1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540 | // IASolverEven.cpp
// Interval Assignment for Meshkit
//
#include "meshkit/IASolverEven.hpp"
#include "meshkit/IAMINlp.hpp"
#include "meshkit/IPData.hpp"
// #include "IAMilp.hpp"
#include <stdio.h>
#include <math.h>
#include <limits.h>
#include "IpIpoptApplication.hpp"
namespace MeshKit
{
IASolverEven::IASolverEven(const IAData *ia_data, const IASolution *int_solution) :<--- Member variable 'IASolverEven::myianlp' is not initialized in the constructor.
iaData(ia_data), debugging(true)
{
ipData.initialize(int_solution->x_solution);
}
/** default destructor */
IASolverEven::~IASolverEven() { iaData=NULL; }
double IASolverEven::distance_to_even(int i)
{
double sum = sum_even_value(i);
if (is_even(sum))
return 0.;
return sum;
/*
double lower_even = 2. * floor( sum / 2.);
if (lower_even < 4.)
lower_even = 4.;
const double upper_even = 2. * ceil( sum / 2. );
const double u = upper_even - sum;
const double l = sum - lower_even;
if ( u > l )
return l;
else
return u;
*/
}
bool IASolverEven::calculate_sumeven_value(const int i, double &obj_increase, int &y_int )
{
// to do: make a version of this where x can flip which side of the goal it is on.
// the issue is e.g. goal = 1.1, x gets rounded to 1, then x can never flip to the other side of 1.1! but if goal was 1, then it could
const double x = x_solution[i];
y_int = floor(x + 0.5); // round to nearest integer - this version assumes we are already integer within roundoff.
// round x away from I
const double goal = iaData->I[i]; // shorthand reminder
if (x>goal)
++y_int;
else
--y_int;
if (y_int >= 1)
{
// compare to relaxed solution, not the latest pseudo-integer solution
double f = myianlp->eval_R_i( goal, ipData.relaxedSolution[i] );
double g = myianlp->eval_R_i( goal, y_int );
obj_increase = g - f;
// assert( obj_increase > 0. ); this is only invariant if we use f = R(x), not f = R(relaxed).
return true;
}
//else
obj_increase = 0.;
return false;
}
bool IASolverEven::calculate_rounding_value(const int i, double &obj_increase, int &y_int )
{
const double x = x_solution[i];
y_int = floor(x + 0.5); // round to nearest integer
double y = y_int;
if ( fabs(x-y) > 1e-4) // not already integer within tolerance
{
// non-integer found
// round x away from I
const double goal = iaData->I[i];
// it was forced away from its goal, round in the forced direction further
// else leave it rounded to the nearest integer
if (fabs(x - goal) > 1.e-2)
{
y_int = (x>goal) ? ceil(x) : floor(x);
y = y_int;
}
assert(y >= 1.);
// if it is already constrained to y_int, then consider it as already satisfying it.
if ( ipData.varIntegerBound[i] == y )
{
obj_increase = 0.;
return false;
}
// todo: if x is very close to the goal, maybe we should retain freedom to round it the other direction, try both, etc.
// is this the best non-integer we've found so far?
// best means the one that changing it to integer increases the obj function the least
// double f = myianlp->eval_R_i( goal, x );
// compare to relaxed solution, not the latest pseudo-integer solution
double f = myianlp->eval_R_i( goal, ipData.relaxedSolution[i] );
double g = myianlp->eval_R_i( goal, y );
obj_increase = g - f;
// assert( obj_increase > 0. ); this is only invariant if we use f = R(x), not f = R(relaxed).
return true;
}
//else
obj_increase = 0.;
return false;
}
bool IASolverEven::find_one_non_integer(int &i_nonint, int &x_bound)
{
i_nonint = -1; // none found
double obj_increase_nonint( std::numeric_limits<double>::max() );
// find the one variable whose rounding causes the least change to the objective function
// to do: alt is to pick one at random, with some chance
for (int i = 0; i<iaData->num_variables(); ++i)
{
double obj_increase;
int y_int;
if (calculate_rounding_value(i, obj_increase, y_int))
{
if (obj_increase < obj_increase_nonint)
{
i_nonint = i;
x_bound = y_int;
obj_increase_nonint = obj_increase;
}
}
}
if (i_nonint > -1)
return true;
// everybody is already integer, enforce some sum-even constraint
// pick an un-satisfied sum-even constraint
int num_noneven_found = 0;
// algorithm parameter
// sum_strategy = 0 pick biggest, 1: uniformly at random
// to do: test these further. Are there bad cases where randomness helps? Some random sequences give poor-quality solutions, rounding a 1.5 up to 3 or 4.
const int sum_strategy = 1; // rand() % 2; // 0
printf("sum_strategy=%d ", sum_strategy);
double biggest_non_even_value = 0.;
int biggest_non_even_i = -1;
for (unsigned int i = 0; i < iaData->sumEvenConstraints.size(); ++i)
{
const double d = distance_to_even(i);
if (d > 0.)
