1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585 | #include "meshkit/SubMapping.hpp"
#include "meshkit/MKCore.hpp"
#include "meshkit/iMesh.hpp"
#include "meshkit/RegisterMeshOp.hpp"
#include "meshkit/EdgeMesher.hpp"
#include "meshkit/VertexMesher.hpp"
#include "meshkit/TFIMapping.hpp"
#include "meshkit/SimpleArray.hpp"
#include "lp_lib.h"
#include "meshkit/MeshImprove.hpp"
#include "LPSolveClass.hpp"
#include "IsoLaplace.hpp"
#include "EquipotentialSmooth.hpp"
#ifdef HAVE_MESQUITE
#include "meshkit/MeshImprove.hpp"
#endif
#include <iostream>
#include <algorithm>
#include <math.h>
#include <map>
namespace MeshKit
{
//---------------------------------------------------------------------------//
//Entity Type initilization for SubMapping meshing
moab::EntityType SubMapping_tps[] = {moab::MBVERTEX, moab::MBEDGE, moab::MBQUAD, moab::MBMAXTYPE};
const moab::EntityType* SubMapping::output_types()
{ return SubMapping_tps; }
//---------------------------------------------------------------------------//
// construction function for SubMapping class
SubMapping::SubMapping(MKCore *mk_core, const MEntVector &me_vec) : MeshScheme(mk_core, me_vec)<--- Member variable 'SubMapping::size_low_bound' is not initialized in the constructor.<--- Member variable 'SubMapping::start_index' is not initialized in the constructor.
{
//buildAssociation();
}
//---------------------------------------------------------------------------//
// deconstruction function for SubMapping class
SubMapping::~SubMapping()
{
}
//---------------------------------------------------------------------------//
// setup function: define the size between the different layers
void SubMapping::setup_this()
{
if (mentSelection.empty())
return;
//compute the number of intervals for the associated ModelEnts, from the size set on them
//the sizing function they point to, or a default sizing function
for (MEntSelection::iterator mit = mentSelection.begin(); mit != mentSelection.end(); mit++)<--- Prefer prefix ++/-- operators for non-primitive types.
{
ModelEnt *me = mit -> first;
int dimension = me->dimension();
if (dimension != 2)
ECERRCHK(MK_FAILURE, "bad input for TFI Mapping, we can only mesh surfaces");
//first check whether the surface is meshed or not
if (me->get_meshed_state() >= COMPLETE_MESH)
continue;
SizingFunction *sf = mk_core()->sizing_function(me->sizing_function_index());
if (!sf && me -> mesh_intervals() < 0 && me -> interval_firmness() == DEFAULT &&
mk_core()->sizing_function(0))
sf = mk_core()->sizing_function(0);
if (!sf && me -> mesh_intervals() < 0 && me -> interval_firmness() == DEFAULT){
//no sizing set, just assume default #intervals as 20
me->mesh_intervals(20);
me->interval_firmness(DEFAULT);
}
else{
//check # intervals first, then size, and just choose for now
if (sf->intervals() > 0)
throw Error(MK_INCOMPLETE_MESH_SPECIFICATION, "Sizing function for edge should have edge size instead of intervals for submapping.");
else if (sf->size()>0){
size_low_bound = sf->size();
me->interval_firmness(SOFT);
}
else
throw Error(MK_INCOMPLETE_MESH_SPECIFICATION, "Sizing function for edge had neither positive size nor positive intervals.");
}
}
}
//---------------------------------------------------------------------------//
// execute function: generate the all-hex mesh through sweeping from source
// surface to target surface
void SubMapping::execute_this()
{
std::vector<double> coords;<--- Unused variable: coords
std::vector<moab::EntityHandle> nodes;
iBase_TagHandle global_tag, global_tag1;
iGeom::Error g_err = mk_core()->igeom_instance()->getTagHandle("GLOBAL_ID", global_tag);
IBERRCHK(g_err, "Trouble get the mesh entity set from geometric edges.");
iMesh::Error m_err = mk_core()->igeom_instance()->getTagHandle("GLOBAL_ID", global_tag1);
IBERRCHK(m_err, "Trouble get the mesh entity set from geometric edges.");
for (MEntSelection::iterator mit = mentSelection.begin(); mit != mentSelection.end(); mit++)<--- Prefer prefix ++/-- operators for non-primitive types.
{
ModelEnt *me = mit -> first;
//first check whether the surface is meshed or not
if (me->get_meshed_state() >= COMPLETE_MESH)
continue;
//classify the vertex as END, CORNER, REVERSAL, SIDE
VertexClassification(me);
//classify the edge as +I, -I, +J and -J
EdgeClassification();
//low bound for mesh size
EdgeDiscretization(me);
InteriorNodeInterpolation(me);
MeshSmoothing(me);
//ok, we are done!
vertices_types.clear();
nodes.clear();
vertices.clear();
edges.clear();
interior_angle.clear();
sorted_vertex_list.clear();
sorted_node_list.clear();
sorted_edge_list.clear();
edges_types.clear();
coordinate_i_j.clear();
edge_size.clear();
quads.clear();
me->commit_mesh(mit->second, COMPLETE_MESH);
mk_core()->save_mesh("test_cai.vtk");
}
}
//setup the mesh size
void SubMapping::SetupMeshSize(double size)<--- The function 'SetupMeshSize' is never used.
{
size_low_bound = size;
}
//classify the vertices as side, end, reversal and corner
//end --an interior angle of approximately 90 degrees
//side --an interior angle of approximately 180 degrees = 0
//corner --an interior angle of approximately 270 degrees = -90
//reversal --an interior angle of approximately 360 degrees = -180
void SubMapping::VertexClassification(ModelEnt *ent)
{
//create a taghandle
iGeom::Error g_err = mk_core()->igeom_instance()->getTagHandle("GEOM_SUBMAPPING", g_taghandle);
if (g_err){
g_err = mk_core()->igeom_instance()->createTag("GEOM_SUBMAPPING", 1, iBase_INTEGER, g_taghandle);
IBERRCHK(g_err, "Trouble create a taghandle.");
}
//get the geometric vertices from the surface
vertices.clear();
vector<iBase_EntityHandle> tmp;
g_err = mk_core()->igeom_instance()->getEntAdj(ent->geom_handle(), iBase_VERTEX, tmp);
IBERRCHK(g_err, "Trouble get the adjacent geometric vertices on a surface.");
assert(tmp.size()>0);
vertices.resize(tmp.size());
for (unsigned int i = 0; i < tmp.size(); i++){
vertices[i].index = i;
vertices[i].gVertexHandle = tmp[i];
g_err = mk_core()->igeom_instance()->getVtxCoord(vertices[i].gVertexHandle, vertices[i].xyz[0], vertices[i].xyz[1], vertices[i].xyz[2]);
IBERRCHK(g_err, "Trouble get the coordinates from vertices.");
g_err = mk_core()->igeom_instance()->setIntData(vertices[i].gVertexHandle, g_taghandle, i);
IBERRCHK(g_err, "Trouble set the int data for the geometric vertex.");
}
vertices_types.resize(vertices.size());
//get the geometric edges
edges.clear();
tmp.clear();
g_err = mk_core()->igeom_instance()->getEntAdj(ent->geom_handle(), iBase_EDGE, tmp);
IBERRCHK(g_err, "Trouble get the adjacent geometric vertices on a surface.");
std::set<iBase_EntityHandle> edge_set;
edges.resize(tmp.size());
for (unsigned int i = 0; i < tmp.size(); i++){
edges[i].connect.resize(2);
edges[i].index = i;
edges[i].gEdgeHandle = tmp[i];
edge_set.insert(tmp[i]);
g_err = mk_core()->igeom_instance()->setIntData(edges[i].gEdgeHandle, g_taghandle, i);
IBERRCHK(g_err, "Trouble set the int data for the geometric edge.");
vector<iBase_EntityHandle> adj_vertices;
g_err = mk_core()->igeom_instance()->getEntAdj(edges[i].gEdgeHandle, iBase_VERTEX, adj_vertices);
IBERRCHK(g_err, "Trouble get the adjacent vertices for the geometric edge.");
assert(adj_vertices.size()<=2);
for (unsigned int j = 0; j < adj_vertices.size(); j++){
int index = -1;
g_err = mk_core()->igeom_instance()->getIntData(adj_vertices[j], g_taghandle, index);
IBERRCHK(g_err, "Trouble get the int data of geometric vertex.");
edges[i].connect[j] = &vertices[index];
}
}
//organize the vertices and edges on the boundaries
VerEdgOrganize(edge_set, tmp, ent->geom_handle());
//calculate the angle for vertices on the boundaries
interior_angle.resize(vertices.size());
GetAngle(ent->geom_handle(), interior_angle);
//initial vertex classification,
//need to use the linear programming method to produce the valid vertex classification
//if the initial vertex classification is not a valid vertex classification
vertices_types.resize(vertices.size());
for (unsigned int i = 0; i < interior_angle.size(); i++){
if ((interior_angle[i] >= 45)&&(interior_angle[i] <= 130)){
vertices_types[i] = END;
}
else if ((interior_angle[i] < 225)&&(interior_angle[i] > 130)){
vertices_types[i] = SIDE;
}
else if ((interior_angle[i] > 225)&&(interior_angle[i] < 315)){
vertices_types[i] = CORNER;
}
else{
vertices_types[i] = REVERSAL;
}
}
//extra step
for (unsigned int m = 0; m < vertices_types.size(); m++){
if (vertices_types[m] == REVERSAL)
vertices_types[m] = SIDE;
}
int sum = 0;
for (std::vector<VertexTypes>::iterator it = vertices_types.begin(); it != vertices_types.end(); it++)<--- Prefer prefix ++/-- operators for non-primitive types.
