1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075 | //****************************************************************************//
// Acknowlegement: The original Code "Blend" from John Burkardt ( Under GNU
// lincense) have been significantly modified. Anyhow full
// credit is given to original developers.
//
// Document is also copied from the original code.
//
// Modification Date : 7th July 2009;
// Modified By : Chaman Singh Verma
// Argonne National Lab, Argonne, IL, USA.
// Major Changes:
// (1) Parameters range (-1,1) instead of (0,1).
// (2) Probably better function names
// (3) Better modularity and reuse
// (4) Changed ordering (k,j,i) instead of (i,j,k)
// (5) Guass point introduction.
// (6) Probably much easier to understand than the original code.
// (7) Probably better input parameter passing order.
// (8) Error checking using assertions introduced.
// Downside:
// (1) May be little more expensive ( than the original code) because of
// function calling overheads.
//
// (2) Redundant calculations to make code easier to understand.
//
////////////////////////////////////////////////////////////////////////////////
#include <assert.h>
#include <fstream>
#include <vector>
#include <iostream>
using namespace std;
namespace TFI {
double gauss_node(int i, int N)
{
double du = 2.0 / (double) (N - 1);
return -1.0 + i*du;
}
//****************************************************************************80
double linear_interpolation(double r, double x0, double x1)
{
//************************************************************************80
//
// Purpose: extends scalar data at endpoints to a line.
//
// Diagram:
//
// 0-----r-----1
//
// Author:
//
// John Burkardt: Modified by Chaman Singh Verma
//
// Parameters:
//
// Input, double R, the coordinate where an interpolated value is desired.
//
// Input, double X0, X1, the data values at the ends of the line.
//
// Output, double *X, the interpolated data value at (R).
//
///////////////////////////////////////////////////////////////////////////
assert(r >= -1.0 && r <= 1.0);
double val = (1.0 - r) * x0 + (1.0 + r) * x1;
val *= 0.5;
return val;
}
//****************************************************************************80
double bilinear_interpolation(double r, double s, double *valCorners)
{
assert(r >= -1.0 && r <= 1.0);
assert(s >= -1.0 && s <= 1.0);
double val = (1.0 - r) * (1.0 - s) * valCorners[0] +
(1.0 + r) * (1.0 - s) * valCorners[1] +
(1.0 + r) * (1.0 + s) * valCorners[2] +
(1.0 - r) * (1.0 + s) * valCorners[3];
val *= 0.25;
return val;
}
//****************************************************************************80
double bilinear_interpolation(double r, double s,
double x00, double x10, double x11, double x01)
{
double valCorners[4];
valCorners[0] = x00;
valCorners[1] = x10;
valCorners[2] = x11;
valCorners[3] = x01;
double val = bilinear_interpolation(r, s, valCorners);
return val;
}
//****************************************************************************80
double trilinear_interpolation(double r, double s, double t, double *valCorners)
{
assert(r >= -1.0 && r <= 1.0);
assert(s >= -1.0 && s <= 1.0);
assert(t >= -1.0 && t <= 1.0);
double val = (1.0 - r) * (1.0 - s) * (1.0 - t) * valCorners[0] +
(1.0 + r) * (1.0 - s) * (1.0 - t) * valCorners[1] +
(1.0 + r) * (1.0 + s) * (1.0 - t) * valCorners[2] +
(1.0 - r) * (1.0 + s) * (1.0 - t) * valCorners[3] +
(1.0 - r) * (1.0 - s) * (1.0 + t) * valCorners[4] +
(1.0 + r) * (1.0 - s) * (1.0 + t) * valCorners[5] +
(1.0 + r) * (1.0 + s) * (1.0 + t) * valCorners[6] +
(1.0 - r) * (1.0 + s) * (1.0 + t) * valCorners[7];
val *= 0.125;
return val;
}
//****************************************************************************80
double trilinear_interpolation(double r, double s, double t,
double x000, double x100, double x110, double x010,
double x001, double x101, double x111, double x011)
{
double valCorners[8];
valCorners[0] = x000;
valCorners[1] = x100;
valCorners[2] = x110;
valCorners[3] = x010;
valCorners[4] = x001;
valCorners[5] = x101;
valCorners[6] = x111;
valCorners[7] = x011;
double val = trilinear_interpolation(r, s, t, valCorners);
return val;
}
//****************************************************************************80
double transfinite_blend(double r, double s,
double x00, double x10, double x11, double x01,
double xr0, double x1s, double xr1, double x0s)
{
//****************************************************************************80
//
// Purpose:
//
// BLEND_1D1 extends scalar data along the boundary into a square.