{
++num_noneven_found;
if ((sum_strategy == 0 && d > biggest_non_even_value) ||
(sum_strategy == 1 && (rand() % num_noneven_found == 0)))
{
biggest_non_even_value = d;
biggest_non_even_i = i;
}
}
}
// now pick an curve of the sum-even-constraint to round
if (biggest_non_even_i > -1)
{
const int c = biggest_non_even_i;
// algorithm parameter
// 0: pick biggest non-even , 1: uniformly at random
// to do: test these further
const int curve_strategy = 1; // rand() % 2; // 0
printf("curve_strategy=%d\n", curve_strategy);
int num_found = 0;
double smallest_increase = std::numeric_limits<double>::max();
for (unsigned int i = 0; i < iaData->sumEvenConstraints[c].M.size(); ++i)
{
int j = iaData->sumEvenConstraints[c].M[i].col;
assert( iaData->sumEvenConstraints[c].M[i].val == 1. );
const double x = x_solution[j];
if (!is_even(x))
{
++num_found;
int y_int;
double obj_increase;
if (calculate_sumeven_value(j, obj_increase, y_int))
{
if ((curve_strategy == 0 && obj_increase < smallest_increase) ||
(curve_strategy == 1 && (rand() % num_found == 0)))
{
i_nonint = j;
x_bound = y_int;
smallest_increase = obj_increase;
}
}
}
}
// if no non-even curves were found, pick an odd one
if (i_nonint == -1)
{
for (unsigned int i = 0; i < iaData->sumEvenConstraints[c].M.size(); ++i)
{
int j = iaData->sumEvenConstraints[c].M[i].col;
assert( iaData->sumEvenConstraints[c].M[i].val == 1. );
++num_found;
int y_int;
double obj_increase;
if (calculate_sumeven_value(j, obj_increase, y_int))
{
if (curve_strategy == 0 && obj_increase < smallest_increase ||
curve_strategy == 1 && (rand() % num_found == 0))
{
i_nonint = j;
x_bound = y_int;
smallest_increase = obj_increase;
}
}
}
}
if (i_nonint == -1)
// failed to achieve sum-even solution
return false;
return true;
}
return false;
}
void IASolverEven::constrain_integer(const int i_nonint, const int x_bound)
{
ipData.oldBound[i_nonint] = ipData.varIntegerBound[i_nonint];;
ipData.varIntegerBound[i_nonint] = (double) x_bound;
}
// find the one variable whose rounding causes the least change to the objective function
// unused at the moment
bool IASolverEven::constrain_one_non_integer( int &i, int &b)
{
if (find_one_non_integer(i, b))
{
constrain_integer(i, b);
if (debugging)
{
report_one_constraint(i, b);
}
return true;
}
return false;
}
/*
if (i>num_variables())
{
assert(phase >= 1);
const int j = i - num_variables();
printf(" constraining sum[%d] from %e to %c %d\n", j, sum_even_value(j), '>', b);
}
else
if (i>num_variables())
{
assert(phase >= 1);
const int j = i - num_variables();
printf(" new sum[%d] value is %e %c %d\n", j, sum_even_value(j), '>', b);
}
else
{
*/
void IASolverEven::report_one_constraint(const int i, const int b)
{
// assumes x_solution[i] is current non-integer solution
printf(" constraining x[%d] from %e (%e) to %c %d\n", i, x_solution[i], iaData->I[i], b > iaData->I[i] ? '>' : '<', b);
}
void IASolverEven::report_one_non_integer(const int i, const int b)
{
printf(" new x[%d] value is ", i );
if (fabs( floor(x_solution[i]+0.5) - x_solution[i] ) < 1.0e-2)
printf("%d", (int) floor(x_solution[i]+0.5));
else
printf("%e", x_solution[i]);
printf(" (%e) %c %d\n", iaData->I[i], b > iaData->I[i] ? '>' : '<', b);
}
void IASolverEven::back_off(RoundingMap &rounding_map)
{
// undo half of the constraints
// todo:
RoundingMap::iterator undo_start = rounding_map.begin();
int num_to_keep = (int) rounding_map.size() / 2; // roundoff, rounding to zero is OK
std::advance( undo_start, num_to_keep );
for(RoundingMap::const_iterator i = undo_start; i != rounding_map.end(); ++i)
{
const int x_i = i->second.first;
if (debugging)
{
printf(" backing off:");
report_one_constraint(x_i, ipData.oldBound[x_i]);
}
ipData.varIntegerBound[x_i] = ipData.oldBound[x_i];
}
rounding_map.erase(undo_start, rounding_map.end());
}
bool IASolverEven::find_many_non_integer(RoundingMap &rounding_map)
{
// to do: this heuristic is bad because it easily paints us into a corner
// to do: we should instead pick some constant fraction of the variable per *side* of a constraint,
// provided there is at least one other unconstrained variable on that side. And never constrain the last k-sides (k=2, or 3? or 4?) until the end, when we just constrain one at a time.