sum += *it;
std::cout << "\n\n\nbefore, sum of vertex type is " << sum << std::endl;
if (sum != 4){//check whether the initial vertex classification is valid or not
//use the linear programming to produce a valid vertex classification
VtxClassificationLP();
}
std::cout << "\n\n\nsum = " << sum << std::endl;
}
//use the lpsolve library to solve the linear programming
void SubMapping::VtxClassificationLP()
{
LPSolveClass lp;
vector<int> VtxType1(vertices_types.size()), VtxType2;
int m = 0;
for (std::vector<VertexTypes>::iterator it = vertices_types.begin(); it != vertices_types.end(); it++){<--- Prefer prefix ++/-- operators for non-primitive types.
if (*it == REVERSAL)
vertices_types[m] = SIDE;
VtxType1[m] = int(vertices_types[m]);
m++;
}
//setup the objective function: minimize the max value, first half variables are new variables, the latter half variables are old variables
vector<double> b(2*vertices_types.size());
for (unsigned int i = 0; i < vertices_types.size(); i++){
b[i] = 1.0;
b[vertices_types.size()+i] = 0.0;
}
lp.SetupObj(b, 0.0);
//setup the equality constraint
vector<vector<double> > left;
vector<double> right;
right.push_back(4.0);
left.resize(1);
left[0].resize(2*vertices_types.size());
for (unsigned int i = 0; i < vertices_types.size(); i++){
left[0][i] = 0.0;
left[0][vertices_types.size()+i] = 1.0;
}
/*
for (unsigned int i = 0; i < vertices_types.size(); i++){
right.push_back(0.0);
left[i+1].resize(2*vertices_types.size());
for (unsigned int j = 0; j < vertices_types.size(); j++){
left[i+1][j] = 0.0;
left[i+1][vertices_types.size()+j] = 0.0;
if ((i==j)&&(vertices_types[i]==END)){//fix the END vertex type
left[i+1][vertices_types.size()+j] = 1.0;
right[i+1] = 1.0;
}
}
}
*/
lp.SetupEqu(left, right);
//setup the inequality constraint
left.clear();
right.clear();
left.resize(6*vertices_types.size());
right.resize(6*vertices_types.size());
for (unsigned int i = 0; i < vertices_types.size(); i++){
right[i] = VtxType1[i];
right[vertices_types.size()+i] = VtxType1[i];
right[2*vertices_types.size()+i] = 1;
right[3*vertices_types.size()+i] = 2;
right[4*vertices_types.size()+i] = 1+VtxType1[i];
right[5*vertices_types.size()+i] = 1-VtxType1[i];
}
for (unsigned int i = 0; i < vertices_types.size(); i++){
left[i].resize(2*vertices_types.size());
left[vertices_types.size()+i].resize(2*vertices_types.size());
for (unsigned int j= 0; j < vertices_types.size(); j++){
left[i][j] = -1.0;
left[i][vertices_types.size()+j] = 1.0;
left[vertices_types.size()+i][j] = -1.0;
left[vertices_types.size()+i][vertices_types.size()+j] = -1.0;
}
//constrain the variable range
left[2*vertices_types.size()+i].resize(2*vertices_types.size());
left[3*vertices_types.size()+i].resize(2*vertices_types.size());
left[4*vertices_types.size()+i].resize(2*vertices_types.size());
left[5*vertices_types.size()+i].resize(2*vertices_types.size());
for (unsigned int j = 0; j < 2*vertices_types.size(); j++){
left[2*vertices_types.size()+i][j] = 0.0;
left[3*vertices_types.size()+i][j] = 0.0;
left[4*vertices_types.size()+i][j] = 0.0;
left[5*vertices_types.size()+i][j] = 0.0;
}
left[2*vertices_types.size()+i][vertices_types.size()+i] = 1.0;
left[3*vertices_types.size()+i][vertices_types.size()+i] = -1.0;
//constrain the difference between new vertex type and initial vertex type
left[4*vertices_types.size()+i][vertices_types.size()+i] = 1.0;
left[5*vertices_types.size()+i][vertices_types.size()+i] = -1.0;
}
lp.SetupInEqu(left, right);
lp.Execute();
//get the solved variables
vector<int> vtx_types;
lp.GetVariables(vtx_types);
for (unsigned int i = 0; i < vertices_types.size(); i++){
switch(vtx_types[vertices_types.size()+i]){
case 1:
vertices_types[i] = END;
break;
case 0:
vertices_types[i] = SIDE;
break;
case -1:
vertices_types[i] = CORNER;
break;
case -2:
vertices_types[i] = REVERSAL;
break;
default:
break;
}
}
//check whether sum = 4;
int sum = 0;
for (std::vector<VertexTypes>::iterator it = vertices_types.begin(); it != vertices_types.end(); it++)<--- Prefer prefix ++/-- operators for non-primitive types.
sum += *it;
assert(sum == 4);
}
//calculate the angle for vertices on the boundaries
void SubMapping::GetAngle(iBase_EntityHandle surf, vector<double> &angle)
{
angle.resize(sorted_vertex_list.size());
for (unsigned int i = 0; i < sorted_vertex_list.size(); i++){
//vertices = i, previous edge = (i+sorted_edge_list.size()-1)%sorted_edge_list.size(), next edge = (i+sorted_edge_list.size()+1)%sorted_edge_list.size()
//calculate the tangent vector at the previous edge
double tangvector_p[3];
int previous = (i+sorted_edge_list.size()-1)%sorted_edge_list.size();
//calculate the tangent vector and edge sense with respect to two vertices
iGeom::Error g_err = mk_core()->igeom_instance()->getEntTgntXYZ(edges[sorted_edge_list[previous]].gEdgeHandle, vertices[sorted_vertex_list[i]].xyz[0], vertices[sorted_vertex_list[i]].xyz[1], vertices[sorted_vertex_list[i]].xyz[2], tangvector_p[0], tangvector_p[1], tangvector_p[2]);
IBERRCHK(g_err, "Trouble get the tangent vector at a vertex of an edge.");
int sense = -10;
g_err = mk_core()->igeom_instance()->getEgVtxSense(edges[sorted_edge_list[previous]].gEdgeHandle, vertices[sorted_vertex_list[i]].gVertexHandle, vertices[sorted_vertex_list[(i+vertices.size()-1)%vertices.size()]].gVertexHandle, sense);
IBERRCHK(g_err, "Trouble get edge sense with respect to two vertices.");
int pre_edge_sense_face = -10;
g_err = mk_core()->igeom_instance()->getEgFcSense(edges[sorted_edge_list[previous]].gEdgeHandle, surf, pre_edge_sense_face);
IBERRCHK(g_err, "Trouble get edge sense with respect to the face.");
std::cout << "-------------------\nvertex index = " << i << "\tprevious edge sense with respect to face = " << pre_edge_sense_face << std::endl;
if (sense < 0){
tangvector_p[0] = -1.0*tangvector_p[0];
tangvector_p[1] = -1.0*tangvector_p[1];
tangvector_p[2] = -1.0*tangvector_p[2];
}
//calculate the tangent vector at next edge
double tangvector_n[3];
int next = (i+sorted_edge_list.size())%sorted_edge_list.size();
g_err = mk_core()->igeom_instance()->getEntTgntXYZ(edges[sorted_edge_list[next]].gEdgeHandle, vertices[sorted_vertex_list[i]].xyz[0], vertices[sorted_vertex_list[i]].xyz[1], vertices[sorted_vertex_list[i]].xyz[2], tangvector_n[0], tangvector_n[1], tangvector_n[2]);
IBERRCHK(g_err, "Trouble get the tangent vector at a vertex of an edge.");
g_err = mk_core()->igeom_instance()->getEgVtxSense(edges[sorted_edge_list[next]].gEdgeHandle, vertices[sorted_vertex_list[i]].gVertexHandle, vertices[sorted_vertex_list[(i+1)%vertices.size()]].gVertexHandle, sense);
IBERRCHK(g_err, "Trouble get edge sense with respect to two vertices.");
int next_edge_sense_face = -10;
g_err = mk_core()->igeom_instance()->getEgFcSense(edges[sorted_edge_list[next]].gEdgeHandle, surf, next_edge_sense_face);
IBERRCHK(g_err, "Trouble get edge sense with respect to the face.");
std::cout << "\t" << i << "\tnext edge sense with respect to face = " << next_edge_sense_face << std::endl;
if (sense < 0){
tangvector_n[0] = -1.0*tangvector_n[0];
tangvector_n[1] = -1.0*tangvector_n[1];
tangvector_n[2] = -1.0*tangvector_n[2];
}
//calculate the crossproduct
double crossproduct[3];
crossproduct[0] = tangvector_n[1]*tangvector_p[2]-tangvector_n[2]*tangvector_p[1];
crossproduct[1] = tangvector_n[2]*tangvector_p[0]-tangvector_n[0]*tangvector_p[2];
crossproduct[2] = tangvector_n[0]*tangvector_p[1]-tangvector_n[1]*tangvector_p[0];
//calculate the dotproduct
double dotproduct = tangvector_n[0]*tangvector_p[0] + tangvector_n[1]*tangvector_p[1] + tangvector_n[2]*tangvector_p[2];
double theta_pi = acos(dotproduct/(sqrt(pow(tangvector_n[0],2)+pow(tangvector_n[1], 2)+pow(tangvector_n[2], 2))*sqrt(pow(tangvector_p[0],2)+pow(tangvector_p[1],2)+pow(tangvector_p[2],2))));
double theta = theta_pi*180.0/3.1415926;
//get the surface norm at a specific point
double normal[3];
g_err = mk_core()->igeom_instance()->getEntNrmlXYZ(surf, vertices[sorted_vertex_list[i]].xyz[0], vertices[sorted_vertex_list[i]].xyz[1], vertices[sorted_vertex_list[i]].xyz[2], normal[0], normal[1], normal[2]);
IBERRCHK(g_err, "Trouble get the normal at a specific point on the surface.");
dotproduct = crossproduct[0]*normal[0]+crossproduct[1]*normal[1]+crossproduct[2]*normal[2];
if (dotproduct < 0)
theta = 360.0 - theta;
angle[sorted_vertex_list[i]] = theta;
}
}
bool SubMapping::isCurved(int vtx_index, vector<double> u1, vector<double> u2, vector<double> u3, vector<double> u4, vector<vector<double> > tang_pre, vector<vector<double> > tang_next)<--- The function 'isCurved' is never used.