//
// Diagram:
//
// 01-----r1-----11
// | . |
// | . |
// 0s.....rs.....1s
// | . |
// | . |
// 00-----r0-----10
//
// Formula:
//
// Written as a polynomial in R and S, the interpolation map has the form
//
// X(R,S) =
// 1 * ( x0s + xr0 - x00 )
// + r * ( x00 + x1s - x0s - x10 )
// + s * ( x00 + xr0 - x01 - xr1 )
// + r * s * ( x01 + x10 - x00 - x11 )
//
// The nonlinear term ( r * s ) has an important role:
//
// If ( x01 + x10 - x00 - x11 ) is zero, then the input data lies in a plane,
// and the mapping is affine. All the interpolated data will lie
// on the plane defined by the four corner values. In particular,
// on any line through the square, data values at intermediate points
// will lie between the values at the endpoints.
//
// If ( x01 + x10 - x00 - x11 ) is not zero, then the input data does
// not lie in a plane, and the interpolation map is nonlinear. On
// any line through the square, data values at intermediate points
// may lie above or below the data values at the endpoints. The
// size of the coefficient of r * s will determine how severe this
// effect is.
//
// Author:
//
// John Burkardt: Modified by Chaman Singh Verma
//
// Reference:
//
// William Gordon, Charles A Hall,
// Construction of Curvilinear Coordinate Systems and Application to
// Mesh Generation,
// International Journal of Numerical Methods in Engineering,
// Volume 7, pages 461-477, 1973.
//
// Joe Thompson, Bharat Soni, Nigel Weatherill,
// Handbook of Grid Generation,
// CRC Press,
// 1999.
//
// Parameters:
//
// Input, double R, S, the coordinates where an interpolated value is desired.
//
// Input, double X00, X01, X10, X11, the data values at the corners.
//
// Input, double XR0, XR1, X0S, X1S, the data values at points along the edges.
//
// Output, double *X, the interpolated data value at (R,S).
//
////////////////////////////////////////////////////////////////////////////
double u = linear_interpolation(r, x0s, x1s);
double v = linear_interpolation(s, xr0, xr1);
double uv = bilinear_interpolation(r, s, x00, x10, x11, x01);
double val = u + v - uv;
return val;
}
//****************************************************************************80
double transfinite_blend(double r, double s, double t,
double x000, double xr00, double x100,
double x0s0, double xrs0, double x1s0,
double x010, double xr10, double x110,
double x00t, double xr0t, double x10t,
double x0st, double x1st,
double x01t, double xr1t, double x11t,
double x001, double xr01, double x101,
double x0s1, double xrs1, double x1s1,
double x011, double xr11, double x111)
{
//************************************************************************80
//
// Purpose: extends scalar data along the surface into a cube.
//
// Diagram:
//
// 010-----r10-----110 011-----r11-----111
// | . | | . |
// | . | | . |
// 0s0.....rs0.....1s0 0s1.....rs1.....1s1 S
// | . | | . | |
// | . | | . | |
// 000-----r00-----100 001-----r01-----101 +----R
// BACK FRONT
//
// 001-----0s1-----011 101-----1s1-----111
// | . | | . |
// | . | | . |
// 00t.....0st.....01t 10t.....1st.....11t T
// | . | | . | |
// | . | | . | |
// 000-----0s0-----010 100-----1s0-----110 +----S
// LEFT RIGHT
// 001-----r01-----101 011-----r11-----111
// | . | | . |
// | . | | . |
// 00t.....r0t.....10t 01t.....r1t.....11t T
// | . | | . | |
// | . | | . | |
// 000-----r0t-----100 010-----r10-----110 +----R
// BOTTOM TOP
//
// Author:
//
// John Burkardt
//
// Reference:
//
// William Gordon, Charles A Hall,
// Construction of Curvilinear Coordinate Systems and Application to
// Mesh Generation,
// International Journal of Numerical Methods in Engineering,
// Volume 7, pages 461-477, 1973.