// since we don't know how many are non-integer, put them all in the map, then discard the ones we won't constrain
rounding_map.clear();
for (int i = 0; i<iaData->num_variables(); ++i)
{
double obj_increase;
int y_int;
if (calculate_rounding_value(i, obj_increase, y_int))
{
// add to map
// printf("inserting obj %e, i %d, x %e, y %d\n", obj_increase, i, x_solution[i], y_int);
rounding_map.insert(std::make_pair(obj_increase,std::make_pair(i,y_int)));
}
}
if (rounding_map.empty())
return false;
//const unsigned long num_to_round = 1;
const unsigned long num_to_round = 1; // 1 + rounding_map.size() / 8; // todo: experiment with the 16 part
if (debugging)
{
printf("Found %ld of %d non-integers, rounding %ld of them.",<--- %ld in format string (no. 3) requires 'long' but the argument type is 'const unsigned long'.
rounding_map.size(), iaData->num_variables(), num_to_round);
}
// remove everything after the "num_to_round" element
RoundingMap::iterator r = rounding_map.begin();
advance(r, num_to_round);
rounding_map.erase(r, rounding_map.end());
// todo: if erasing (or subsequent iterations) is slow due to tree rebalancing, then instead we should transfer the first num_to_round elements to a std::vector and return that instead, and discard the map
if (debugging)
{
if (rounding_map.size() > 1)
printf(" obj_increase range %e to %e\n",
rounding_map.begin()->first, rounding_map.rbegin()->first);
else if (rounding_map.size() == 1)
printf( " obj_increase expected %e\n",
rounding_map.begin()->first);
else
printf( " rounding nothing\n");
}
return true;
}
bool IASolverEven::constrain_many_non_integer(RoundingMap &rounding_map)
{
if (find_many_non_integer(rounding_map))
{
for(RoundingMap::const_iterator i = rounding_map.begin(); i != rounding_map.end(); ++i)
{
const int x_i = i->second.first;
const int b = i->second.second;
constrain_integer(x_i, b); // index, new integer bound
if (debugging)
{
report_one_constraint(x_i, b);
}
}
// todo: heuristic to decrease the number of constrained variables if the solver returns infeasible, or it decreased these variables beyond the new upper bounds . save the old bounds to restore them.
return true;
}
return false;
}
void IASolverEven::report_many_non_integer(RoundingMap &rounding_map)
{
for(RoundingMap::const_iterator i = rounding_map.begin(); i != rounding_map.end(); ++i)
{
report_one_non_integer(i->second.first, i->second.second);
}
}
void IASolverEven::cleanup()
{
myianlp = NULL; // smart pointers should take care of deleting this.
}
bool IASolverEven::solve()
{
// solve the nlp to get a non-integral solution, which we hope is close to a good integer solution
// =======================================
// from HS071 ipopt example
// smaller p has the effect of valuing the fidelity of shorter curves over longer curves more
// larger p approaches min max
myianlp = new IAMINlp(iaData, &ipData, this);
SmartPtr<TNLP> mynlp = myianlp; // Ipopt requires the use of smartptrs!