{
int previous = (vtx_index+sorted_edge_list.size()-1)%sorted_edge_list.size(), next = (vtx_index+sorted_edge_list.size())%sorted_edge_list.size();
double dotproduct, vec[3], theta1, theta2, pts2[3], pts1[3], u, length;
u = u1[vtx_index] + 0.5*(u2[vtx_index]-u1[vtx_index]);
iGeom::Error g_err = mk_core()->igeom_instance()->getEntUtoXYZ(edges[sorted_edge_list[previous]].gEdgeHandle, u, pts1[0], pts1[1], pts1[2]);
IBERRCHK(g_err, "Trouble get xyz coordinates from parametric coordinates on edge.");
u = u1[vtx_index] + 0.501*(u2[vtx_index]-u1[vtx_index]);
g_err = mk_core()->igeom_instance()->getEntUtoXYZ(edges[sorted_edge_list[previous]].gEdgeHandle, u, pts2[0], pts2[1], pts2[2]);
IBERRCHK(g_err, "Trouble get xyz coordinates from parametric coordinates on edge.");
for (int j = 0; j < 3; j++)
vec[j] = pts2[j] - pts1[j];
dotproduct = vec[0]*tang_pre[vtx_index][0] + vec[1]*tang_pre[vtx_index][1] + vec[2]*tang_pre[vtx_index][2];
length = sqrt(pow(vec[0],2)+pow(vec[1], 2)+pow(vec[2], 2))*sqrt(pow(tang_pre[vtx_index][0],2)+pow(tang_pre[vtx_index][1],2)+pow(tang_pre[vtx_index][2],2));
if (fabs(dotproduct) > length){
if (dotproduct > 0)
dotproduct = length;
else
dotproduct = -1.0*length;
}
theta1 = 180.0/3.1415926*acos(dotproduct/length);
u = u3[vtx_index] + 0.5*(u4[vtx_index]-u3[vtx_index]);
g_err = mk_core()->igeom_instance()->getEntUtoXYZ(edges[sorted_edge_list[next]].gEdgeHandle, u, pts1[0], pts1[1], pts1[2]);
IBERRCHK(g_err, "Trouble get xyz coordinates from parametric coordinates on edge.");
u = u3[vtx_index] + 0.501*(u4[vtx_index]-u3[vtx_index]);
g_err = mk_core()->igeom_instance()->getEntUtoXYZ(edges[sorted_edge_list[next]].gEdgeHandle, u, pts2[0], pts2[1], pts2[2]);
IBERRCHK(g_err, "Trouble get xyz coordinates from parametric coordinates on edge.");
for (int j = 0; j < 3; j++)
vec[j] = pts2[j] - pts1[j];
dotproduct = vec[0]*tang_next[vtx_index][0] + vec[1]*tang_next[vtx_index][1] + vec[2]*tang_next[vtx_index][2];
length = sqrt(pow(vec[0],2)+pow(vec[1], 2)+pow(vec[2], 2))*sqrt(pow(tang_next[vtx_index][0],2)+pow(tang_next[vtx_index][1],2)+pow(tang_next[vtx_index][2],2));
if (fabs(dotproduct) > length){
if (dotproduct > 0)
dotproduct = length;
else
dotproduct = -1.0*length;
}
theta2 = 180.0/3.1415926*acos(dotproduct/length);
if ((fabs(theta1) > 0.5)&&(fabs(theta2) > 0.5))
return true;
else
return false;
}
//reorganize the vertices and edges on the boudnaries of geometry
void SubMapping::VerEdgOrganize(std::set<iBase_EntityHandle> edge_set, std::vector<iBase_EntityHandle> g_edge, iBase_EntityHandle surf)
{
int first_edge_index = 0;
int first_index = edges[0].connect[1]->index;
int second_index = edges[0].connect[0]->index;
int start_index = edges[0].connect[0]->index;
int test_sense = -10;
iGeom::Error g_err = mk_core()->igeom_instance()->getEgVtxSense(edges[first_edge_index].gEdgeHandle, vertices[second_index].gVertexHandle, vertices[first_index].gVertexHandle, test_sense);
IBERRCHK(g_err, "Trouble get the sense of edge with respect to two vertices.");
int test_face_sense = -10;
g_err = mk_core()->igeom_instance()->getEgFcSense(edges[first_edge_index].gEdgeHandle, surf, test_face_sense);
IBERRCHK(g_err, "Trouble get the sense of edge with respect to two vertices.");
std::cout << "edge sense = " << test_sense << "\tface sense = " << test_face_sense << "combined(multiply) = " << test_sense*test_face_sense << std::endl;
if ((test_sense*test_face_sense) < 0){
int tmp = second_index;
second_index = first_index;
first_index = tmp;
start_index = second_index;
}
sorted_vertex_list.push_back(start_index);
sorted_edge_list.push_back(first_edge_index);
while(start_index != first_index){
sorted_vertex_list.push_back(first_index);
vector<iBase_EntityHandle> adj_edges;
g_err = mk_core()->igeom_instance()->getEntAdj(vertices[first_index].gVertexHandle, iBase_EDGE, adj_edges);
IBERRCHK(g_err, "Trouble get the adjacent edges w.r.t a vertex.");
int index = -1;
for (unsigned int i = 0; i < adj_edges.size(); i++){
if ((adj_edges[i] != edges[first_edge_index].gEdgeHandle)&&(edge_set.find(adj_edges[i]) != edge_set.end())){
g_err = mk_core()->igeom_instance()->getIntData(adj_edges[i], g_taghandle, index);
IBERRCHK(g_err, "Trouble get the int data for geometric edge.");
break;
}
else
continue;
}
//insert the new edge into sorted_edge_list
if (index > -1){
first_edge_index = index;
sorted_edge_list.push_back(first_edge_index);
second_index = first_index;<--- Variable 'second_index' is assigned a value that is never used.