//
// Joe Thompson, Bharat Soni, Nigel Weatherill,
// Handbook of Grid Generation,
// CRC Press,
// 1999.
//
// Parameters:
//
// Input, double R, S, T, the coordinates where an interpolated value is desired.
//
// Input, double X000, X001, X010, X011, X100, X101, X110, X111, the data
// values at the corners.
//
// Input, double XR00, XR01, XR10, XR11, X0S0, X0S1, X1S0, X1S1, X00T, X01T,
// X10T, X11T, the data values at points along the edges.
//
// Input, double X0ST, X1ST, XR0T, XR1T, XRS0, XRS1, the data values
// at points on the faces.
//
// Output, double *X, the interpolated data value at (R,S,T).
//
////////////////////////////////////////////////////////////////////////////
double u = linear_interpolation(r, x0st, x1st);
double v = linear_interpolation(s, xr0t, xr1t);
double w = linear_interpolation(t, xrs0, xrs1);
double uv = bilinear_interpolation(r, s, x00t, x10t, x11t, x01t);
double uw = bilinear_interpolation(r, t, x0s0, x1s0, x1s1, x0s1);
double vw = bilinear_interpolation(s, t, xr00, xr10, xr11, xr01);
double uvw = trilinear_interpolation(r, s, t,
x000, x100, x110, x010,
x001, x101, x111, x011);
double val = u + v + w - uw - uv - vw + uvw;
return val;
}
//****************************************************************************80
void blend_from_corners(double *x, int n)<--- The function 'blend_from_corners' is never used.
{
//****************************************************************************80
//
// Purpose: extends indexed scalar data at endpoints along a line.
//
// Diagram:
//
// ( X0, ..., ..., ..., ..., ..., X6 )
//
// Author:
//
// John Burkardt
//
// Reference:
//
// William Gordon, Charles A Hall,
// Construction of Curvilinear Coordinate Systems and Application to
// Mesh Generation,
// International Journal of Numerical Methods in Engineering,
// Volume 7, pages 461-477, 1973.
//
// Joe Thompson, Bharat Soni, Nigel Weatherill,
// Handbook of Grid Generation,
// CRC Press,
// 1999.
//
// Parameters:
//
// Input/output, double X[M].
//
// On input, X[0] and X[M-1] contain scalar values which are to be
// interpolated through the entries X[1] through X[M-2]. It is assumed
// that the dependence of the data is linear in the vector index I.
//
// On output, X[1] through X[M-2] have been assigned interpolated values.
//
// Input, int M, the number of entries in X.
//
int i;
double r;<--- The scope of the variable 'r' can be reduced.
for (i = 1; i < n - 1; i++) {
r = gauss_node(i, n);
x[i] = linear_interpolation(r, x[0], x[n - 1]);
}
return;
}
//****************************************************************************80
void blend_from_edges(double *x, int nx, int ny)
{
//****************************************************************************80
//
// Purpose: extends indexed scalar data along edges into a table.
//
// Diagram:
//
// ( X00, X01, X02, X03, X04, X05, X06 )
// ( X10, ..., ..., ..., ..., ..., X16 )
// ( X20, ..., ..., ..., ..., ..., X26 )
// ( X30, ..., ..., ..., ..., ..., X36 )
// ( X40, X41, X42, X43, X44, X45, X46 )
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 7th July December 2009
//
// Author:
//
// John Burkardt: Modified by Chaman Singh Verma
//
// Reference:
//
// William Gordon, Charles A Hall,
// Construction of Curvilinear Coordinate Systems and Application to
// Mesh Generation,
// International Journal of Numerical Methods in Engineering,
// Volume 7, pages 461-477, 1973.
//
// Joe Thompson, Bharat Soni, Nigel Weatherill,
// Handbook of Grid Generation,
// CRC Press,
// 1999.
//
// Parameters:
//
// Input/output, double X[NX*NY], a singly dimensioned array that
// is "really" doubly dimensioned. The double dimension index [I][J]
// corresponds to the single dimension index J * NX + I.
