1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
#include "meshkit/ProjectShell.hpp"
#include "meshkit/MKCore.hpp"
#include "meshkit/ModelEnt.hpp"
#include "meshkit/SizingFunction.hpp"
#include "meshkit/RegisterMeshOp.hpp"
#include "moab/ReadUtilIface.hpp"


#include <math.h>
#include <sstream>
#include <queue>
#include <algorithm>
#include <string.h>

#define ERROR(msg)	                                  \
  do {                                                            \
    Error err(0, "%s, line %d: %s", __FILE__, __LINE__, (msg));\
    throw err;                                                    \
  } while(false)

#define ERROR1(fmt, arg1)	                                   \
  do {                                                             \
    Error err(0, "%s, line %d: " fmt, __FILE__, __LINE__, arg1);   \
    throw err;                                                     \
  } while(false)

#define ERROR2(fmt, arg1,arg2)	                                      \
  do {                                                                \
    Error err(0, "%s, line %d: " fmt, __FILE__, __LINE__, arg1,arg2); \
    throw err;                                                        \
  } while(false)

#define ERROR3(fmt, arg1,arg2,arg3)	                                   \
  do {                                                                     \
    Error err(0, "%s, line %d: " fmt, __FILE__, __LINE__, arg1,arg2,arg3); \
    throw err;                                                             \
  } while(false)


namespace MeshKit {
  
double epsilon = 1.e-5; // cm, for coincident points in P, the intersection area

//---------------------------------------------------------------------------//
// Construction Function for Project Shell
ProjectShell::ProjectShell(MKCore *mk_core, const MEntVector &me_vec) <--- Member variable 'ProjectShell::m_numEdges' is not initialized in the constructor.<--- Member variable 'ProjectShell::m_numCurrentNodes' is not initialized in the constructor.<--- Member variable 'ProjectShell::m_numFinalTriangles' is not initialized in the constructor.<--- Member variable 'ProjectShell::m_numPos' is not initialized in the constructor.<--- Member variable 'ProjectShell::m_numNeg' is not initialized in the constructor.<--- Member variable 'ProjectShell::m_2dcapacity' is not initialized in the constructor.
  : MeshScheme(mk_core, me_vec), 
    m_numNodes(0),
    m_numTriangles(0),
    m_xyz(NULL),  // original coordinates
    m_triangles(NULL), // original triangles
    ps_edges(NULL),
    ps_nodes(NULL),
    ps_triangles(NULL),
    m_xy(NULL), // 2d coordinates after projection
    m_redMesh(NULL),
    m_blueMesh(NULL),
    m_num2dPoints(0),
    m_dbg(false)
{
  double direction[3] = {1.0, 0.0, 0.0};
  m_direction = Vector<3>(direction);
}
  
//---------------------------------------------------------------------------//
// return the type of entities this mesh creates
void ProjectShell::mesh_types(std::vector<moab::EntityType> &tps)
{
  tps.push_back(moab::MBVERTEX);
  tps.push_back(moab::MBEDGE);
  tps.push_back(moab::MBTRI);
}
  

//set up the projection parameters: the direction of projection
void ProjectShell::setup_this() 
{
  // Need to set the direction here
}

//---------------------------------------------------------------------------//
// execute function: Generate the projected 2D
void ProjectShell::execute_this(){
  double dist1= length(m_direction);
  if (dist1==0.0) ERROR("Null direction of projection");
  // normalize direction
  m_direction/=dist1;
  int ret = getMesh();
  if(ret) ERROR("Bad input mesh");
  
  // we have now the 3D mesh
  // verify orientation of the triangles; is it manifold?
  ret =  checkMeshValidity();
  if(ret) ERROR("Bad shell");
  
  ret =  projectIn2D();
  if(ret) ERROR("Cannot project in 2D");
  
  ret =  computeIntersections();
  if(ret) ERROR("Error in computing intersections");

  ret = commitMesh();
  if(ret) ERROR("Error in committing the computed shell");
}


int ProjectShell::getEdge(ProjectShell::Node & v1, ProjectShell::Node & v2, int & edgeId, ProjectShell::Edge * edgesArr, int sizeArr)<--- The function 'getEdge' is never used.
{
  // not found -- return 0 
  std::list<int> & L = v1.edges;
  std::list<int>::iterator i;
  for (i=L.begin(); i!=L.end(); i++)<--- Prefer prefix ++/-- operators for non-primitive types.
    {
      int edge = *i;
      int ae = abs(edge);
      if (ae>sizeArr || ae ==0 ) ERROR("Bad index in getEdge");
      
      ProjectShell::Edge & pse = edgesArr[ae-1];
      //      int sig = (edge<0) ? -1 : 1;
      if (pse.v[0] == v1.id && pse.v[1] == v2.id) 
	{
	  edgeId = edge;
	  return 1;
	}
      if (pse.v[0] == v2.id && pse.v[1] == v1.id)
	{
	  edgeId = edge;
	  return 1;
	}
    }
  return 0;// did not find any edge between v1 and v2 
}
  
// Destructor
ProjectShell::~ProjectShell()
{
  delete [] ps_edges;
  delete [] ps_nodes;
  delete [] ps_triangles;
  delete [] m_xyz;
  delete [] m_triangles;
  delete [] m_xy;
  delete [] m_redMesh;
  delete [] m_blueMesh;
}
#if 0
int ProjectShell::getShellMesh()
{
    
  // get original coordinates of mesh
  iBase_EntityHandle *verts = NULL;
  int verts_alloc = 0;
  
  int vert_coords_alloc = 0;
  int vertex_coord_size;
  
  /* check storage order */
  int result;
  int this_order;
  iMesh_Instance m_mesh = NULL;
  iBase_EntitySetHandle m_hRootSet = NULL;
  
  iMesh_getDfltStorage(m_mesh, &this_order, &result);
  if (iBase_SUCCESS != result) 
    ERROR("failed to get preferred storage order in getMesh");
  
  
  /* now get the vertex coordinates from a vertex array */
  /* need to get the vertices in the model */
  verts = NULL;
  verts_alloc = 0;
  iMesh_getEntities(m_mesh, m_hRootSet, iBase_VERTEX, 
		    iMesh_POINT, &verts, &verts_alloc, &m_numNodes, &result);
  IBERRCHK(result, "Failed to get vertices");
  /*
    iMesh_getNumOfType  	(  	iMesh_Instance   	 instance,
    const iBase_EntitySetHandle  	entity_set_handle,
    const int  	entity_type,6
    int *  	num_type,
    int *  	err	 
    ) */
  int numEdges=0;
  iMesh_getNumOfType 	(m_mesh, m_hRootSet, iBase_EDGE, 
			 &numEdges, &result);
  