if (edges[first_edge_index].connect[0]->index == first_index)
first_index = edges[first_edge_index].connect[1]->index;
else
first_index = edges[first_edge_index].connect[0]->index;
}
else
break;
}
}
//classify the boundary edges as -I, +I, -J, +J
void SubMapping::EdgeClassification()
{
edges_types.resize(sorted_edge_list.size());
//Find a starting END vertex
start_index = 0;
for (; start_index < sorted_vertex_list.size(); start_index++)
if (vertices_types[sorted_vertex_list[start_index]]==END)
break;
//setting up the initial direction for i-j coordinate system(positive i and positive j direction)
int pre_edge = (start_index + sorted_edge_list.size() -1)%sorted_edge_list.size(), next_edge = start_index;
edges_types[sorted_edge_list[next_edge]] = POSI_J;
edges_types[sorted_edge_list[pre_edge]] = NEG_I;
EdgeTypes i_direction = NEG_I, j_direction = POSI_J;
VertexTypes pre_vertex_type = END;
int vertex_index = start_index;
for (unsigned int i = 1; i < sorted_vertex_list.size()-1; i++){
pre_edge = (start_index + i + sorted_edge_list.size() -1)%sorted_edge_list.size(); //index in the sorted_edge_list
next_edge = (start_index + i)%sorted_edge_list.size(); //index in the sorted_edge_list
vertex_index = (i + start_index)%sorted_vertex_list.size();
switch(vertices_types[sorted_vertex_list[vertex_index]]){
case END://switch from i to j or from j to i
if ((edges_types[sorted_edge_list[pre_edge]] == POSI_I)||(edges_types[sorted_edge_list[pre_edge]] == NEG_I)){
if (j_direction == POSI_J)
if (pre_vertex_type == END)
edges_types[sorted_edge_list[next_edge]] = NEG_J;
else
edges_types[sorted_edge_list[next_edge]] = POSI_J;
else
if (pre_vertex_type == END)
edges_types[sorted_edge_list[next_edge]] = POSI_J;
else
edges_types[sorted_edge_list[next_edge]] = NEG_J;
j_direction = edges_types[sorted_edge_list[next_edge]];
}
else{//switch from j-direction to i-direction
if (i_direction == POSI_I)
if (pre_vertex_type == END)
edges_types[sorted_edge_list[next_edge]] = NEG_I;
else
edges_types[sorted_edge_list[next_edge]] = POSI_I;
else
if (pre_vertex_type == END)
edges_types[sorted_edge_list[next_edge]] = POSI_I;
else
edges_types[sorted_edge_list[next_edge]] = NEG_I;
i_direction = edges_types[sorted_edge_list[next_edge]];
}
pre_vertex_type = END;
break;
case SIDE://keep the same as previous
edges_types[sorted_edge_list[next_edge]] = edges_types[sorted_edge_list[pre_edge]];
break;
case CORNER://switch from i to j or from j to i
if ((edges_types[sorted_edge_list[pre_edge]] == POSI_I)||(edges_types[sorted_edge_list[pre_edge]] == NEG_I)){
if (j_direction == POSI_J)
if (pre_vertex_type == END)
edges_types[sorted_edge_list[next_edge]] = POSI_J;
else
edges_types[sorted_edge_list[next_edge]] = NEG_J;
else
if (pre_vertex_type == END)
edges_types[sorted_edge_list[next_edge]] = NEG_J;
else
edges_types[sorted_edge_list[next_edge]] = POSI_J;
j_direction = edges_types[sorted_edge_list[next_edge]];
}
else{
if (i_direction == POSI_I)
if (pre_vertex_type == END)
edges_types[sorted_edge_list[next_edge]] = POSI_I;
else
edges_types[sorted_edge_list[next_edge]] = NEG_I;
else
if (pre_vertex_type == END)
edges_types[sorted_edge_list[next_edge]] = NEG_I;
else
edges_types[sorted_edge_list[next_edge]] = POSI_I;
i_direction = edges_types[sorted_edge_list[next_edge]];
}
pre_vertex_type = CORNER;
break;
case REVERSAL://need to consider this point later on
if (edges_types[sorted_edge_list[pre_edge]] == POSI_I)
edges_types[sorted_edge_list[next_edge]] = NEG_I;
else if (edges_types[sorted_edge_list[pre_edge]] == NEG_I)
edges_types[sorted_edge_list[next_edge]] = POSI_I;
else if (edges_types[sorted_edge_list[pre_edge]] == POSI_J)
edges_types[sorted_edge_list[next_edge]] = NEG_J;
else
edges_types[sorted_edge_list[next_edge]] = POSI_J;
break;
default://do nothing
break;
}
}
}
//assign the i,j coordinates for each node on the boundary
void SubMapping::EdgeDiscretization(ModelEnt *me)
{
edge_size.resize(sorted_edge_list.size());
for (unsigned int i = 0; i < sorted_edge_list.size(); i++){
double measure;
iGeom::Error g_err = mk_core()->igeom_instance()->measure(&(edges[sorted_edge_list[i]].gEdgeHandle), 1, &measure);
IBERRCHK(g_err, "Trouble measure the boundary edges.");
edge_size[sorted_edge_list[i]] = int(measure/size_low_bound);
}
//linear programming to get # of line segments for each boundary edge
LPSolveClass lp;
//setup the model for linear programming
vector<vector<double> > coeffs;
vector<double> b(edges.size(), 1.0);
//setup the objective function for linear programming
lp.SetupObj(b, 0.0);
//setup the equality constraint for linear programming
coeffs.resize(2);
coeffs[0].resize(edges.size());
coeffs[1].resize(edges.size());
b.clear();
b.resize(2, 0.0);
for (unsigned int i = 0; i < edges.size(); i++){
if ((edges_types[i] == POSI_I)||(edges_types[i] == NEG_I)){//positive i and negative i
if (edges_types[i] == POSI_I)
coeffs[0][i] = 1.0;
else if (edges_types[i] == NEG_I)
coeffs[0][i] = -1.0;
coeffs[1][i] = 0.0;
}
else{//positive j and negative j
if (edges_types[i] == POSI_J)
coeffs[1][i] = 1.0;
else if (edges_types[i] == NEG_J)
coeffs[1][i] = -1.0;
coeffs[0][i] = 0.0;
}
}
lp.SetupEqu(coeffs, b);
//setup the constant constraint there is already mesh on the geometric edge
vector<int> num_line_segments(edges.size());
for (unsigned int i = 0; i < edges.size(); i++){
iBase_EntitySetHandle entityset;
iRel::Error r_err = mk_core()->irel_pair()->getEntSetRelation(edges[i].gEdgeHandle, 0, entityset);
IBERRCHK(r_err, "Trouble get the entity set for geometric edge.");
iMesh::Error m_err = mk_core()->imesh_instance()->getNumOfType(entityset, iBase_EDGE, num_line_segments[i]);
IBERRCHK(m_err, "Trouble get # of line segments on the edge mesh.");
if ((num_line_segments[i] < 1)&&(!m_err))
num_line_segments[i] = -1;
}
lp.SetupConst(num_line_segments);
//setup the inequality constraint for linear programming
coeffs.clear();
coeffs.resize(edges.size(), vector<double>(edges.size()));
for (unsigned int i = 0; i < edges.size(); i++)//diagonal matrix
coeffs[i][i] = -1.0;
b.clear();
b.resize(edges.size());
int min_line_segment = 1.0e10;
for (unsigned int i = 0; i < num_line_segments.size(); i++)
if ((num_line_segments[i] < min_line_segment)&&(num_line_segments[i]>0))
min_line_segment = num_line_segments[i];
//preprocess the inequality constraints
int sum_posi_I = 0, sum_neg_I = 0, sum_posi_J = 0, sum_neg_J = 0;
vector<int> posi_i, neg_i, posi_j, neg_j;
for (int i = 0; i < num_line_segments.size(); i++){
if (num_line_segments[i] > 0){
switch(edges_types[i]){
case POSI_I:
sum_posi_I += num_line_segments[i]; break;
case NEG_I:
sum_neg_I += num_line_segments[i]; break;
case POSI_J:
sum_posi_J += num_line_segments[i]; break;
case NEG_J:
sum_neg_J += num_line_segments[i]; break;
default:
break;
}
}
else{
switch(edges_types[i]){
case POSI_I:
posi_i.push_back(i); break;
case NEG_I:
neg_i.push_back(i); break;
case POSI_J:
posi_j.push_back(i); break;
case NEG_J:
neg_j.push_back(i); break;
default:
break;
}
}
}
//preprocess the edge size
int tmp_sum_POS_I = sum_posi_I, tmp_sum_POS_J = sum_posi_J, tmp_sum_NEG_I = sum_neg_I, tmp_sum_NEG_J = sum_neg_J;
for (unsigned int i = 0; i < posi_i.size(); i++)
tmp_sum_POS_I += edge_size[posi_i[i]];
for (unsigned int i = 0; i < posi_j.size(); i++)