//
// On input, data is contained in the "edge entries"
// X[0][0], X[I][0], X[0][NY-1] and X[NX-1][NY-1],
// for I = 0 to NX-1, and J = 0 to NY-1.
//
// On output, all entries in X have been assigned a value.
//
// Input, int NX, NY the number of rows and columns in X.
//
///////////////////////////////////////////////////////////////////////////////
double x0 = x[0];
double x1 = x[nx - 1];
double x2 = x[nx * ny - 1];
double x3 = x[nx * ny - nx];
for (int j = 1; j < ny - 1; j++) {
double s = gauss_node(j, ny);
for (int i = 1; i < nx - 1; i++) {
double r = gauss_node(i, nx);
int il = j*nx;
int ir = j * nx + nx - 1;
int it = (ny - 1) * nx + i;
int ib = i;
int offset = j * nx + i;
double xr0 = x[ib];
double x1s = x[ir];
double xr1 = x[it];
double x0s = x[il];
x[offset] = transfinite_blend(r, s, x0, x1, x2, x3, xr0, x1s, xr1, x0s);
}
}
return;
}
////////////////////////////////////////////////////////////////////////////////
void blend_from_corners(double *x, int nx, int ny)
{
//****************************************************************************80
//
// Purpose: extends indexed scalar data at corners into a table.
//
// Diagram:
//
// ( X00, ..., ..., ..., ..., ..., X06 )
// ( ..., ..., ..., ..., ..., ..., ... )
// ( ..., ..., ..., ..., ..., ..., ... )
// ( ..., ..., ..., ..., ..., ..., ... )
// ( X40, ..., ..., ..., ..., ..., X46 )
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 19 December 1998
//
// Author:
//
// John Burkardt
//
// Reference:
//
// William Gordon, Charles A Hall,
// Construction of Curvilinear Coordinate Systems and Application to
// Mesh Generation,
// International Journal of Numerical Methods in Engineering,
// Volume 7, pages 461-477, 1973.
//
// Joe Thompson, Bharat Soni, Nigel Weatherill,
// Handbook of Grid Generation,
// CRC Press,
// 1999.
//
// Parameters:
//
// Input/output, double X[NX*NY], a singly dimensioned array that
// is "really" doubly dimensioned. The double dimension index [I][J]
// corresponds to the single dimension index J * NX + I.
//
// On input, data values have been stored in the entries
// [0], [NX-1], [NX*NY-NX] and [NX*NY-1], which correspond to the double
// dimension entries [0][0], [1][NX-1], [0][NY-1] and [NX-1][NY-1].
//
// On output, all entries in X have been assigned a value.
//
// Input, int NX, NY, the number of rows and columns in the doubly
// dimensioned data.
//
///////////////////////////////////////////////////////////////////////////////
int offset;
double r, s, x0, x1;<--- The scope of the variable 'r' can be reduced.<--- The scope of the variable 's' can be reduced.
int nxy = nx*ny;
for (int i = 1; i < nx - 1; i++) {
r = gauss_node(i, nx);
x0 = x[0];
x1 = x[nx - 1];
offset = i;
x[offset] = linear_interpolation(r, x0, x1);
x0 = x[nxy - nx];
x1 = x[nxy - 1 ];
offset = (ny - 1) * nx + i;
x[offset] = linear_interpolation(r, x0, x1);
}
for (int j = 1; j < ny - 1; j++) {
s = gauss_node(j, ny);
x0 = x[0];
x1 = x[nx * ny - nx];
offset = j*nx;
x[offset] = linear_interpolation(s, x0, x1);
x0 = x[nx - 1];
x1 = x[nxy - 1];
offset = j * nx + (nx - 1);
x[offset] = linear_interpolation(s, x0, x1);
}
blend_from_edges(x, nx, ny);
return;
}
//****************************************************************************80
void blend_from_faces(double *x, int nx, int ny, int nz)
{
//************************************************************************80
//
// Purpose:
//
// BLEND_FROM_FACES extends indexed scalar data along faces into a cubic table.