  // get the triangles and the vertices in one shot
  iBase_EntityHandle *triangles = NULL;
  int triangles_alloc = 0;
  iBase_EntityHandle *vert_adj = NULL;
  int  vert_adj_alloc = 0, vert_adj_size;
  int * offsets = NULL, offsets_alloc = 0, indices_size;
  int * indices = NULL, indices_alloc = 0, offsets_size;
  iMesh_getAdjEntIndices( m_mesh, m_hRootSet, 
			  iBase_FACE, iMesh_TRIANGLE, iBase_VERTEX,
			  &triangles, &triangles_alloc, &m_numTriangles,
			  &vert_adj, &vert_adj_alloc, &vert_adj_size,
			  &indices, &indices_alloc, &indices_size,
			  &offsets, &offsets_alloc, &offsets_size,
			  &result );
  if (iBase_SUCCESS != result) {
    ERROR("failed to get triangles and vertices.");
  }
  
  
  /* get the coordinates in one array */
  
  vert_coords_alloc = 0;
  
  iMesh_getVtxArrCoords(m_mesh, vert_adj, vert_adj_size, iBase_INTERLEAVED, 
			&m_xyz, &vert_coords_alloc, &vertex_coord_size, &result);
  if (iBase_SUCCESS != result || 3*m_numNodes!=vertex_coord_size) {
    ERROR("failed to get vertex coordinates of entities in getMeshData.");
  }
  
  
  // build list of edges; we cannot rely on iMesh to give them to us
  // can we force imesh to give the edges? It does not seem like that
  
  // the vertices are identified as the index in vert_adj 
  // indices are the triangles
  // i is index in triangles
  //  offsets[i], offsets[i+1] are offsets in indices
  // vertices of triangle [i] have indices  indices[offsets[i]+j], j=0:(offsets[i+1]-offsets[i])-1
  
  // first, determine the edges of triangle i
  if (offsets_size - 1 != m_numTriangles)
  {
      ERROR("bad indexing");
  }
  int i=0;// index used everywhere
  for (i=0; i<m_numTriangles; i++)
  {
    if (offsets[i+1]-offsets[i] !=3)
    {
	  ERROR("Not a triangle");
    }
  }
  // build edges from triangle information
  ps_edges = new ProjectShell::Edge [m_numTriangles*3];// overestimate; probably only half will be created
  ps_nodes = new ProjectShell::Node [m_numNodes];
  ps_triangles = new ProjectShell::Triangle3D [m_numTriangles];
  //
  for (i=0; i<m_numNodes; i++)
  {
    ProjectShell::Node & psn = ps_nodes[i];
    psn.id = i;// this can be found by address in the array, but why bother
    for (int j=0; j<3; j++)
    {
      psn.xyz[j] = m_xyz[3*i+j];
    }
  }
  // index in edge: 
  int edgeIndex = 0;
  int j=0;
  for (j=0; j<m_numTriangles; j++)
  {
    ProjectShell::Triangle3D & curTria = ps_triangles[j];
      int ii=0;
      for (ii=0; ii<3; ii++)
	curTria.v[ii]=indices[offsets[j]+ii];
      for (ii=0; ii<3; ii++)
	{
	  ProjectShell::Node & v1= ps_nodes[curTria.v[ii]];
	  int nextii = ii+1;
	  if (ii==2)
	    nextii=0;
	  ProjectShell::Node & v2= ps_nodes[curTria.v[nextii]];
	  // is there an edge from v1 to v2, or from v2 to v1
	  int edgeId;
	  int exi = getEdge(v1, v2, edgeId, ps_edges, edgeIndex);// will be created if not existing already
	  if (exi)
	  {
	      curTria.e[ii] = edgeId;
	      ProjectShell::Edge & foundEdge = ps_edges[abs(edgeId)-1];
	      foundEdge.used++;
	      if(foundEdge.used>2)
	      {
		ERROR("Bad indexing in ps_edge");
	      }
	      foundEdge.t[1]=j; // mark the triangle it belongs to
	  }
	  else
	  {
	    int cId = curTria.e[ii]=edgeIndex+1;
	    ProjectShell::Edge & newEdge = ps_edges[edgeIndex];
	    newEdge.v[0] = curTria.v[ii];
	    newEdge.v[1]=curTria.v[nextii];
	    v1.edges.push_back(cId); // positive means starts at vertex
	    v2.edges.push_back(-cId);// negative means incident to the vertex
	    edgeIndex++;
	    newEdge.used=1;
	    newEdge.t[0] = j; // index for triangles
	  }
	}
  }
  m_numEdges = edgeIndex;
  // fill up now the triangle neighbor information
  for (j=0; j<m_numTriangles; j++)
    {
      ProjectShell::Triangle3D & tri = ps_triangles[j];
      for (int k=0; k<3; k++)
	{
	  int edgeId = tri.e[k];
	  int ae = abs(edgeId);
	  ProjectShell::Edge & edge = ps_edges[ae-1];
	  int t0 = edge.t[0], t1 = edge.t[1];
	  if (t0==j)
	    tri.t[k] = t1;
	  else if (t1==j)
	    tri.t[k] = t0;
	}
    }
  
  free(verts);
  free(triangles);
  free(vert_adj);
  free (indices);
  free (offsets);
  
  //free(vert_coords);
  return 0;
}
#endif
int ProjectShell::checkMeshValidity()
{
  // basically, see if the edges are all used 2 times, and each is is used in each direction
  int i=0;
  for (i=0; i<m_numEdges; i++)
    {
      ProjectShell::Edge & edge = ps_edges[i];
      if (edge.used!=2)
	{
	  ERROR("Edge not used exactly 2 times");
	}
      int edgeId = i+1;
      int sum=0;
      for (int k=0; k<2; k++)
	{
	  ProjectShell::Triangle3D & tr1=ps_triangles[edge.t[k]];
	  for (int kk=0; kk<3; kk++)
	    {
	      int ec= tr1.e[kk];
	      if (abs(ec)==edgeId)
		{
		  sum+=ec;
		  break;
		}
	      