tmp_sum_POS_J += edge_size[posi_j[i]];
for (unsigned int i = 0; i < neg_i.size(); i++)
tmp_sum_NEG_I += edge_size[neg_i[i]];
for (unsigned int i = 0; i < neg_j.size(); i++)
tmp_sum_NEG_J += edge_size[neg_j[i]];
//process i-direction ----new
if (tmp_sum_POS_I == tmp_sum_NEG_I)
{}//do nothing, it is always true
else if (tmp_sum_POS_I > tmp_sum_NEG_I){//adjust the NEG_I
if (neg_i.size() > 0){
for (unsigned int i = 0; i < neg_i.size(); i++)
edge_size[neg_i[i]] = int(double(tmp_sum_POS_I-sum_neg_I)*double(edge_size[neg_i[i]])/double(tmp_sum_NEG_I-sum_neg_I));
}
else{//neg_i.size == 0
if (posi_i.size() == 0){
std::cout << "Constraint check fails in i-direction_a\n";exit(1);
}
else{
if (sum_posi_I >= tmp_sum_NEG_I){//here, tmp_sum_NEG_I = sum_neg_I
std::cout << "Constraint check fails in i-direction_b\n";exit(1);
}
else{//sum_posi_I < tmp_sum_NEG_I, adjust the edge posi_i
for (unsigned int i = 0; i < posi_i.size(); i++){
edge_size[posi_i[i]] = int(double(tmp_sum_NEG_I-sum_posi_I)*double(edge_size[posi_i[i]])/double(tmp_sum_POS_I-sum_posi_I));
}
}
}
}
}
else{//tmp_sum_POS_I < tmp_sum_NEG_I, //adjust the POSS_I
if (posi_i.size() > 0){
for (unsigned int i = 0; i < posi_i.size(); i++)
edge_size[posi_i[i]] = int(double(tmp_sum_NEG_I-sum_posi_I)*double(edge_size[posi_i[i]])/double(tmp_sum_POS_I-sum_posi_I));
}
else{//posi_i.size() == 0
//further constraints,
if (neg_i.size() == 0){
std::cout << "Constraint check fails in i-direction_c\n";exit(1);
}
else{
if (sum_neg_I >= tmp_sum_POS_I){//here tmp_sum_POS_I = sum_posi_I
std::cout << "Constraint check fails in i-direction_d\n";exit(1);
}
else{//sum_neg_I < tmp_sum_POS_I, adjust the edge neg_i
for (unsigned int i = 0; i < neg_i.size(); i++){
edge_size[neg_i[i]] = int(double(tmp_sum_POS_I-sum_neg_I)*double(edge_size[neg_i[i]])/double(tmp_sum_NEG_I-sum_neg_I));
}
}
}
}
}
//process j-direction ----new
if (tmp_sum_POS_J == tmp_sum_NEG_J)
{}//do nothing, it is always true
else if (tmp_sum_POS_J > tmp_sum_NEG_J){//adjust the NEG_J
if (neg_j.size() > 0){
for (unsigned int i = 0; i < neg_j.size(); i++)
edge_size[neg_j[i]] = int(double(tmp_sum_POS_J-sum_neg_J)*double(edge_size[neg_j[i]])/double(tmp_sum_NEG_J-sum_neg_J));
}
else{//neg_j.size == 0
if (posi_j.size() == 0){
std::cout << "Constraint check fails in j-direction_a\n";exit(1);
}
else{
if (sum_posi_J >= tmp_sum_NEG_J){//here, tmp_sum_NEG_J = sum_neg_J
std::cout << "Constraint check fails in j-direction_b\n";exit(1);
}
else{//sum_posi_J < tmp_sum_NEG_J, adjust the edge posi_j
for (unsigned int i = 0; i < posi_j.size(); i++){
edge_size[posi_j[i]] = int(double(tmp_sum_NEG_J-sum_posi_J)*double(edge_size[posi_j[i]])/double(tmp_sum_POS_J-sum_posi_J));
}
}
}
}
}
else{//tmp_sum_POS_J < tmp_sum_NEG_J, //adjust the POS_I
if (posi_j.size() > 0){
for (unsigned int i = 0; i < posi_j.size(); i++)
edge_size[posi_j[i]] = int(double(tmp_sum_NEG_J-sum_posi_J)*double(edge_size[posi_j[i]])/double(tmp_sum_POS_J-sum_posi_J));
}
else{//posi_j.size() == 0
//further constraints,
if (neg_j.size() == 0){
std::cout << "Constraint check fails in j-direction_c\n";exit(1);
}
else{
if (sum_neg_J >= tmp_sum_POS_J){//here tmp_sum_POS_J = sum_posi_J
std::cout << "Constraint check fails in j-direction_d\n";exit(1);
}
else{//sum_neg_J < tmp_sum_POS_J, adjust the edge neg_j
for (unsigned int i = 0; i < neg_j.size(); i++){
edge_size[neg_j[i]] = int(double(tmp_sum_POS_J-sum_neg_J)*double(edge_size[neg_j[i]])/double(tmp_sum_NEG_J-sum_neg_J));
}
}
}
}
}
//process i-direction
if ((sum_posi_I == sum_neg_I)&&(sum_posi_I != 0)){
if ((posi_i.size() != 0)&&(neg_i.size() != 0))
{}//these constraints should work
else if ((posi_i.size() == 0)&&(neg_i.size() == 0))
{}//these constraints should work
else if ((posi_i.size() != 0)&&(neg_i.size() == 0))//this constraints won't work
{std::cout << "Constraint check fails in i-direction3\n";exit(1);}
else//these constraints won't work
{std::cout << "Constraint check fails in i-direction4\n";exit(1);}
}
else{
if (sum_posi_I > sum_neg_I){
if (sum_neg_I == 0){//low bound for NEG_I edges should be less than {sum_posi_I+edge_size[POSI_I]}
//this work
}
else{//sum_neg_I > 0
if ((int(posi_i.size()) == 0)&&(int(neg_i.size()) == 0))//these constraints won't work
{std::cout << "Constraint check fails in i-direction5\n";exit(1);}
else if ((int(posi_i.size()) == 0)&&(int(neg_i.size()) > 0)){//sum_neg_I + edge_size[NEG_I] <= sum_posi_I
//this works
}
else if ((int(posi_i.size()) > 0)&&(int(neg_i.size()) == 0))//these constraints won't work
{std::cout << "Constraint check fails in i-direction6\n";exit(1);}
else{ //((int(posi_i.size()) > 0)&&(int(neg_i.size()) > 0))
//these constraints should work.
}
}
}
else{//sum_posi_I < sum_neg_I
if (sum_posi_I == 0){//low bound for POSI_I edges should be less than {sum_neg_I+edge_size[NEG_I]}
//this works
}
else{//sum_posi_I > 0
if ((int(posi_i.size()) == 0)&&(int(neg_i.size()) == 0))//these constraints won't work
{std::cout << "Constraint check fails in i-direction7\n";exit(1);}
else if ((int(neg_i.size()) == 0)&&(int(posi_i.size()) > 0)){//sum_posi_I + edge_size[POSI_I] <= sum_neg_I
//this works
}
else if ((int(neg_i.size()) > 0)&&(int(posi_i.size()) == 0))//these constraints won't work
{std::cout << "Constraint check fails in i-direction8\n";exit(1);}
else{ //((int(posi_i.size()) > 0)&&(int(neg_i.size()) > 0))
//these constraints should work.
}
}
}
}
//process j direction
if ((sum_posi_J == sum_neg_J)&&(sum_posi_J != 0)){
if ((posi_j.size() != 0)&&(neg_j.size() != 0))//these constraints should work
{}
else if ((posi_j.size() == 0)&&(neg_j.size() == 0))
{}//these constraints should work
else if ((posi_j.size() != 0)&&(neg_j.size() == 0))//this constraints won't work
{std::cout << "Constraint check fails in j-direction3\n";exit(1);}
else//these constraints won't work
{std::cout << "Constraint check fails in j-direction4\n";exit(1);}
}
else{//sum_posi_J != sum_neg_J
if (sum_posi_J > sum_neg_J){
if (sum_neg_J == 0){//low bound for NEG_J edges should be less than {sum_posi_J+edge_size[POSI_J]}
//this works
}
else{//sum_neg_J > 0
if ((int(posi_j.size()) == 0)&&(int(neg_j.size()) == 0))//these constraints won't work
{std::cout << "Constraint check fails in j-direction5\n";exit(1);}
else if ((int(posi_j.size()) == 0)&&(int(neg_j.size()) > 0)){//sum_neg_J + edge_size[NEG_J] <= sum_posi_J
//this works
}
else if ((int(posi_j.size()) > 0)&&(int(neg_j.size()) == 0))//these constraints won't work
{std::cout << "Constraint check fails in j-direction6\n";exit(1);}
else{ //((int(posi_j.size()) > 0)&&(int(neg_j.size()) > 0))
//these constraints should work.
}
}
}
else{//sum_posi_J < sum_neg_J
if (sum_posi_J == 0){//low bound for POSI_J edges should be less than {sum_neg_J+edge_size[NEG_J]}
//this works
}
else{//sum_posi_J > 0
if ((int(posi_j.size()) == 0)&&(int(neg_j.size()) == 0))//these constraints won't work
{std::cout << "Constraint check fails in j-direction7\n";exit(1);}
else if ((int(neg_j.size()) == 0)&&(int(posi_j.size()) > 0)){//sum_posi_J + edge_size[POSI_J] <= sum_neg_J
//this works
}
else if ((int(neg_j.size()) > 0)&&(int(posi_j.size()) == 0))//these constraints won't work
{std::cout << "Constraint check fails in j-direction8\n";exit(1);}
else{ //((int(posi_j.size()) > 0)&&(int(neg_j.size()) > 0))
//these constraints should work.
