}
void IAIntWaveNlp::print_hessian()
{
printf("Packed Hessian:\n");
for (unsigned int kk = 0; kk < hessian_vector.size(); ++kk)
{
SparseMatrixEntry &sme = hessian_vector[kk];
printf(" %d: (%d, %d)\n", sme.k, sme.i, sme.j);
}
printf("\n");
printf("Random Access Hessian in sequence\n");
{
int k = 0;
SparseMatrixMap::iterator iter;
for (iter = hessian_map.begin(); iter != hessian_map.end(); ++iter, ++k)
{
const SparseMatrixEntry &sme = iter->second;
printf(" %d: (%d, %d) k:%d key:%d\n", k, sme.i, sme.j, sme.k, sme.key() );
}
printf("\n");
}
printf("Random Access Hessian in square:\n");
for (int i = 0; i < data->num_variables(); ++i)
{
for (int j = 0; j < data->num_variables(); ++j)
{
SparseMatrixEntry sme_search(i, j, -1 );
SparseMatrixMap::iterator iter = hessian_map.find(sme_search.key());
if (iter == hessian_map.end())
printf(" . ");
else
printf(" %3d ", iter->second.k);
}
printf("\n");
}
printf("\n");
}
//return the structure or values of the hessian
bool IAIntWaveNlp::eval_h(Index n, const Number* x, bool new_x,
Number obj_factor, Index m, const Number* lambda,
bool new_lambda, Index nele_hess, Index* iRow,
Index* jCol, Number* values)
{
// fill values with zeros
if (values)
{
for (unsigned int kk = 0; kk < hessian_vector.size(); ++kk)
{
values[kk] = 0.;
}
// debug, print x
}
// get structure, or values, from objective function, which is just the diagonal entries
baseNlp.eval_h(base_n, x, new_x, obj_factor, base_m, lambda, new_lambda, data->num_variables(), iRow, jCol, values);
// hessian entry i,j is:
// obj_factor fij + sum_k lambda[k] gkij
// where fij = d^2 f / d x_i d x_j
// gkij = d^2 g[k] / d x_i d x_j
// and d denotes partial derivative
// first k entries are diagonal of objective function
// This is a symmetric matrix, fill the lower left triangle only.
if (values == NULL) {
// return the structure.
for (unsigned int kk = 0; kk < hessian_vector.size(); ++kk)
{
iRow[kk] = hessian_vector[kk].i;
jCol[kk] = hessian_vector[kk].j;
}
} // structure
else {
// return the values.
// g = cos( pi * sum_evens) == 1
// g' = -pi * sin ( pi * sum_evens ), for each of the variables contributing to the sum
// g''= -pi^2 cos ( pi * sum_evens ), for each pair of variables contributing to the sum
// assuming all the coefficients are 1
{
if (debugging)
{
printf("\nwave even non-zero hessian values:");
}
for (unsigned int i = 0; i< data->sumEvenConstraints.size(); ++i)
{
if (debugging)
{
printf("\n%d constraint: ", i);<--- %d in format string (no. 1) requires 'int' but the argument type is 'unsigned int'.
}
const int k = i + wave_even_constraint_start; // index of the constraint in the problem, = lambda to use
const double s = baseNlp.eval_even_sum(i, x); // sum of the variable values
// second derivative of wave function, assuming coefficients of one
const double wavepp = eval_hess_int_s(s); // e.g. ( -PI * PI * cos( PI * s ) );
const double h_value = lambda[k] * wavepp;
// assign that value to all pairs, weighted by coeff_i * coeff_j
for (unsigned int ii = 0; ii < data->sumEvenConstraints[i].M.size(); ++ii)
{
const int var_i_index = data->sumEvenConstraints[i].M[ii].col;
const double coeff_i = data->sumEvenConstraints[i].M[ii].val;
for (unsigned int jj = 0; jj < data->sumEvenConstraints[i].M.size(); ++jj)
{
const int var_j_index = data->sumEvenConstraints[i].M[jj].col;
const double coeff_j = data->sumEvenConstraints[i].M[jj].val;
const int kk = get_hessian_k(var_i_index, var_j_index);
values[kk] += coeff_i * coeff_j * h_value;
if (debugging)
{
printf(" lambda[%d] * coeff_%d * coeff_%d * d^2 wave / d x_%d d x_%d = %f * %f * %f * %f\n",
k, var_i_index, var_j_index, var_i_index, var_j_index,
lambda[k], coeff_i, coeff_j, wavepp );
}
}
}
}
if (debugging)
{
printf("\n");
}
}
// g = cos( 2 pi x) == 1
// g' = - 2 pi sin ( 2 pi x ), for x_i
// g'' = - 4 pi^2 cos ( 2 pi x), for x_i only
{
if (debugging)
{
printf("\nwave int non-zero hessian values:\n");
}
for (int i=0; i < data->num_variables(); ++i)
{
const int k = i + wave_int_constraint_start;
// diagonal entries, again
const double hg_ii = eval_hess_int_x(x[i]); // e.g. -4. * PI * PI * cos( 2. * PI * x[i] );
values[i] += lambda[k] * hg_ii;
if (debugging)
{
printf("x_%d (%f) : lambda(%f) * d^2 wave(x_ii)/ dx_i^2 (%f)\n", i, x[i], lambda[k], hg_ii);
}
}
}
if (debugging)
printf("\n");
} // values
return true;
}
void IAIntWaveNlp::finalize_solution(SolverReturn status,
Index n, const Number* x, const Number* z_L, const Number* z_U,
Index m, const Number* g, const Number* lambda,
Number obj_value,
const IpoptData* ip_data,
IpoptCalculatedQuantities* ip_cq)
{
baseNlp.finalize_solution(status, n, x, z_L, z_U, m, g, lambda, obj_value, ip_data, ip_cq);
// todo report on how close the integer and sum-even constraints were satisfied!
// or do that in the caller
}
} // namespace MeshKit
|