	    }
	}
      if (sum!=0)
	  ERROR1("Edge %d not used exactly 2 times", edgeId);      
    }
  // check that all triangles have 3 neighbors
  for (i=0; i<m_numTriangles; i++)
    {
      ProjectShell::Triangle3D & tr = ps_triangles[i];
      for (int k=0; k<3; k++)
	{
	  int t = tr.t[k];
	  if (t==i || t < 0 || t >= m_numTriangles)
	    ERROR1("triangle %d does not have 3 neighbors", i);
	}
    }
  
  return 0; // everything is OK
}


int ProjectShell::projectIn2D()
{
  // considering the direction, classify each projected triangle as red or blue
  // the red ones are positive (inbound), blue ones are negative
  // first decide the other 2 vectors
  double v[3] = {0.,-1.,0.};
  Vector<3> vv(v);
  m_dirX = vector_product(m_direction, vv);
  
  double d1 = length(m_dirX);
  if (d1<1.e-5)// consider another direction
    {
      vv[1]=0.; vv[2]=-1.;
      m_dirX = vector_product(m_direction, vv);
      d1 = length(m_dirX);
      if (d1<1.e-5)
	ERROR("cannot find a suitable direction; abort");
    }
  m_dirX /= d1;
  m_dirY = vector_product(m_direction, m_dirX);
  // dirY must be already normalized, but why worry
  d1 = length(m_dirY);
  if (d1==0.)
    ERROR("Get out of here, it is hopeless");
  m_dirY /= d1;
  
  // now do the projection in 2d
  //   we have 3 vectors, m_dirX, m_dirY, m_direction
  // for every point, A, the projection in xy plane will be just
  // xA = A . u; yA = A . v  (dirX and dirY)
  
  // also, it is important to compute the normal 
  // some triangles will be reverted and some may be projecting to a line
  
  // coordinates of the projected nodes on 2D
  // what could be a good estimate for total number of points in 2D? 
  //  we start with 2d capacity 3* m_numNodes 
  m_2dcapacity = m_numNodes*3;
  m_num2dPoints = m_numNodes; // directly project 3d nodes in 2d, keep the ids
  m_xy = new double [3*m_2dcapacity];
  // this array will be parallel with the original mesh
  // new nodes will appear after intersection computation
  // triangles are characterized by their orientation: negative, positive or 0
  
  // the neighbors will be preserved
  // some edges will be collapsed, and also some triangles
  // in those cases, what will be the neighbors?
  // flag them with a high number ()
  
  //m_finalNodes.resize(3*m_numNodes); // the actual size is n_numNodes first
  for (int k=0; k<m_numNodes; k++)
    {
      // double xx= dot( ps_nodes[k].xyz, m_dirX);
      // double yy= dot( ps_nodes[k].xyz, m_dirY);
      // _finalNodes[k].x =  dot( ps_nodes[k].xyz, m_dirX);
      // _finalNodes[k].y =  dot( ps_nodes[k].xyz, m_dirY);
      m_xy[3*k] = inner_product( ps_nodes[k].xyz, m_dirX);
      m_xy[3*k+1] = inner_product( ps_nodes[k].xyz, m_dirY);
      //  m_finalNodes[k].x =  m_xy[2*k];
      //  m_finalNodes[k].y =  m_xy[2*k+1];
    }
  for (int k=0; k<m_2dcapacity; k++)
    m_xy[3*k+2] = 0;// the z ccordinate is always 0 !!
  // if any edges are collapsed, the corresponding triangles should be collapsed too
  // we will collapse the triangles first, then the edges
  // when a triangle is collapsed on an edge, it should break in 2 other triangles
  // we should really form another triangle array, in 2D 
  
  // first, loop over edges and see which are eliminated;
  
  double *edgeLen2D=new double [m_numEdges];
  for (int k=0; k<m_numEdges; k++)
    {
      
      int v0 = ps_edges[k].v[0];
      int v1 = ps_edges[k].v[1];
      edgeLen2D[k] = length(Vector<2>(&m_xy[3*v0])-Vector<2>(&m_xy[3*v1])); 
    }
  double *triArea = new double [m_numTriangles];
  for (int k=0; k<m_numTriangles; k++)
    {
      const int * pV =&( ps_triangles[k].v[0]);
      triArea[k] = area2D(Vector<2>(&m_xy[ 3*pV[0]]),  
			  Vector<2>(&m_xy[ 3*pV[1]]),  
			  Vector<2>(&m_xy[ 3*pV[2]]));
    }
  // if an edge is length 0, we must collapse the nodes, and 2 triangles
  // first construct a new 2d mesh
  // we will have to classify all triangles, edges
  // for each triangle we need to know its original triangle
  
  // first mark all triangles; then count positive, negative and zero area (some tolerance is needed)
  int numNeg = 0, numPos = 0, numZero = 0;
  // those that are negative will be reverted in the new array
  int * newTriId = new int [m_numTriangles];
  for (int k=0; k<m_numTriangles ; k++)
    {
      if (triArea[k] > 0)
	{
	  //numPos++;
	  newTriId[k] = numPos++;
	}
      else if (triArea[k] <0)
	{
	  //numNeg ++;
	  newTriId[k] = numNeg++;
	}
      else
	{
	  numZero ++;
	  newTriId[k] = -1;// receive no Id, as it will not be carried along
	}
    }
  // there are 2 groups: red (positive), blue (negative)
  // revert the negative ones, and decide the neighbors
  
  // red triangles are positive, blue are negative
  // the negative ones need to be reverted; revert the nodes, first, then edges
  // do we really need the edges? or just the neighboring triangles?
  // if a neighbor is the other sign or zero, will become boundary marker (large number, m_numTriangles+1) 
  // 
  // we need to find first 2 triangles (red and blue) that are intersecting
  // they will be the seeds
  m_redMesh = new ProjectShell::Triangle2D [numPos] ;
  m_blueMesh = new  ProjectShell::Triangle2D [numNeg];
  m_numPos = numPos;
  m_numNeg = numNeg;
  // do another loop, to really build the 2D mesh we start with
  // we may have potential starting triangles for the marching along, if the sign of one of the neighbors is 
  // different
  for (int k=0; k<m_numTriangles ; k++)
    {
      ProjectShell::Triangle3D & orgTria = ps_triangles[k];
      if (triArea[k] > 0)
	{
	  //numPos++;
	  ProjectShell::Triangle2D & redTria= m_redMesh[newTriId[k]];
	  redTria.oldId = k ; // index 
	  redTria.area = triArea[k];
	  for (int j=0; j<3; j++)
	    {
	      
	      // copy the edge information too
	      redTria.e[j] = orgTria.e[j]; 
	      // qualify the neighbors
	      //
	      int t = orgTria.t[j];
	      redTria.v[j] = orgTria.v[j];
	      if (triArea[t]>0)
		{
		  redTria.t[j] = newTriId[t];// will be the index in red mesh 
		}
	      else
		{
		  redTria.t[j] = numPos; // marker for boundary
		}
	    }
	  