}
}
}
}
for (unsigned int i = 0; i < edges.size(); i++)
if (min_line_segment < 1.0e9){
if ((num_line_segments[i] < edge_size[i])&&(num_line_segments[i] > 0)){//avoid the conflicts between const constraints and inequality constraints;
b[i] = -1.0*num_line_segments[i];
}
else{
//if (min_line_segment < edge_size[i])
// b[i] = -1.0*min_line_segment;
//else
b[i] = -1.0*edge_size[i];
}
}
else
b[i] = -1.0*edge_size[i];
lp.SetupInEqu(coeffs, b);
lp.Execute();
lp.GetVariables(edge_size);
//do the vertex mesher
//get the mesh node on the geometric vertex
for (unsigned int i = 0; i < sorted_vertex_list.size(); i++){
iBase_EntitySetHandle entityset;
iRel::Error r_err = mk_core()->irel_pair()->getEntSetRelation(vertices[sorted_vertex_list[i]].gVertexHandle, 0, entityset);
IBERRCHK(r_err, "Trouble get the entity set for edge from geometric vertex.");
vector<iBase_EntityHandle> points;
points.clear();
iMesh::Error m_err = mk_core()->imesh_instance()->getEntities(entityset, iBase_VERTEX, iMesh_POINT, points);
IBERRCHK(m_err, "Trouble get the node entities from mesh entity sets.");
if (points.size()==0){
points.resize(1);
//there is no mesh nodes on the geometric vertices, it need to create a mesh node on the geometric vertex
m_err = mk_core()->imesh_instance()->createVtx(vertices[sorted_vertex_list[i]].xyz[0], vertices[sorted_vertex_list[i]].xyz[1], vertices[sorted_vertex_list[i]].xyz[2], points[0]);
IBERRCHK(m_err, "Trouble create the mesh nodes on the geometric vertex.");
m_err = mk_core()->imesh_instance()->addEntToSet(points[0], entityset);
IBERRCHK(m_err, "Trouble add the mesh node entity to entity set.");
}
}
//do the edge mesher
MEntVector curves;
me->get_adjacencies(1, curves);
assert(curves.size()==edges.size());
//call the edge mesher to discretize the boundary edges
for (unsigned int i = 0; i < edges.size(); i++){
//initial size functon for edges, get the number of edges and assign it to the edge
//do the edge mesher
SizingFunction esize(mk_core(), edge_size[i], -1);
me->sizing_function_index(esize.core_index());
//detect the edge on the surface
MEntVector edge_curve;
edge_curve.resize(1);
for (unsigned int j = 0; j < curves.size(); j++){
int index_id;
iGeom::Error g_err = mk_core()->igeom_instance()->getIntData(curves[j]->geom_handle(), g_taghandle, index_id);
IBERRCHK(g_err, "Trouble get the int data for geometric edges.");
if (index_id == (int)i){
edge_curve[0] = curves[j];
break;
}
}
//do the edge mesher
EdgeMesher *em = (EdgeMesher*) mk_core()->construct_meshop("EdgeMesher", edge_curve);
//mk_core()->setup_and_execute();
em->setup_this();
em->execute_this();
////done with the meshing for edge i on the surface
}
//extract the mesh info
iMesh::Error m_err = mk_core()->imesh_instance()->getTagHandle("MeshSubMapping", m_taghandle);
if (m_err){
m_err = mk_core()->imesh_instance()->createTag("MeshSubMapping", 1, iBase_INTEGER, m_taghandle);
IBERRCHK(m_err, "Trouble create a taghandle.");
}
int index = 0;
for (unsigned int i = 0; i < sorted_vertex_list.size(); i++){
int next_edge = sorted_edge_list[i%sorted_edge_list.size()];
int pre_edge = sorted_edge_list[(i+sorted_edge_list.size()-1)%sorted_edge_list.size()];
int next_vertex = sorted_vertex_list[(i+1)%sorted_vertex_list.size()];
iBase_EntitySetHandle entityset;
//get the mesh node on the geometric vertex
iRel::Error r_err = mk_core()->irel_pair()->getEntSetRelation(vertices[sorted_vertex_list[i]].gVertexHandle, 0, entityset);
IBERRCHK(r_err, "Trouble get the entity set for edge from geometric vertex.");
vector<iBase_EntityHandle> points;
points.clear();
m_err = mk_core()->imesh_instance()->getEntities(entityset, iBase_VERTEX, iMesh_POINT, points);
IBERRCHK(m_err, "Trouble get the node entities from mesh entity sets.");
assert(points.size()==1);
index++;
nodes.resize(index);
nodes[index-1].index = index-1;
nodes[index-1].onBoundary = false;
nodes[index-1].onCorner = true;
geom_mesh_node[sorted_vertex_list[i]] = index -1;
mesh_geom_vertex[index-1] = sorted_vertex_list[i];
nodes[index-1].gVertexHandle = points[0];
m_err = mk_core()->imesh_instance()->setIntData(nodes[index-1].gVertexHandle, m_taghandle, index-1);
IBERRCHK(m_err, "Trouble set the int data for mesh nodes.");
for (int j = 0; j < 3; j++)
nodes[index-1].xyz[j] = vertices[sorted_vertex_list[i]].xyz[j];
//assign the i-j coordinates for boundary nodes
if (i == 0){
nodes[index-1].uv[0] = 0.0;
nodes[index-1].uv[1] = 0.0;
}
else{
AssignIJCoords(nodes[index-1].uv[0], nodes[index-1].uv[1], edges_types[pre_edge], index -1);
}
//get the mesh nodes on the geometric edges
r_err = mk_core()->irel_pair()->getEntSetRelation(edges[next_edge].gEdgeHandle, 0, entityset);
IBERRCHK(r_err, "Trouble get the entity set for edge from geometric vertex.");
points.clear();
m_err = mk_core()->imesh_instance()->getEntities(entityset, iBase_VERTEX, iMesh_POINT, points);
IBERRCHK(m_err, "Trouble get the node entities from mesh entity sets.");
int sense = 0;
iGeom::Error g_err = mk_core()->igeom_instance()->getEgVtxSense(edges[next_edge].gEdgeHandle, vertices[sorted_vertex_list[i]].gVertexHandle, vertices[next_vertex].gVertexHandle, sense);
IBERRCHK(g_err, "Trouble get the edge sense with respect to two vertices.");
unsigned int j;
if (sense < 0)
j = points.size()-1;
else
j = 0;
for (; ((j < points.size())&&(j>=0));){ <--- Unsigned variable 'j' can't be negative so it is unnecessary to test it.
index++;
nodes.resize(index);
nodes[index-1].index = index-1;
nodes[index-1].gVertexHandle = points[j];
nodes[index-1].onBoundary = true;
nodes[index-1].onCorner = false;
m_err = mk_core()->imesh_instance()->setIntData(nodes[index-1].gVertexHandle, m_taghandle, index-1);
IBERRCHK(m_err, "Trouble set the int data for mesh nodes.");
m_err = mk_core()->imesh_instance()->getVtxCoord(nodes[index-1].gVertexHandle, nodes[index-1].xyz[0], nodes[index-1].xyz[1], nodes[index-1].xyz[2]);
IBERRCHK(m_err, "Trouble get the coordinates from mesh nodes.");
AssignIJCoords(nodes[index-1].uv[0], nodes[index-1].uv[1], edges_types[next_edge], index -1);
if (sense < 0) j--;
else j++;
}
}
}
//Assign the i j coordinates for boundary nodes
void SubMapping::AssignIJCoords(double &u, double &v, EdgeTypes type, int index){
switch(type){
case POSI_I:
nodes[index].uv[0] = nodes[index-1].uv[0]+1;
nodes[index].uv[1] = nodes[index-1].uv[1];
break;
case NEG_I:
nodes[index].uv[0] = nodes[index-1].uv[0]-1;
nodes[index].uv[1] = nodes[index-1].uv[1];
break;
case POSI_J:
nodes[index].uv[0] = nodes[index-1].uv[0];
nodes[index].uv[1] = nodes[index-1].uv[1]+1;
break;
case NEG_J:
nodes[index].uv[0] = nodes[index-1].uv[0];
nodes[index].uv[1] = nodes[index-1].uv[1]-1;
break;
default:
break;
}
}
//subdivide the surface
void SubMapping::InteriorNodeInterpolation(ModelEnt *me)
{
iBase_EntitySetHandle entityset;
iRel::Error r_err = mk_core()->irel_pair()->getEntSetRelation(me->geom_handle(), 0, entityset);
IBERRCHK(r_err, "Trouble get the entity set for edge from geometric vertex.");
int i_max = -1.0e5, i_min = 1.0e5, j_max = -1.0e5, j_min = 1.0e5;
//calculate the bounding i-j: i_max, i_min, j_max, j_min, these, these extreme points should be on the geometric vertices
for (unsigned int i = 0; i < sorted_vertex_list.size(); i++){
int index = geom_mesh_node[sorted_vertex_list[i]];
if (nodes[index].uv[0] < i_min)
i_min = int(nodes[index].uv[0]);
if (nodes[index].uv[0] > i_max)
i_max = int(nodes[index].uv[0]);
if (nodes[index].uv[1] < j_min)
j_min = int(nodes[index].uv[1]);
if (nodes[index].uv[1] > j_max)
j_max = int(nodes[index].uv[1]);
}
vector<Vertex> boundary_ij;
for (unsigned int i = 0; i < nodes.size(); i++)
if (nodes[i].onCorner){
boundary_ij.resize(boundary_ij.size()+1);
boundary_ij[boundary_ij.size()-1] = nodes[i];
}
//i_min, i_max, j_min and j_max are the boundaries
int index = nodes.size();
int num_node_boundary = index;
for (int i = i_min+1; i < i_max; i++){
for (int j = j_min+1; j < j_max; j++){
double j_coord[2] = {j_min, j_max}, i_coord[2] = {i_min, i_max};
int j_index[2] = {-1, -1}, i_index[2] = {-1, -1};
for (int k = 0; k < num_node_boundary; k++){
if ((int(nodes[k].uv[0]) == i)&&(int(nodes[k].uv[1]) == j)){
//this point is a boundary node, i_index and j_index are always -1
for (int m = 0; m < 2; m++){
i_index[m] = -1;
j_index[m] = -1;
}
break;
}
else if ((int(nodes[k].uv[0]) == i)&&(int(nodes[k].uv[1]) != j)){
//this point has vertical nodes
if ((nodes[k].uv[1] > j)&&(nodes[k].uv[1] <= j_coord[1])){//top point
j_index[1] = k;
j_coord[1] = nodes[k].uv[1];
}
else if ((nodes[k].uv[1] < j)&&(nodes[k].uv[1] >= j_coord[0])){//bottom point
j_index[0] = k;
j_coord[0] = nodes[k].uv[1];
}
else
continue;
}
else if ((int(nodes[k].uv[0]) != i)&&(int(nodes[k].uv[1]) == j)){
//this point has horizontal nodes
if ((nodes[k].uv[0] > i)&&(nodes[k].uv[0] <= i_coord[1])){
i_index[1] = k;
i_coord[1] = nodes[k].uv[0];
}
else if ((nodes[k].uv[0] < i)&&(nodes[k].uv[0] >= i_coord[0])){
i_index[0] = k;
i_coord[0] = nodes[k].uv[0];
}
else
continue;
}
else//this point is not interesting for me
continue;
}
if ((i_index[0]!= -1)&&(i_index[1] != -1)&&(j_index[0] != -1)&&(j_index[1] != -1)){
//interpolate the interior point
double xyz[3];
double weight[2] = {fabs(i-nodes[i_index[1]].uv[0]), fabs(j-nodes[j_index[1]].uv[1])};
if (fabs(j-nodes[j_index[0]].uv[1]) < fabs(j-nodes[j_index[1]].uv[1]))
weight[1] = double(fabs(j-nodes[j_index[0]].uv[1]));
if (fabs(i-nodes[i_index[0]].uv[0]) < fabs(i-nodes[i_index[1]].uv[0]))
weight[0] = fabs(i-nodes[i_index[0]].uv[0]);
double total = weight[0]+weight[1];
double i_weight = weight[1]/total, j_weight = weight[0]/total;
for (int k = 0; k < 3; k++){
double firstpart = nodes[j_index[1]].xyz[k]*fabs(j-nodes[j_index[0]].uv[1])/fabs(nodes[j_index[1]].uv[1]-nodes[j_index[0]].uv[1]);
double secondpart = nodes[j_index[0]].xyz[k]*fabs(nodes[j_index[1]].uv[1]-j)/fabs(nodes[j_index[1]].uv[1]-nodes[j_index[0]].uv[1]);
double j_value = firstpart + secondpart;<--- Variable 'j_value' is assigned a value that is never used.