//
// Diagram:
//
// ( X000 X010 X020 X030 X040 X050 )
// ( X100 X110 X120 X130 X140 X150 )
// ( X200 X210 X220 X230 X240 X250 ) Layer 1
// ( X300 X310 X320 X330 X340 X350 )
// ( X400 X410 X420 X430 X440 X450 )
//
// ( X001 X011 X021 X031 X041 X051 )
// ( X101 ... .... .... .... X151 )
// ( X201 ... .... .... .... X251 ) Layer K
// ( X301 ... .... .... .... X351 ) 1 < K < M3
// ( X401 X411 X421 X431 X441 X451 )
//
// ( X002 X012 X022 X032 X042 X052 )
// ( X102 X112 X122 X132 X142 X152 )
// ( X202 X212 X222 X232 X242 X252 ) Layer M3
// ( X302 X312 X322 X332 X342 X352 )
// ( X402 X412 X422 X432 X442 X452 )
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 22 December 1998
//
// Author:
//
// John Burkardt
//
// Reference:
//
// William Gordon, Charles A Hall,
// Construction of Curvilinear Coordinate Systems and Application to
// Mesh Generation,
// International Journal of Numerical Methods in Engineering,
// Volume 7, pages 461-477, 1973.
//
// Joe Thompson, Bharat Soni, Nigel Weatherill,
// Handbook of Grid Generation,
// CRC Press,
// 1999.
//
// Parameters:
//
// Input/output, double X[NX*NY*NZ], a singly dimensioned array that
// is "really" triply dimensioned. The triple dimension index
// [I][J][K] corresponds to the single dimension index
// K * NX*NY + J * NX + I
//
// On input, there is already scalar data in the entries X[I][J][K]
// corresponding to "faces" of the table, that is, entries for which
// at least one of the three indices I, J and K is equal to their
// minimum or maximum possible values.
//
// On output, all entries in X have been assigned a value, using the
// table indices as independent variables.
//
// Input, int NX, NY, NY, the number of rows, columns, and layers in X.
//
////////////////////////////////////////////////////////////////////////////
double r, s, t;<--- The scope of the variable 't' can be reduced.
int offset, nxy = nx*ny;
for (int k = 1; k < nz - 1; k++) {
t = gauss_node(k, nz);
for (int j = 1; j < ny - 1; j++) {
s = gauss_node(j, ny);
for (int i = 1; i < nx - 1; i++) {
r = gauss_node(i, nx);
// Points on Back Plane
double x000 = x[0];
double xr00 = x[i];
double x100 = x[(nx - 1)];
double x0s0 = x[j * nx];
double xrs0 = x[i + j * nx];
double x1s0 = x[(nx - 1) + j * nx];
double x010 = x[(ny - 1) * nx];
double xr10 = x[i + (ny - 1) * nx];
double x110 = x[(ny - 1) * nx + (nx - 1)];
// Intermediate Plane
double x00t = x[k * nxy];
double xr0t = x[i + k * nxy];
double x10t = x[(nx - 1) + k * nxy];
double x0st = x[j * nx + k * nxy];
double x1st = x[(nx - 1) + j * nx + k * nxy];
double x01t = x[ (ny - 1) * nx + k * nxy];
double xr1t = x[i + (ny - 1) * nx + k * nxy];
double x11t = x[(nx - 1) + (ny - 1) * nx + k * nxy];
// Front Plane
double x001 = x[(nz - 1) * nxy];
double xr01 = x[ i + (nz - 1) * nxy];
double x101 = x[(nz - 1) * nxy + (nx - 1)];
double x0s1 = x[ j * nx + (nz - 1) * nxy];
double xrs1 = x[ i + j * nx + (nz - 1) * nxy];
double x1s1 = x[ (nx - 1) + j * nx + (nz - 1) * nxy];
double x011 = x[(ny - 1) * nx + (nz - 1) * nxy];
double xr11 = x[ i + (ny - 1) * nx + (nz - 1) * nxy];
double x111 = x[(nz - 1) * nxy + (ny - 1) * nx + (nx - 1)];
offset = k * nxy + j * nx + i;
x[offset] = transfinite_blend(r, s, t,
x000, xr00, x100,
x0s0, xrs0, x1s0,
x010, xr10, x110,
x00t, xr0t, x10t,
x0st, x1st,
x01t, xr1t, x11t,
x001, xr01, x101,
x0s1, xrs1, x1s1,
x011, xr11, x111);
}
}
}
return;
}
////////////////////////////////////////////////////////////////////////////////
void blend_from_edges(double *x, int nx, int ny, int nz)
{
//************************************************************************80
//
// Purpose: extends indexed scalar data along "edges" into a cubic table.