	}
      else if (triArea[k] <0)
	{
	  //numNeg ++;
	  ProjectShell::Triangle2D & blueTria= m_blueMesh[newTriId[k]];
	  blueTria.oldId = k;
	  blueTria.area =triArea[k]; // this is for debugging I think
	  for (int j=0; j<3; j++)
	    {
	      // copy the edge information too
	      blueTria.e[j] = orgTria.e[j];
	      // qualify the neighbors
	      // 
	      int t = orgTria.t[j];
	      blueTria.v[j] = orgTria.v[j];
	      if (triArea[t]<0)
		{
		  blueTria.t[j] = newTriId[t];// will be the index in red mesh 
		}
	      else
		{
		  blueTria.t[j] = numNeg; // marker for boundary
		}
	    }
	  
	}
      else
	{
	  // numZero ++;
	  // newTriId[k] = -1;// receive no Id, as it will not be carried along
	  // nothing to do for null triangles
	}
    }
  // revert the blue triangles, so they become positive oriented too
  for (int k=0; k<numNeg; k++)
    {
      // 
      ProjectShell::Triangle2D & blueTri = m_blueMesh[k];
      int tmp = blueTri.v[1];
      blueTri.v[1] = blueTri.v[2];
      blueTri.v[2] = tmp;
      // this is really stupid: 
      // we should have switched triangle 1 and 3, not 2 and 3
      // hard to catch
      tmp = blueTri.t[0];
      blueTri.t[0] = blueTri.t[2];
      blueTri.t[2] = tmp;
      // reverse the edges too
      tmp = blueTri.e[0];
      blueTri.e[0] = -blueTri.e[2];
      blueTri.e[1] = -blueTri.e[1];
      blueTri.e[2] = -tmp; 
    }
  // at this point, we have red triangles and blue triangles, and 2d nodes array
  // we will start creating new triangles, step by step, pointing to the nodes in _finalNodes
  m_numCurrentNodes = m_numNodes;
  if (m_dbg)
    {
      m_dbg_out.open("dbg.m"); 
      m_dbg_out << "P=[ \n";
      for (int i=0; i<m_numNodes; i++)
	{
	  m_dbg_out << m_xy[3*i] << " " << m_xy[3*i+1] << "\n";
	}
      m_dbg_out << "];\n ";
      m_dbg_out << "Ta=[ \n";
      for (int k=0; k<m_numPos; k++)
	{
	  ProjectShell::Triangle2D & redTri = m_redMesh[k];
	  for (int j=0; j<3; j++)
	    m_dbg_out << redTri.v[j]+1 << " " ;
	  for (int jj=0; jj<3; jj++)
	    {
	      m_dbg_out << redTri.t[jj]+1 << " " ;
	    }
	  m_dbg_out << "\n";
	}
      m_dbg_out << "]; \n";
      m_dbg_out << "Tb=[ \n";
      for (int kk=0; kk<m_numNeg; kk++)
	{
	  ProjectShell::Triangle2D & blueTri = m_blueMesh[kk];
	  for (int j=0; j<3; j++)
	    m_dbg_out << blueTri.v[j]+1 << " " ;
	  for (int jj=0; jj<3; jj++)
	    {
	      m_dbg_out << blueTri.t[jj]+1 << " " ;
	    }
	  m_dbg_out << "\n";
	}
      m_dbg_out << "]; \n";
      m_dbg_out.close();
      
    }
  delete [] edgeLen2D;
  delete [] triArea;
  delete [] newTriId;
  return 0; 
}

int ProjectShell::computeIntersections()
{
  // will start at 2 triangles, and advance an intersection front (2 queues, one for red triangles, one for blue ..)
  // will mark a red triangle that is processed, and add to the queue
  // for each red triangle will find all the blue triangles that are intersected
  // find first 2 triangles that intersect: these will be the seeds for intersection
  
  int startRed=0;
  int startBlue = 0;
  for (startBlue = 0; startBlue<m_numNeg; startBlue++)
    {
      double area = 0;
      // if area is > 0 , we have intersections
      double P[24]; // max 6 points, but it may grow bigger; why worry
      int nP = 0;
      int n[3];// sides
      computeIntersectionBetweenRedAndBlue(/* red */0, startBlue, P, nP, area,n);
      if (area>0)
	break; // found 2 triangles that intersect; these will be the seeds
    }
  if (startBlue==m_numNeg)
    ERROR("Can't find any triangle");
  
  // on the red edges, we will keep a list of new points (in 2D)
  // they will be used to create or not new points for points P from intersection
  // (sometimes the points P are either on sides, or on vertices of blue or even red triangles)
  
  /*
    matlab code: 
    function M=InterfaceMatrix(Na,Ta,Nb,Tb);
    % INTERFACEMATRIX projection matrix for nonmatching triangular grids 
    %   M=InterfaceMatrix(Na,Ta,Nb,Tb); takes two triangular meshes Ta
    %   and Tb with associated nodal coordinates in Na and Nb and
    %   computes the interface projection matrix M
    
    bl=[1];                        % bl: list of triangles of Tb to treat
    bil=[1];                       % bil: list of triangles Ta to start with
    bd=zeros(size(Tb,1)+1,1);      % bd: flag for triangles in Tb treated 
    bd(end)=1;                     % guard, to treat boundaries
    bd(1)=1;                       % mark first triangle in b list.
    M=sparse(size(Nb,2),size(Na,2));
    while length(bl)>0
    bc=bl(1); bl=bl(2:end);      % bc: current triangle of Tb 
    al=bil(1); bil=bil(2:end);   % triangle of Ta to start with
    ad=zeros(size(Ta,1)+1,1);    % same as for bd
    ad(end)=1;
    ad(al)=1; 
    n=[0 0 0];                   % triangles intersecting with neighbors
    while length(al)>0
    ac=al(1); al=al(2:end);    % take next candidate
    [P,nc,Mc]=Intersect(Nb(:,Tb(bc,1:3)),Na(:,Ta(ac,1:3)));
    if ~isempty(P)             % intersection found
    M(Tb(bc,1:3),Ta(ac,1:3))=M(Tb(bc,1:3),Ta(ac,1:3))+Mc;
    t=Ta(ac,3+find(ad(Ta(ac,4:6))==0)); 
    al=[al t];               % add neighbors 
    ad(t)=1;
    n(find(nc>0))=ac;        % ac is starting candidate for neighbor  
    end
    end
    tmp=find(bd(Tb(bc,4:6))==0); % find non-treated neighbors
    idx=find(n(tmp)>0);          % take those which intersect
    t=Tb(bc,3+tmp(idx));
    bl=[bl t];                   % and add them
    bil=[bil n(tmp(idx))];       % with starting candidates Ta
    bd(t)=1;
    end
  */
  std::queue<int> blueQueue; // these are corresponding to Ta,
  blueQueue.push( startBlue);
  std::queue<int> redQueue;
  redQueue.push (startRed);
  // the flags are used for marking the triangles already considered
  int * blueFlag = new int [m_numNeg+1]; // number of blue triangles + 1, to account for the boundary
  int k=0;
  for (k=0; k<m_numNeg; k++)
    blueFlag[k] = 0;
  blueFlag[m_numNeg] = 1; // mark the "boundary"; stop at the boundary
  blueFlag[startBlue] = 1; // mark also the first one
  // also, red flag is declared outside the loop
  int * redFlag = new int [m_numPos+1];
  