double thirdpart = nodes[i_index[1]].xyz[k]*fabs(i-nodes[i_index[0]].uv[0])/fabs(nodes[i_index[1]].uv[0]-nodes[i_index[0]].uv[0]);
double fourthpart = nodes[i_index[0]].xyz[k]*fabs(nodes[i_index[1]].uv[0]-i)/fabs(nodes[i_index[1]].uv[0]-nodes[i_index[0]].uv[0]);
double i_value = thirdpart + fourthpart;<--- Variable 'i_value' is assigned a value that is never used.
xyz[k] = j_weight*firstpart+j_weight*secondpart+i_weight*thirdpart+i_weight*fourthpart;
}
iGeom::Error g_err = mk_core()->igeom_instance()->getEntClosestPt(me->geom_handle(), xyz[0], xyz[1], xyz[2], xyz[0], xyz[1], xyz[2]);
IBERRCHK(g_err, "Trouble get the closest point on the surface.");
if (isOutSideSurf(boundary_ij, i, j)){
//if ((num_i[0]%2==1)||(num_i[1]%2==1)||(num_j[0]%2==1)||(num_j[1]%2==1))
//create the vertex entity
index++;
nodes.resize(index);
nodes[index-1].index = index - 1;
for (int k = 0; k < 3; k++)
nodes[index-1].xyz[k] = xyz[k];
nodes[index-1].onBoundary = false;
nodes[index-1].onCorner = false;
nodes[index-1].uv[0] = i;
nodes[index-1].uv[1] = j;
}
}
}
}
std::cout << "number of boundary nodes is " << num_node_boundary << std::endl;
//create the interior node entities
vector<iBase_EntityHandle> m_nodes;
m_nodes.resize(nodes.size()-num_node_boundary);
for (unsigned int i = num_node_boundary; i < nodes.size(); i++){
iMesh::Error m_err = mk_core()->imesh_instance()->createVtx(nodes[i].xyz[0], nodes[i].xyz[1], nodes[i].xyz[2], m_nodes[i-num_node_boundary]);
IBERRCHK(m_err, "Trouble create the node entity.");
nodes[i].gVertexHandle = m_nodes[i-num_node_boundary];
m_err = mk_core()->imesh_instance()->addEntToSet(m_nodes[i-num_node_boundary], entityset);
IBERRCHK(m_err, "Trouble add the mesh node into the entityset.");
m_err = mk_core()->imesh_instance()->setIntData(m_nodes[i-num_node_boundary], m_taghandle, i);
IBERRCHK(m_err, "Trouble set the int data.");
}
//ok, we are done with the node entities
//trick here, create an array of int data to quickly locate the node index
vector<int> node_index((j_max-j_min+1)*(i_max-i_min+1),-1);//here, invalid position is -1
for (unsigned int i = 0; i < nodes.size(); i++){
node_index[(nodes[i].uv[1]-j_min)*(i_max-i_min+1)+nodes[i].uv[0]-i_min] = i;
}
int face_sense;
iGeom::Error g_err = mk_core()->igeom_instance()->getEgFcSense(edges[sorted_edge_list[0]].gEdgeHandle, me->geom_handle(), face_sense);
IBERRCHK(g_err, "Trouble get the edge sense with respect to a geometrical face.");
int edge_sense;
g_err = mk_core()->igeom_instance()->getEgVtxSense(edges[sorted_edge_list[0]].gEdgeHandle, vertices[sorted_vertex_list[0]].gVertexHandle, vertices[sorted_vertex_list[1]].gVertexHandle, edge_sense);
IBERRCHK(g_err, "Trouble get the sense of edge with respect to two vertices.");
int test_sense = face_sense * edge_sense;
index = 0;
//create the quadrilateral elements on the surface
for (int j = j_min; j < j_max; j++){
for (int i = i_min; i < i_max; i++){
if (node_index[(j-j_min)*(i_max-i_min+1)+i-i_min] != -1){//there exists such a mesh node
//check the other three vertices whether they exist or not
if ((j+1)>j_max)
continue;
if ((i+1)>i_max)
continue;
if ((node_index[(j+1-j_min)*(i_max-i_min+1)+i-i_min] != -1)&&(node_index[(j-j_min)*(i_max-i_min+1)+i+1-i_min] != -1)&&(node_index[(j+1-j_min)*(i_max-i_min+1)+i+1-i_min] != -1)){
index++;
quads.resize(index);
quads[index-1].connect.resize(4);
if (test_sense < 0){
quads[index-1].connect[0] = &nodes[node_index[(j-j_min)*(i_max-i_min+1)+i-i_min]];
quads[index-1].connect[3] = &nodes[node_index[(j+1-j_min)*(i_max-i_min+1)+i-i_min]];
quads[index-1].connect[2] = &nodes[node_index[(j+1-j_min)*(i_max-i_min+1)+i+1-i_min]];
quads[index-1].connect[1] = &nodes[node_index[(j-j_min)*(i_max-i_min+1)+i+1-i_min]];
}
else{
quads[index-1].connect[0] = &nodes[node_index[(j-j_min)*(i_max-i_min+1)+i-i_min]];
quads[index-1].connect[1] = &nodes[node_index[(j+1-j_min)*(i_max-i_min+1)+i-i_min]];
quads[index-1].connect[2] = &nodes[node_index[(j+1-j_min)*(i_max-i_min+1)+i+1-i_min]];
quads[index-1].connect[3] = &nodes[node_index[(j-j_min)*(i_max-i_min+1)+i+1-i_min]];
}
}
}
}
}
std::cout << "test quad size = " << quads.size() << std::endl;
vector<iBase_EntityHandle> m_faces;
m_faces.resize(quads.size());
for (unsigned int i = 0; i < quads.size(); i++){
vector<iBase_EntityHandle> n_nodes;
n_nodes.resize(4);
for (int k = 0; k < 4; k++)
n_nodes[k] = nodes[quads[i].connect[k]->index].gVertexHandle;
iMesh::Error m_err = mk_core()->imesh_instance()->createEnt(iMesh_QUADRILATERAL, &n_nodes[0], 4, m_faces[i]);
IBERRCHK(m_err, "Trouble create the quadrilateral element.");
quads[i].gFaceHandle = m_faces[i];
m_err = mk_core()->imesh_instance()->addEntToSet(m_faces[i], entityset);
IBERRCHK(m_err, "Trouble add the mesh node into the entityset.");
m_err = mk_core()->imesh_instance()->setIntData(m_faces[i], m_taghandle, i);
IBERRCHK(m_err, "Trouble set the int data.");
n_nodes.clear();
}
std::cout << "Quad size = " << quads.size() << std::endl;
std::cout << "imax = " << i_max << "\timin = " << i_min << "\tjmax = " << j_max << "\tjmin = " << j_min << std::endl;
}
//smooth the structured mesh
void SubMapping::MeshSmoothing(ModelEnt *ent)
{
std::vector<std::set<int> > AdjElements;
std::vector<std::vector<int> > Quads(quads.size(), vector<int>(4));
std::vector<std::vector<double> > coords(nodes.size(), vector<double>(3));
std::vector<bool> isBnd(nodes.size(), false);
std::vector<std::vector<int> > connect(nodes.size(), std::vector<int>(9));
AdjElements.resize(nodes.size());
for (unsigned int i = 0; i < quads.size(); i++){
std::vector<iBase_EntityHandle> adjEnts;
adjEnts.clear();
iMesh::Error m_err = mk_core()->imesh_instance()->getEntAdj(quads[i].gFaceHandle, iBase_VERTEX, adjEnts);
IBERRCHK(m_err, "Trouble get the adjacent nodes wrt a quad.");
assert(adjEnts.size()==4);
for (unsigned int j = 0; j < adjEnts.size(); j++){
int index_id = -1;
m_err = mk_core()->imesh_instance()->getIntData(adjEnts[j], m_taghandle, index_id);
IBERRCHK(m_err, "Trouble get int data for nodes.");
Quads[i][j] = index_id;
}
}
for (unsigned int i = 0; i < nodes.size(); i++){
if (nodes[i].onBoundary || nodes[i].onCorner)
isBnd[i] = true;
for (int j = 0; j < 3; j++)
coords[i][j] = nodes[i].xyz[j];
if (!isBnd[i]){
vector<iBase_EntityHandle> adjEnts;
iMesh::Error m_err = mk_core()->imesh_instance()->getEntAdj(nodes[i].gVertexHandle, iBase_FACE, adjEnts);
IBERRCHK(m_err, "Trouble get the adjacent quads wrt a node.");
for (unsigned int j = 0; j < adjEnts.size(); j++){
int index_id = -1;
m_err = mk_core()->imesh_instance()->getIntData(adjEnts[j], m_taghandle, index_id);
IBERRCHK(m_err, "Trouble get int data for quads.");
AdjElements[i].insert(index_id);
}
//process the connect info
//there are 4 adjacent quadrilateral elements around node i
assert(AdjElements[i].size() == 4);
std::set<int>::iterator it = AdjElements[i].begin();
int st_index[4];
//process 4 quad elements
int j = -1;
for (; it != AdjElements[i].end(); it++){<--- Prefer prefix ++/-- operators for non-primitive types.