//
// Diagram:
//
// ( X000, X010, X020, X030, X040, X050 )
// ( X100, ..., ..., ..., ..., X150 )
// ( X200, ..., ..., ..., ..., X250 ) Layer 1
// ( X300, ..., ..., ..., ..., X350 )
// ( X400, X410, X420, X430, X440, X450 )
//
// ( X001, ..., ..., ..., ..., X051 )
// ( ...., ..., ..., ..., ..., ... )
// ( ...., ..., ..., ..., ..., ... ) Layer K
// ( ...., ..., ..., ..., ..., ... ) 1 < K < M3
// ( X401, ..., ..., ..., ..., X451 )
//
// ( X002, X012, X022, X032, X042, X052 )
// ( X102, ..., ..., ..., ..., X152 )
// ( X202, ..., ..., ..., ..., X252 ) Layer M3
// ( X302 ..., ..., ..., ..., X352 )
// ( X402, X412, X422, X432, X442, X452 )
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 22 December 1998
//
// Author:
//
// John Burkardt
//
// Reference:
//
// William Gordon, Charles A Hall,
// Construction of Curvilinear Coordinate Systems and Application to
// Mesh Generation,
// International Journal of Numerical Methods in Engineering,
// Volume 7, pages 461-477, 1973.
//
// Joe Thompson, Bharat Soni, Nigel Weatherill,
// Handbook of Grid Generation,
// CRC Press,
// 1999.
//
// Parameters:
//
// Input/output, double X[NX*NY*NZ], a singly dimensioned array that
// is "really" triply dimensioned. The triple dimension index
// [I][J][K] corresponds to the single dimension index
// K * NX*NY + J * NX + I
//
// On input, there is already scalar data in the entries X[I][J][K]
// corresponding to "edges" of the table, that is, entries for which
// at least two of the three indices I, J and K are equal to their
// minimum or maximum possible values.
//
// Input, int NX, NY, NZ, the number of rows, columns, and layers in X.
//
////////////////////////////////////////////////////////////////////////////
int offset;
int nxy = nx*ny;
double r, s, t;
double x00, x10, x11, x01;
double xs0, x1t, xs1, x0t;
for (int k = 1; k < nz - 1; k++) {
t = gauss_node(k, nz);
for (int j = 1; j < ny - 1; j++) {
s = gauss_node(j, ny);
//Left Face ...
x00 = x[0];
x10 = x[(ny - 1) * nx];
x11 = x[(nz - 1) * nxy + (ny - 1) * nx];
x01 = x[(nz - 1) * nxy];
xs0 = x[j * nx];
x1t = x[k * nxy + (ny - 1) * nx];
xs1 = x[(nz - 1) * nxy + j * nx];
x0t = x[k * nxy];
offset = k * nxy + j*nx;
x[offset] = transfinite_blend(s, t, x00, x10, x11, x01, xs0, x1t, xs1, x0t);
// Right Face ...
x00 = x[nx - 1];
x10 = x[(ny - 1) * nx + (nx - 1)];
x11 = x[(nz - 1) * nxy + (ny - 1) * nx + (nx - 1)];
x01 = x[(nz - 1) * nxy + (nx - 1)];
xs0 = x[j * nx + (nx - 1)];
x1t = x[k * nxy + (ny - 1) * nx + (nx - 1)];
xs1 = x[(nz - 1) * nxy + j * nx + (nx - 1)];
x0t = x[k * nxy + (nx - 1)];
offset = k * nxy + j * nx + nx - 1;
x[offset] = transfinite_blend(s, t, x00, x10, x11, x01, xs0, x1t, xs1, x0t);
}
}
double xr0, xr1;
for (int k = 1; k < nz - 1; k++) {
t = gauss_node(k, nz);
for (int i = 1; i < nx - 1; i++) {
r = gauss_node(i, nx);
// Bottom Face ...