  if (m_dbg)
    m_dbg_out.open("patches.m");
  while( !blueQueue.empty() )
    {
      int n[3]; // flags for the side : indices in red mesh start from 0!!! (-1 means not found )
      for (k=0; k<3; k++)
	n[k] = -1; // a paired red not found yet for the neighbors of blue 
      int currentBlue = blueQueue.front();
      blueQueue.pop();
      for (k=0; k<m_numPos; k++)
	redFlag[k] = 0;
      redFlag[m_numPos] = 1; // to guard for the boundary
      int currentRed = redQueue.front(); // where do we check for redQueue???? 
      // red and blue queues are parallel
      redQueue.pop();// 
      redFlag[currentRed] = 1; // 
      std::queue<int> localRed;
      localRed.push(currentRed);
      while( !localRed.empty())
	{
	  // 
	  int redT = localRed.front();
	  localRed.pop();
	  double P[24], area;
	  int nP = 0; // intersection points
	  int nc[3]= {0, 0, 0}; // means no intersection on the side (markers)
	  computeIntersectionBetweenRedAndBlue(/* red */redT, currentBlue, P, nP, area,nc);
	  if (nP>0) 
	    {
	      // intersection found: output P and original triangles if nP > 2
	      if (m_dbg && area>0)
		{
		  //std::cout << "area: " << area<< " nP:"<<nP << " sources:" << redT+1 << ":" << m_redMesh[redT].oldId <<
		  //  " " << currentBlue+1<< ":" << m_blueMesh[currentBlue].oldId << std::endl;
		}
	      if (m_dbg)
		{
		  m_dbg_out << "pa=[\n";
		    
		  for (k=0; k<nP; k++)
		    {
			
		      m_dbg_out <<  P[2*k] << "\t " ;
		    }
		    
		  m_dbg_out << "\n";
		  for (k=0; k<nP; k++)
		    {
			
		      m_dbg_out << P[2*k+1] << "\t "; 
		    }
		    
		  m_dbg_out << " ]; \n";
		  m_dbg_out << " patch(pa(1,:),pa(2,:),'m');       \n";
		}
	      // add neighbors to the localRed queue, if they are not marked
	      for (int nn= 0; nn<3; nn++)
		{
		  int neighbor = m_redMesh[redT].t[nn];
		  if (redFlag[neighbor] == 0)
		    {
		      localRed.push(neighbor);
		      redFlag[neighbor] =1; // flag it to not be added anymore
		    }
		  // n(find(nc>0))=ac;        % ac is starting candidate for neighbor
		  if (nc[nn]>0) // intersected  
		    n[nn] = redT;// start from 0!! 
		}
	      if (nP>1) // this will also construct triangles, if needed
		findNodes(redT, currentBlue, P, nP);
	    }
	    
	}
      for (int j=0; j<3; j++)
	{
	  int blueNeigh = m_blueMesh[currentBlue].t[j];
	  if (blueFlag[blueNeigh]==0 && n[j] >=0 ) // not treated yet and marked as a neighbor
	    {
	      // we identified triangle n[j] as intersecting with neighbor j of the blue triangle
	      blueQueue.push(blueNeigh);
	      redQueue.push(n[j]);
	      if (m_dbg)
		std::cout << "new triangles pushed: blue, red:" << blueNeigh+1 << " " << n[j]+1 << std::endl;
	      blueFlag[blueNeigh] = 1;
	    }
	}
    }
  delete [] redFlag;
  redFlag = NULL;
    
  delete [] blueFlag; // get rid of it
  blueFlag = NULL;
  if (m_dbg)
    m_dbg_out.close();
  return 0;
}

 
int borderPointsOfXinY(double * X, double * Y, double * P)
{
  // 2 triangles, 3 corners, is the corner of X in Y?
  // Y must have a positive area
  /*
    function P=PointsOfXInY(X,Y);
    % POINTSOFXINY finds corners of one triangle within another one
    %   P=PointsOfXInY(X,Y); computes for the two given triangles X
    %   and Y (point coordinates are stored column-wise, in counter clock
    %   order) the corners P of X which lie in the interior of Y.
      
    k=0;P=[];
    v0=Y(:,2)-Y(:,1); v1=Y(:,3)-Y(:,1);  % find interior points of X in Y
    d00=v0'*v0; d01=v0'*v1; d11=v1'*v1;  % using baricentric coordinates
    id=1/(d00*d11-d01*d01);
    for i=1:3 
    v2=X(:,i)-Y(:,1); d02=v0'*v2; d12=v1'*v2; 
    u=(d11*d02-d01*d12)*id; v=(d00*d12-d01*d02)*id;
    if u>=0 & v>=0 & u+v<=1            % also include nodes on the boundary
    k=k+1; P(:,k)=X(:,i);
    end;
    end;
  */
  int extraPoint = 0;
  for (int i=0; i<3; i++)
    {
      // compute twice the area of all 3 triangles formed by a side of Y and a corner of X; if one is negative, stop
      double A[2];
      for (int k=0; k<2; k++)
	A[k] = X[2*i+k];
      int inside=1;
      for (int j=0; j<3; j++)
	{
	  double B[2], C[2];
	  for (int k=0; k<2; k++)
	    {
	      B[k] = Y[2*j+k];
	      int j1 = (j+1)%3;
	      C[k] = Y[2*j1+k];
	    }
	    
	  double area2 = (B[0]-A[0])*(C[1]-A[1])-(C[0]-A[0])*(B[1]-A[1]);
	  if (area2<0.)
	    {
	      inside = 0; break;
	    }
	}
      if (inside)
	{
	  P[extraPoint*2  ] = A[0];
	  P[extraPoint*2+1] = A[1];
	  extraPoint++;
	}
    }
  return extraPoint;
}
  