SmartPtr<IpoptApplication> app = IpoptApplicationFactory();
app->Options()->SetNumericValue("tol", 1e-7); // 2 seems close enough, could do less, say .1
app->Options()->SetStringValue("mu_strategy", "adaptive");
app->Options()->SetIntegerValue("print_level", 1); // 0 to 12, most. Default is 5
// uncomment next line to write the solution to an output file
// app->Options()->SetStringValue("output_file", "IA.out");
// The following overwrites the default name (ipopt.opt) of the options file
// app->Options()->SetStringValue("option_file_name", "IA.opt");
// Intialize the IpoptApplication and process the options
Ipopt::ApplicationReturnStatus status;
status = app->Initialize();
if (status != Ipopt::Solve_Succeeded) {
printf("\n\n*** Error during initialization!\n");
cleanup();
return (int) status;
}
// Ask Ipopt to solve the problem
status = app->OptimizeTNLP(mynlp); // the inherited IANlp
if (status == Solve_Succeeded) {
printf("\n\n*** The relaxed problem solved!\n");
}
else {
printf("\n\n*** The relaxed problem FAILED!\n");
cleanup();
return false;
}
// make integer
// Pick the variable whose rounding to the next further integer from its goal results in the lowest individual contribution (or increase in contribution from its current value) to the objective function.
// Round it that way, setting a lower bound on its value (but leaving objective, etc., the same)
// Re-solve the NLP. Some old vars might have their delta directions or values flip. That is OK.
// Iterate.
ipData.initialize(x_solution);
int iter = 0;
printf("\n\n*** Solving integer solution.\n");
/* */
// many at a time speedup, could skip and still get correct output
if (debugging)
printf("Many-at-a-time rounding\n");
RoundingMap rounding_map;
// phase = -1;
while (constrain_many_non_integer(rounding_map))
/* */
{
if (debugging)
printf("MINLP many-at-once iter %d\n", iter);
else
printf("%d ", iter);
// solve for many new constraints, but reduce those constraints if the problem becomes infeasible
bool try_again = false;
do
{
try_again = false;
status = app->OptimizeTNLP(mynlp); // double-check that resolving works, w/out initialize, etc
if (status != Ipopt::Solve_Succeeded && status != Ipopt::Solved_To_Acceptable_Level)
{
back_off(rounding_map);
try_again = rounding_map.size();
}
}
while (try_again);
if (rounding_map.size() == 0) // no progress was made<--- Possible inefficient checking for 'rounding_map' emptiness.
break;
// to do: what to do if status != Solve_Succeeded ?
// assert the new constraint was satisfied, one-at-a-time
// assert( (b >= I[i] && x_solution[i] >= b) || (b < I[i] && x_solution[i] <= b));
if (debugging)
{
// report_one_non_integer(i, b);
report_many_non_integer(rounding_map);
}
++iter;
// todo: quit at an iteration limit? but a single variable could be increased several times...
}
// one at a time
if (debugging)
printf("\nOne-at-a-time rounding, including sum-even constraints.\n");
int i; // non-integer variable to make integer
int b; // value to make it integer
iter = 0;
while (constrain_one_non_integer(i,b))
{
if (debugging)
printf("MINLP one-at-a-time iter %d\n", iter);
else
printf("%d ", iter);
status = app->OptimizeTNLP(mynlp); // double-check that resolving works, w/out initialize, etc
// to do: what to do if status != Solve_Succeeded ?
const double g = iaData->I[i];
const double x = x_solution[i];
assert((b >= g && x + 1.e-2 >= b) || (b < g && x <= b + 1.e-2)); // assert the new constraint was satisfied, one-at-a-time
if ((status != Ipopt::Solve_Succeeded && status != Ipopt::Solved_To_Acceptable_Level) ||
! ((b >= g && x + 1.e-2 >= b) || (b < g && x <= b + 1.e-2)))
{
// see ipopt/CoinIpopt/Ipopt/src/Interfaces/IpReturnCodes_inc.h for the enum of possible values
// status = Infeasible_Problem_Detected;
if (status == Infeasible_Problem_Detected )
printf("IPOPT Infeasible_Problem_Detected\n");
else
printf("IPOPT bad solution return code %d\n", status);
break;
}
if (debugging)
{
report_one_non_integer(i, b);
}
++iter;
// todo: quit at an iteration limit? but a single variable could be increased several times...
}
if (status != Ipopt::Solve_Succeeded)
printf("***Integer Fail!***\n");
else
{
if (debugging)
{
// print_solution();
}
}
// As the SmartPtrs go out of scope, the reference count
// will be decremented and the objects will automatically
// be deleted.
cleanup();
return status == Ipopt::Solve_Succeeded;
}
} // namespace MeshKit
|