x00 = x[0];
x10 = x[nx - 1];
x11 = x[(nz - 1) * nxy + (nx - 1)];
x01 = x[(nz - 1) * nxy];
xr0 = x[i];
x1t = x[k * nxy + (nx - 1)];
xr1 = x[(nz - 1) * nxy + i];
x0t = x[k * nxy];
offset = k * nxy + i;
x[offset] = transfinite_blend(r, t, x00, x10, x11, x01, xr0, x1t, xr1, x0t);
// Top Face ...
x00 = x[(ny - 1) * nx];
x10 = x[(ny - 1) * nx + nx - 1];
x11 = x[(nz - 1) * nxy + (ny - 1) * nx + nx - 1];
x01 = x[(nz - 1) * nxy + (ny - 1) * nx];
xr0 = x[(ny - 1) * nx + i];
x1t = x[k * nxy + (ny - 1) * nx + nx - 1];
xr1 = x[(nz - 1) * nxy + (ny - 1) * nx + i];
x0t = x[k * nxy + (ny - 1) * nx];
offset = k * nxy + (ny - 1) * nx + i;
x[offset] = transfinite_blend(r, t, x00, x10, x11, x01, xr0, x1t, xr1, x0t);
}
}
double x0s, x1s;
for (int j = 1; j < ny - 1; j++) {
s = gauss_node(j, ny);
for (int i = 1; i < nx - 1; i++) {
r = gauss_node(i, nx);
// Back Face ...
x00 = x[0];
x10 = x[nx - 1];
x11 = x[(ny - 1) * nx + (nx - 1)];
x01 = x[(ny - 1) * nx];
xr0 = x[i];
x1s = x[j * nx + nx - 1];
xr1 = x[(ny - 1) * nx + i];
x0s = x[j * nx];
offset = j * nx + i;
x[offset] = transfinite_blend(r, s, x00, x10, x11, x01, xr0, x1s, xr1, x0s);
// Front Face ...
x00 = x[(nz - 1) * nxy];
x10 = x[(nz - 1) * nxy + nx - 1];
x11 = x[(nz - 1) * nxy + (ny - 1) * nx + (nx - 1)];
x01 = x[(nz - 1) * nxy + (ny - 1) * nx];
xr0 = x[(nz - 1) * nxy + i];
x1s = x[(nz - 1) * nxy + j * nx + nx - 1];
xr1 = x[(nz - 1) * nxy + (ny - 1) * nx + i];
x0s = x[(nz - 1) * nxy + j * nx];
offset = (nz - 1) * nx * ny + j * nx + i;
x[offset] = transfinite_blend(r, s, x00, x10, x11, x01, xr0, x1s, xr1, x0s);
}
}
blend_from_faces(x, nx, ny, nz);
return;
}
////////////////////////////////////////////////////////////////////////////////
void blend_from_corners(double *x, int nx, int ny, int nz)
{
//************************************************************************80
//
// Purpose:
//
// BLEND_IJK_0D1 extends indexed scalar data along corners into a cubic table.
//
// Diagram:
//
// ( X000, ..., ..., ..., ..., ..., X060 )
// ( ...., ..., ..., ..., ..., ..., ... )
// ( ...., ..., ..., ..., ..., ..., ... ) First "layer"
// ( ...., ..., ..., ..., ..., ..., ... )
// ( X400, ..., ..., ..., ..., ..., X460 )
//
// ( ...., ..., ..., ..., ..., ..., ... )
// ( ...., ..., ..., ..., ..., ..., ... )
// ( ...., ..., ..., ..., ..., ..., ... ) Middle "layers"
// ( ...., ..., ..., ..., ..., ..., ... )
// ( ...., ..., ..., ..., ..., ..., ... )
//
// ( X003, ..., ..., ..., ..., ..., X063 )
// ( ...., ..., ..., ..., ..., ..., ... )
// ( ...., ..., ..., ..., ..., ..., ... ) Last "layer"
// ( ...., ..., ..., ..., ..., ..., ... )
// ( X403, ..., ..., ..., ..., ..., X463 )
//
// Licensing:
//
// This code is distributed under the GNU LGPL license.