/* 
   function P=SortAndRemoveDoubles(P);
   % SORTANDREMOVEDOUBLES sort points and remove duplicates
   %   P=SortAndRemoveDoubles(P); orders polygon corners in P counter
   %   clock wise and removes duplicates
     
   ep=10*eps;                           % tolerance for identical nodes
   m=size(P,2); 
   if m>0                              
   c=sum(P')'/m;                      % order polygon corners counter 
   for i=1:m                          % clockwise
   d=P(:,i)-c; ao(i)=angle(d(1)+sqrt(-1)*d(2));
   end;
   [tmp,id]=sort(ao); 
   P=P(:,id);
   i=1;j=2;                           % remove duplicates
   while j<=m
   if norm(P(:,i)-P(:,j))>ep
   i=i+1;P(:,i)=P(:,j);j=j+1;
   else
   j=j+1;
   end;
   end;
   P=P(:,1:i);
   end;
*/
  
int swap (double * p , double * q)
{
  double tmp = *p;
  *p = *q;
  *q = tmp;
  return 0;
}
int SortAndRemoveDoubles(double * P, int & nP)
{
  if (nP<2)
    return 0; // nothing to do
  // center of gravity for the points
  double c[2] = {0., 0.};
  int k=0;
  for (k=0; k<nP; k++)
    {
      c[0]+=P[2*k];
      c[1]+=P[2*k+1];
    }
  c[0]/=nP;
  c[1]/=nP;
  double angle[12]; // could be at most 12 points; much less usually
  for (k=0; k<nP; k++)
    {
      double x = P[2*k] - c[0], y = P[2*k+1] - c[1] ;
      if ( x!= 0. || y!=0.)
	angle[k] = atan2(y, x);
      else
	{
	  angle[k] = 0;
	  // this means that the points are on a line, or all coincident // degenerate case
	}
    } 
  // sort according to angle; also eliminate close points
  int sorted = 1;
  do
    {
      sorted = 1;
      for(k=0; k<nP-1; k++)
	{
	  if (angle[k]>angle[k+1])
	    {
	      sorted = 0;
	      swap ( angle+k, angle+k+1);
	      swap ( P+(2*k), P+(2*k+2));
	      swap ( P+(2*k+1), P+(2*k+3));
	    }
	}
    }
  while (!sorted);
  // eliminate doubles
    
  int i=0, j=1; // the next one; j may advance faster than i
  // check the unit 
  // these are cm; 2 points are the same if the distance is less than epsilon
  while (j<nP)
    {
      double d2 = length(Vector<2>(&P[2*i])-Vector<2>(&P[2*j]));
      if (d2 > epsilon)
	{
	  i++;  
	  P[2*i] = P[2*j];
	  P[2*i+1] = P[2*j+1]; 
	}
      j++;
    }
  // test also the last point with the first one (index 0)
    
  double d2 = length(Vector<2>(P)-Vector<2>(&P[2*i])); // check the first and last points (ordered from -pi to +pi)
  if (d2 > epsilon)
    {
      nP = i+1;
    }
  else
    nP = i; // effectively delete the last point (that would have been the same with first)
  if (nP==0)
    nP=1; // we should be left with at least one point we already tested if nP is 0 originally
  return 0;
}

// this method computed intersection between 2 triangles: will output n points, area, affected sides
int ProjectShell::computeIntersectionBetweenRedAndBlue(int red, int blue, double * P, int & nP, double & area,  int mark[3]) {
  // the points will be at most 9; they will describe a convex patch, after the points will be ordered and 
  // collapsed (eliminate doubles)
  // the area is not really required
  ProjectShell::Triangle2D & redTri = m_redMesh[red];
  ProjectShell::Triangle2D & blueTri = m_blueMesh[blue];
  double redTriangle[6];// column wise
  double blueTriangle[6];
  for (int i=0; i<3; i++)
    {
      // node i, 2 coordinates
      for (int k=0; k<2; k++)
	{
	  int node = redTri.v[i];
	  redTriangle[2*i+k] = m_xy[3*node+k];
	    
	  node = blueTri.v[i];
	  blueTriangle[2*i+k] =  m_xy[3*node+k];
	}
    }
  /* Matlab source code:
     function [P,n,M]=Intersect(X,Y);
     % INTERSECT intersection of two triangles and mortar contribution
     %   [P,n,M]=Intersect(X,Y); computes for the two given triangles X and
     %   Y (point coordinates are stored column-wise, in counter clock
     %   order) the points P where they intersect, in n the indices of
     %   which neighbors of X are also intersecting with Y, and the local
     %   mortar matrix M of contributions of the P1 elements X on the P1
     %   element Y. The numerical challenges are handled by including
     %   points on the boundary and removing duplicates at the end.
       
     [P,n]=EdgeIntersections(X,Y);
     P1=PointsOfXInY(X,Y);
     if size(P1,2)>1                      % if two or more interior points
     n=[1 1 1];                         % the triangle is candidate for all 
     end                                  % neighbors
     P=[P P1];
     P=[P PointsOfXInY(Y,X)];
     P=SortAndRemoveDoubles(P);           % sort counter clock wise
     M=zeros(3,3);
     if size(P,2)>0
     for j=2:size(P,2)-1                % compute interface matrix
     M=M+MortarInt(P(:,[1 j j+1]),X,Y);
     end;
     patch(P(1,:),P(2,:),'m')           % draw intersection for illustration
     %  H=line([P(1,:) P(1,1)],[P(2,:),P(2,1)]);
     %  set(H,'LineWidth',3,'Color','m');
     pause(0)
     end;
       
       
  */
  //we do not really need the mortar matrix
    
  //int n[3]={0, 0, 0};// no intersection of side red with blue
  //double area= 0.;
  // X corresponds to blue, Y to red
  nP=0; // number of intersection points
  int ret = edgeIntersections(blueTriangle, redTriangle, mark, P, nP);
  if (ret!=0) ERROR("Something went wrong");
    
  int extraPoints = borderPointsOfXinY(blueTriangle, redTriangle, &(P[2*nP]));
  if (extraPoints>1)
    {
      mark[0] = mark[1] = mark[2]=1;
    }				      		     
  nP+=extraPoints;
  extraPoints =  borderPointsOfXinY(redTriangle, blueTriangle, &(P[2*nP]));
  nP+=extraPoints;
    