j++;
if (int(i) == Quads[*it][0])
st_index[j] = 0;
else if (int(i) == Quads[*it][1])
st_index[j] = 1;
else if (int(i) == Quads[*it][2])
st_index[j] = 2;
else
st_index[j] = 3;
}
it = AdjElements[i].begin();
connect[i][2] = Quads[*it][(st_index[0]+3)%4];
connect[i][8] = Quads[*it][(st_index[0]+1)%4];
connect[i][1] = Quads[*it][(st_index[0]+2)%4];
//finish processing the quad 1
std::set<int>::iterator it1 = AdjElements[i].begin();
it1++;<--- Prefer prefix ++/-- operators for non-primitive types.
for (j = 1; j < 4; j++, it1++){<--- Prefer prefix ++/-- operators for non-primitive types.
if (connect[i][8] == Quads[*it1][(st_index[j]+1)%4]){
connect[i][7] = Quads[*it1][(st_index[j]+2)%4];
connect[i][6] = Quads[*it1][(st_index[j]+3)%4];
break;
}
else if (connect[i][8] == Quads[*it1][(st_index[j]+3)%4]){
connect[i][7] = Quads[*it1][(st_index[j]+2)%4];
connect[i][6] = Quads[*it1][(st_index[j]+1)%4];
break;
}
else
continue;
}
//finish processing the quad 2
std::set<int>::iterator it2 = AdjElements[i].begin();
it2++;<--- Prefer prefix ++/-- operators for non-primitive types.
for (j=1; it2 != AdjElements[i].end(); it2++,j++){<--- Prefer prefix ++/-- operators for non-primitive types.
if (connect[i][2] == Quads[*it2][(st_index[j]+1)%4]){
connect[i][3] = Quads[*it2][(st_index[j]+2)%4];
connect[i][4] = Quads[*it2][(st_index[j]+3)%4];
break;
}
else if (connect[i][2] == Quads[*it2][(st_index[j]+3)%4]){
connect[i][3] = Quads[*it2][(st_index[j]+2)%4];
connect[i][4] = Quads[*it2][(st_index[j]+1)%4];
break;
}
else
continue;
}
//finish processing the quad 4;
std::set<int>::iterator it3 = AdjElements[i].begin();
it3++;<--- Prefer prefix ++/-- operators for non-primitive types.
for (j=1; it3 != AdjElements[i].end(); it3++,j++){<--- Prefer prefix ++/-- operators for non-primitive types.
if ((it3 != it1)&&(it3 != it2)){
connect[i][5] = Quads[*it2][(st_index[j]+2)%4];
}
else
continue;
}
}
}
mk_core()->save_mesh("BeforeEquipotential.vtk");
EquipotentialSmooth smoother;
smoother.SetupData(AdjElements, Quads, coords, isBnd, connect);
smoother.Execute();
std::vector<std::vector<double> > coors(nodes.size(), vector<double>(3));
smoother.GetCoords(coors);
//update the new position for nodes
for (unsigned int i = 0; i < nodes.size(); i++){
if (!isBnd[i]){
double tmp_coord[3] = {coords[i][0], coords[i][1], coords[i][2]};
iGeom::Error g_err = mk_core()->igeom_instance()->getEntClosestPt(ent->geom_handle(), coords[i][0], coords[i][1], coords[i][2], tmp_coord[0], tmp_coord[1], tmp_coord[2]);
IBERRCHK(g_err, "Trouble get a closest point on the linking surface.");
iMesh::Error m_err = mk_core()->imesh_instance()->setVtxCoord(nodes[i].gVertexHandle, tmp_coord[0], tmp_coord[1], tmp_coord[2]);
IBERRCHK(m_err, "Trouble set the new coordinates for nodes.");
}
}
#ifdef HAVE_MESQUITE
iBase_EntitySetHandle entityset;
iRel::Error r_err = mk_core()->irel_pair()->getEntSetRelation(ent->geom_handle(), 0, entityset);
IBERRCHK(r_err, "Trouble get the entity set for edge from geometric vertex.");
MeshImprove shapesmooth(mk_core(), true, true, false, false, false);
shapesmooth.SurfMeshImprove(ent->geom_handle(), entityset, iBase_FACE);
#endif
vector<iBase_EntityHandle> entities;
for (unsigned int i = 0; i < nodes.size(); i++)
entities.push_back(nodes[i].gVertexHandle);
iMesh::Error m_err = mk_core()->imesh_instance()->rmvArrTag(&entities[0], entities.size(), m_taghandle);
IBERRCHK(m_err, "Trouble remove the tag values from an array of entities.");
entities.clear();
for (unsigned int i = 0; i < quads.size(); i++)
entities.push_back(quads[i].gFaceHandle);
m_err = mk_core()->imesh_instance()->rmvArrTag(&entities[0], entities.size(), m_taghandle);
IBERRCHK(m_err, "Trouble remove the tag values from an array of entities.");
entities.clear();
for (unsigned int i = 0; i < vertices.size(); i++)
entities.push_back(vertices[i].gVertexHandle);
iGeom::Error g_err = mk_core()->igeom_instance()->rmvArrTag(&entities[0], entities.size(), g_taghandle);
IBERRCHK(g_err, "Trouble remove the tag values from an array of entities.");
entities.clear();
for (unsigned int i = 0; i < edges.size(); i++)
entities.push_back(edges[i].gEdgeHandle);
g_err = mk_core()->igeom_instance()->rmvArrTag(&entities[0], entities.size(), g_taghandle);
IBERRCHK(g_err, "Trouble remove the tag values from an array of entities.");
}
//check whether a point is outside the surface or not
bool SubMapping::isOutSideSurf(vector<Vertex> corner, int i, int j)
{//test whether the point (i,j) is inside the polygon or outside
//use the wind number
unsigned int m;
double angle=0;
double p1[2],p2[2];
for (m = 0; m < corner.size(); m++) {
p1[0] = corner[m].uv[0] - i;
p1[1] = corner[m].uv[1] - j;
p2[0] = corner[(m+1)%corner.size()].uv[0] - i;
p2[1] = corner[(m+1)%corner.size()].uv[1] - j;
angle += Angle2D(p1[0],p1[1],p2[0],p2[1]);
}
if (fabs(angle) < PI)
return false;
else
return true;
}
/*
Return the angle between two vectors on a plane
The angle is from vector 1 to vector 2, positive anticlockwise
The result is between -pi -> pi
*/
double SubMapping::Angle2D(double x1, double y1, double x2, double y2)
{
double dtheta,theta1,theta2;
theta1 = atan2(y1,x1);
theta2 = atan2(y2,x2);
dtheta = theta2 - theta1;
while (dtheta > PI)
dtheta -= 2.0*PI;
while (dtheta < -PI)
dtheta += 2.0*PI;
return dtheta;
}
}
|