//
// Modified:
//
// 22 December 1998
//
// Author:
//
// John Burkardt
//
// Reference:
//
// William Gordon, Charles A Hall,
// Construction of Curvilinear Coordinate Systems and Application to
// Mesh Generation,
// International Journal of Numerical Methods in Engineering,
// Volume 7, pages 461-477, 1973.
//
// Joe Thompson, Bharat Soni, Nigel Weatherill,
// Handbook of Grid Generation,
// CRC Press,
// 1999.
//
// Parameters:
//
// Input/output, double X[NX*NY*NZ], a singly dimensioned array that
// is "really" triply dimensioned. The triple dimension index
// [I][J][K] corresponds to the single dimension index
// K * NX*NY + J * NX + I
//
// On input, there is already scalar data in the entries X[I][J][K]
// corresponding to "cornders" of the table, that is, entries for which
// each of the three indices I, J and K is equal to their
// minimum or maximum possible values.
//
// Input, int NX, NY, NZ, the number of rows, columns, and layers in X.
//
///////////////////////////////////////////////////////////////////////////
int offset;
double r, s, t, x0, x1;<--- The scope of the variable 'r' can be reduced.<--- The scope of the variable 's' can be reduced.<--- The scope of the variable 't' can be reduced.
int nxy = nx*ny;
for (int i = 1; i < nx - 1; i++) {
r = gauss_node(i, nx);
x0 = x[0];
x1 = x[nx - 1];
offset = i;
x[offset] = linear_interpolation(r, x0, x1);
x0 = x[(ny - 1) * nx];
x1 = x[(ny - 1) * nx + nx - 1];
offset = (ny - 1) * nx + + i;
x[offset] = linear_interpolation(r, x0, x1);
x0 = x[(nz - 1) * nxy];
x1 = x[(nz - 1) * nxy + nx - 1];
offset = (nz - 1) * nxy + i;
x[offset] = linear_interpolation(r, x0, x1);
x0 = x[(nz - 1) * nxy + (ny - 1) * nx ];
x1 = x[(nz - 1) * nxy + (ny - 1) * nx + nx - 1];
offset = (nz - 1) * nxy + (ny - 1) * nx + i;
x[offset] = linear_interpolation(r, x0, x1);
}
for (int j = 1; j < ny - 1; j++) {
s = gauss_node(j, ny);
x0 = x[0];
x1 = x[ (ny - 1) * nx ];
offset = j*nx;
x[offset] = linear_interpolation(s, x0, x1);
x0 = x[nx - 1];
x1 = x[(ny - 1) * nx + (nx - 1)];
offset = j * nx + nx - 1;
x[offset] = linear_interpolation(s, x0, x1);
x0 = x[(nz - 1) * nxy];
x1 = x[(nz - 1) * nxy + (ny - 1) * nx];
offset = (nz - 1) * nxy + j*nx;
x[offset] = linear_interpolation(s, x0, x1);
x0 = x[ (nz - 1) * nxy + nx - 1];
x1 = x[ (nz - 1) * nxy + (ny - 1) * nx + nx - 1];
offset = (nz - 1) * nxy + j * nx + nx - 1;
x[offset] = linear_interpolation(s, x0, x1);
}
for (int k = 1; k < nz - 1; k++) {
t = gauss_node(k, nz);
x0 = x[0];
x1 = x[(nz - 1) * nxy];
offset = k*nxy;
x[offset] = linear_interpolation(t, x0, x1);
x0 = x[nx - 1];
x1 = x[(nz - 1) * nxy + nx - 1];
offset = k * nxy + nx - 1;
x[offset] = linear_interpolation(t, x0, x1);
x0 = x[(ny - 1) * nx];
x1 = x[(nz - 1) * nxy + (ny - 1) * nx ];
offset = k * nxy + (ny - 1) * nx;
x[offset] = linear_interpolation(t, x0, x1);
x0 = x[(ny - 1) * nx + nx - 1];
x1 = x[(nz - 1) * nxy + (ny - 1) * nx + nx - 1];
offset = k * nx * ny + (ny - 1) * nx + nx - 1;
x[offset] = linear_interpolation(t, x0, x1);
}
blend_from_edges(x, nx, ny, nz);
return;
}
}
///////////////////////////////////////////////////////////////////////////////
|