  // now sort and orient the points in P, such that they are forming a convex polygon
  // this will be the foundation of our new mesh
  //
  SortAndRemoveDoubles (P, nP); // nP should be at most 6 in the end 
  // if there are more than 3 points, some area will be positive
  area = 0.;
  if (nP>=3)
    {
      for (int k=1; k<nP-1; k++)
	area += area2D(Vector<2>(P), Vector<2>(&P[2*k]), Vector<2>(&P[2*k+2]));
    }
  return 0; // no error
}

int ProjectShell::findNodes(int red, int blue, double * iP, int nP)
{
  // first of all, check against red and blue vertices
  //
  if (m_dbg)
    {
      std::cout<< "red, blue, nP, P " << red << " " << blue << " " << nP <<"\n";
      for (int n=0; n<nP; n++)
	std::cout << " \t" << iP[2*n] << "\t" << iP[2*n+1] << "\n";
	
    }
  int * foundIds = new int [nP];
  for (int i=0; i<nP; i++)
    {
      double * pp = &iP[2*i];// iP+2*i
      int found = 0; 
      // first, are they on vertices from red or blue?
      ProjectShell::Triangle2D & redTri = m_redMesh[red];
      int j=0;
      for (j=0; j<3&& !found; j++)
	{
	  int node = redTri.v[j];
	  double d2 = length(Vector<2>(pp)-Vector<2>(m_xy+(3*node)));	
	  if (m_dbg && i==0)
	    std::cout<< "  red node " << j << " " << node << " " << m_xy[3*node] << " " << m_xy[3*node+1] << " d2:" << d2 <<  " \n";
	  if (d2<epsilon)
	    {
	      foundIds[i] = node; // no new node
	      found = 1;
	    }
	}
      ProjectShell::Triangle2D & blueTri = m_blueMesh[blue];
      for (j=0; j<3 && !found; j++)
	{
	  int node = blueTri.v[j];
	  double d2 = length(Vector<2>(pp)-Vector<2>(m_xy+(3*node)));	
	  if (m_dbg && i==0) 
	    std::cout<< "  blue node " << j << " " << node << " " << m_xy[3*node] << " " << m_xy[3*node+1] << " d2:" << d2 <<  " \n";
	  if (d2<epsilon)
	    {
	      foundIds[i] = node; // no new node
	      found = 1;
	    }
	}
      if (!found)
	{
	  // find the edge it belongs, first
	  //
	  for (j=0; j<3; j++)
	    {
	      int edge = redTri.e[j];
	      int ae = abs(edge);
	      int v1 = ps_edges[ae-1].v[0];
	      int v2 = ps_edges[ae-1].v[1];
	      double area = area2D (Vector<2>(&m_xy[3*v1]), 
				    Vector<2>(&m_xy[3*v2]), 
				    Vector<2>(pp));
	      if (m_dbg)
		std::cout << "   edge " << j << ": " << edge << " " << v1 << " " << v2 << "  area : " << area << "\n"; 
	      if ( fabs(area) < epsilon*epsilon  )
		{
		  // found the edge; now find if there is a point in the list here
		  std::list<int> & expts = ps_edges[ae-1].extraNodes;
		  // if the points pp is between extra points, then just give that id
		  // if not, create a new point, (check the id)
		  //
		  std::list<int>::iterator it;
		  for ( it = expts.begin(); it!=expts.end() && !found; it++)<--- Prefer prefix ++/-- operators for non-primitive types.
		    {
		      int pnt = *it;
		      double d2 = length(Vector<2>(pp)-Vector<2>(&m_xy[3*pnt]));
		      if (d2<epsilon)
			{
			  found = 1;
			  foundIds[i] = pnt;
			}
		    }
		  if (!found)
		    {
		      // create a new point in 2d (at the intersection)
		      foundIds [i] = m_num2dPoints;
		      expts.push_back(m_num2dPoints);
		      if (m_2dcapacity < m_num2dPoints+1)
			{
			  // Underestimated the number of intersection points
			  //std::cout << " underestimated capacity for 2d array\n";
			  // double the capacity of m_xy array
			    
			  double * new_xy = new double [6* m_2dcapacity];
			  int jj=0;
			  for (jj=0; jj<3*m_2dcapacity; jj++)
			    {
			      new_xy[jj] = m_xy[jj];
				
			    }
			  for (jj=3*m_2dcapacity-1; jj<6*m_2dcapacity; jj+=3)
			    new_xy[jj] = 0.;
			  // make 0 the z coordinate
			  m_2dcapacity *= 2;
			  delete [] m_xy;
			  m_xy = new_xy;
			}
		      m_xy[3*m_num2dPoints] = pp[0];
		      m_xy[3*m_num2dPoints+1] = pp[1];
		      m_num2dPoints++;
		      if (m_dbg)
			{
			  std::cout<< " new 2d " << m_num2dPoints - 1 << " : " << pp[0] << " " << pp[1] <<  "on edge " << ae << "\n";
			}
		      found = 1;
		    }
		} 
	    }
	}
      if (!found)
	{
	  ERROR3("Point (%g,%g) is not on a red triangle %d", pp[0], pp[1], red);<--- Memory leak: foundIds
	}
    }
  // now we can build the triangles, from P array, with foundIds
  if (nP>=3)
    {
      // what are the triangles 
      FinalTriangle ftr;
      ftr.redTriangle = red;
      ftr.blueTriangle = blue;
      ftr.v[0] = foundIds[0];
      for (int i=1; i<=nP-2; i++)
	{
	  // triangle 0, i, i+1
	  ftr.v[1]=foundIds[i];
	  ftr.v[2] = foundIds[i+1];
	  m_finalMesh.push_back(ftr);
	  if (m_dbg)
	    {
	      std::cout << " triangle " << ftr.v[0] << " " << ftr.v[1] << " " << ftr.v[2] << "\n"; 
	    }
	}
    }
  delete [] foundIds;
  foundIds = NULL;
  return 0;
}
  
#if 0  
int ProjectShell::commitProjectedMesh()
{
  // here we will create new vertices, and use the coordinates in 2D
  //  m_num2dPoints is the number of nodes (some are not used, because they were probably   // collapsed
  //  we do not specifically merge red and blue nodes, but we are looking first for 
  //  nodes in red , then blue, then on red edges; some will not appear, according
  //  to the tolerance
  //
  //iMesh_Instance mesh = this->mk_core()->imesh_instance();
  iMesh_Instance mesh = NULL;
  iBase_EntityHandle * newVerts = NULL; // no vertices yet
  // iBase_INTERLEAVED
  int err= 0;
  int size1, size2;
  iMesh_createVtxArr(mesh,
		     /*in*/ m_num2dPoints,
		     /*in*/ iBase_INTERLEAVED,
		     /*in*/ m_xy,
		     /*in*/ m_num2dPoints*3,
		     /*inout*/ &newVerts,
		     /*inout*/ &size1,
		     /*inout*/ &size2,
		     /*out*/ &err); 
  if (err!=0)
    {
      std::cout<<"can't create vertices\n";
      exit (1);
    }
  // size of 
  //  then entity set, then elements (triangles)
  //
  int numTriangles = m_finalMesh.size();
  long int * adjacency = new long int [3*numTriangles];
  iBase_EntityHandle * conn = (iBase_EntityHandle *)adjacency;
  for (int L =0; L<numTriangles; L++)
    {
      FinalTriangle & tria = m_finalMesh[L];
	
	
      for (int k=0; k<3; k++)
	{
	  int indexInV =  tria.v[k];
	  conn[3*L+k] = newVerts[indexInV];
	}
    }
  int numElements = numTriangles;
  iBase_EntitySetHandle orig_set;
  iMesh_createEntSet(mesh, 0, &orig_set, &err);
  int n = numTriangles;
  int junk1 = n, junk2 = n, junk3 = n, junk4 = n;
  int * stat = new int [numElements];
  int* ptr2 = stat;
  int ierr;
  iBase_EntityHandle *   	 new_entity_handles = NULL;
  iMesh_createEntArr( mesh,
		      iMesh_TRIANGLE,
		      conn, 3*numElements,
		      &new_entity_handles, &junk1, &junk2,
		      &ptr2, &junk3, &junk4,
		      &ierr );
  if (ierr!=0)
    {
      std::cout<<" can't create triangles\n";
      exit (1);
    }
  iMesh_addEntArrToSet  	(  mesh,
				   new_entity_handles,
				   numElements,
				   orig_set,
				   &ierr);
  if (ierr!=0)
    {
      std::cout<< " can't add to entity set \n";
      exit(1);
    }	 
  // now, look at the tags : red is positive, blue is negative oriented triangle
  iBase_TagHandle   	pos_tag_handle; 
    
  const char * tagName1 = "Positive";
  iMesh_createTag  	( mesh,
		          tagName1,
		          /*  size ? */ 1,
		          iBase_INTEGER ,
		          &pos_tag_handle,
		          &ierr,
		          strlen(tagName1) ) ;	 
    
  if (ierr!=0)
    {
      std::cout<< " can't create positive tag \n";
      exit(1);
    }
  int * tagValues = new int [numElements];
  for (int e=0; e<numElements; e++)
    {
      int redId = m_finalMesh[e].redTriangle;
      tagValues[e] = m_redMesh[ redId ].oldId;
	
    }
  // positive or negative triangles
  iMesh_setIntArrData  	(  mesh,
			   new_entity_handles,
			   numElements,
			   pos_tag_handle,
			   tagValues,
			   numElements,
			   &ierr); 
  if (ierr!=0)
    {
      std::cout<< " can't create positive tag field \n";
      exit(1);
    }
  // now blue tag
  // now, look at the tags : red is positive, blue is negative oriented triangle
  iBase_TagHandle   	neg_tag_handle; 
    
  const char * tagName2 = "Negative";
  iMesh_createTag  	( mesh,
		          tagName2,
		          /*  size ? */ 1,
		          iBase_INTEGER ,
		          &neg_tag_handle,
		          &ierr,
		          strlen(tagName1) ) ;	 
    
  if (ierr!=0)
    {
      std::cout<< " can't create negative tag \n";
      exit(1);
    }
  for (int e=0; e<numElements; e++)
    {
      int blueId = m_finalMesh[e].blueTriangle;
      tagValues[e] = m_blueMesh[ blueId ].oldId;
	
    }
  // positive or negative triangles
  iMesh_setIntArrData  	(  mesh,
			   new_entity_handles,
			   numElements,
			   neg_tag_handle,
			   tagValues,
			   numElements,
			   &ierr); 
  if (ierr!=0)
    {
      std::cout<< " can't create negative tag field \n";
      exit(1);
    }
  delete [] tagValues;
  delete [] adjacency;
  return 0;
}
#endif
int edgeIntersections(double * red, double * blue, int mark[3], double * points, int & nPoints)
{
  /* EDGEINTERSECTIONS computes edge intersections of two triangles
     [P,n]=EdgeIntersections(X,Y) computes for the two given triangles  * red 
     and blue ( stored column wise )
     (point coordinates are stored column-wise, in counter clock
     order) the points P where their edges intersect. In addition,
     in n the indices of which neighbors of red  are also intersecting
     with blue are given.
  */
    
  // points is an array with 12 slots   (12 * 2 doubles) 
  nPoints = 0; 
  mark[0] = mark[1] = mark[2]=0 ; // no neighbors of red involved yet
  /*for i=1:3                            % find all intersections of edges
    for j=1:3
    b=Y(:,j)-X(:,i);               
    A=[X(:,mod(i,3)+1)-X(:,i) -Y(:,mod(j,3)+1)+Y(:,j)];
    if rank(A)==2                   % edges not parallel
    r=A\b;
    if r(1)>=0 & r(1)<=1 & r(2)>=0 & r(2)<=1,  % intersection found
    k=k+1; P(:,k)=X(:,i)+r(1)*(X(:,mod(i,3)+1)-X(:,i)); n(i)=1;
    end;
    end; 
    end;
    end;*/
  for (int i=0; i<3; i++)
    {
      for (int j=0; j<3; j++)
	{
	  double b[2];
	  double a[2][2]; // 2*2
	  int iPlus1 = (i+1)%3;
	  int jPlus1 = (j+1)%3;
	  for (int k=0; k<2; k++)
	    {
	      b[k] = blue[2*j+k] - red[2*i+k];
	      // row k of a: a(k, 0), a(k, 1)
	      a[ k ][0]    = red  [ 2*iPlus1 + k] - red [2*i + k];
	      a[ k ][1]    = blue [ 2 * j + k] - blue [2*jPlus1 +k];
		
	    }
	  double delta = a[0][0]*a[1][1] - a[0][1]*a[1][0];
	  if (delta != 0.)
	    {
	      // not parallel
	      double alfa = (b[0]*a[1][1]-a[0][1]*b[1])/delta;
	      double beta = (-b[0] * a[1][0] + b[1] * a[0][0])/delta;
	      if (0<= alfa && alfa <=1. && 0<= beta && beta <= 1.)
		{
		  // the intersection is good
		  for (int k=0; k<2; k++)
		    {
		      points[2*nPoints+k] = red[2*i+k] + alfa*(red[2*iPlus1+k]-red[2*i+k]);
		    }
		  mark[i] = 1; // so neighbor number i will be considered too.
		  nPoints++;
		}
	    }
	    
	}
    }
  return 0;
}

}//namespace MeshKit