1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281 | #include "meshkit/TFIMapping.hpp"
#include "meshkit/MKCore.hpp"
#include "meshkit/EdgeMesher.hpp"
#include "meshkit/ModelEnt.hpp"
#include "meshkit/SizingFunction.hpp"
#include "moab/ReadUtilIface.hpp"
#include "EquipotentialSmooth.hpp"
#ifdef HAVE_MESQUITE
#include "meshkit/MeshImprove.hpp"
#endif
#include <vector>
#include <iostream>
#include <math.h>
#include <map>
#include <algorithm>
const double EPS = 1.0e-6;
namespace MeshKit {
//---------------------------------------------------------------------------//
//Entity Type initialization for TFIMapping meshing
moab::EntityType TFIMapping_tps[] = { moab::MBVERTEX, moab::MBEDGE, moab::MBQUAD, moab::MBMAXTYPE };
const moab::EntityType* TFIMapping::output_types()
{
return TFIMapping_tps;
}
//---------------------------------------------------------------------------//
// construction function for TFIMapping class
TFIMapping::TFIMapping(MKCore *mk_core, const MEntVector &me_vec) :
MeshScheme(mk_core, me_vec)
{
_shapeImprove=false;
}
//---------------------------------------------------------------------------//
// deconstruction function for TFIMapping class
TFIMapping::~TFIMapping()
{
}
//---------------------------------------------------------------------------//
// setup function:
void TFIMapping::setup_this()
{
/* the only things we need to make sure :
1) there are 4 edges, exactly: this is removed
2) the opposite edges have the same meshcount
- if some of the edges are meshed, we need to mesh the opposite edge with
correct meshcount
- if 2 opposite edges are meshed, verify the mesh count
*/
// get iGeom instance from the first ment selection
if (mentSelection.empty())
return;
//loop over the surfaces
for (MEntSelection::iterator mit = mentSelection.begin(); mit != mentSelection.end(); mit++)<--- Prefer prefix ++/-- operators for non-primitive types.
{
ModelEnt *me = mit -> first;
int dimME = me->dimension();
if (dimME != 2)
ECERRCHK(MK_FAILURE, "bad input for TFI Mapping, we can only mesh surfaces");
//first check whether the surface is meshed or not
if (me->get_meshed_state() >= COMPLETE_MESH)
continue;
int size_index = me->sizing_function_index();
int mesh_count_surface = -1;
if (size_index >= 0)
mesh_count_surface = me->mk_core()->sizing_function(size_index)->intervals();
// get the boundary loop of edges
MEntVector boundEdges;
std::vector<int> senses, group_sizes;
me->ModelEnt::boundary(1, boundEdges, &senses, &group_sizes);
//remove this constraint in case of the side-cylinder surface
//if (boundEdges.size() != 4)
// ECERRCHK(MK_FAILURE, "bad input for TFI Mapping, we can only mesh surfaces with 4 edges");
if (boundEdges.size()<4){
ModelEnt *oppEdges[2] = {boundEdges[0], boundEdges[1]};
MEntVector edgesToMesh;
int mesh_count = mesh_count_surface;
bool force = false;
for (int j = 0; j < 2; j++){
if (oppEdges[j]->get_meshed_state() >= COMPLETE_MESH){
std::vector<moab::EntityHandle> medges;
oppEdges[j]->get_mesh(1, medges, true);
mesh_count = (int) medges.size();
force = true;
}
else
{
int indexS = oppEdges[j]->sizing_function_index();
if (indexS >= 0){
SizingFunction * sfe = mk_core()->sizing_function(indexS);
if (!force)
{
if (sfe->intervals() > 0)
mesh_count = sfe->intervals();
else if (sfe->size() > 0)
mesh_count = oppEdges[j]->measure() / sfe->size();
if (mesh_count % 2 && oppEdges[j]->constrain_even())
++mesh_count;
}
}
edgesToMesh.push_back(oppEdges[j]);
}
}
if (edgesToMesh.size() > 0)
{
EdgeMesher * em = (EdgeMesher*) me->mk_core()->construct_meshop("EdgeMesher", edgesToMesh);
if (mesh_count < 0)
{
std::cout << "mesh count not set properly on opposite edges, set it to 10\n";
mesh_count = 10; // 4 is a nice number, used in the default edge mesher;
// but I like 10 more
}
for (unsigned int j = 0; j < edgesToMesh.size(); j++)
{
int edgeMeshCount = 0;
int edgeSfIndex =
edgesToMesh[j]->sizing_function_index();
if (edgeSfIndex >= 0)
{
SizingFunction* edgeSf =
mk_core()->sizing_function(edgeSfIndex);
edgeMeshCount = edgeSf->intervals();
}
if (mesh_count != edgeMeshCount)
{
edgesToMesh[j]->mesh_intervals(mesh_count);
}
if (force)
{
// the opposite edge is already meshed, so the number
// of intervals is a hard constraint for this edge
edgesToMesh[j]->interval_firmness(HARD);
}
edgesToMesh[j]->add_meshop(em);
}
mk_core()->insert_node(em, (GraphNode*)this,
mk_core()->root_node());
}
}
else{
// mesh edge 0 and 2 together, and 1 and 3 together (same mesh count)
// look at all settings, to decide proper mesh count
for (int k = 0; k <= 1; k++)
{
// treat first edges 0 and 2, then 1 and 3
ModelEnt * oppEdges[2] = { boundEdges[k], boundEdges[k + 2] };
MEntVector edgesToMesh;// edges that are not meshed yet
//if one of them is meshed and the other not, use the same mesh count
// take the maximum of the proposed mesh counts, either from sizing function, or mesh intervals
int mesh_count = mesh_count_surface; // could be -1, still
bool force = false;
for (int j = 0; j < 2; j++)
{
if (oppEdges[j]->get_meshed_state() >= COMPLETE_MESH)
{
// in this case, force the other edge to have the same mesh count, do not take it from surface
std::vector<moab::EntityHandle> medges;
oppEdges[j]->get_mesh(1, medges, true);
mesh_count = (int) medges.size();
force = true;
}
else
{
int indexS = oppEdges[j]->sizing_function_index();
if (indexS >= 0)
{
SizingFunction * sfe = mk_core()->sizing_function(indexS);
if (!force)
{
// if a sizing function was set on an edge, use
// that rather than a mesh count from the surface
if (sfe->intervals() > 0)
mesh_count = sfe->intervals();
else if (sfe->size() > 0)
mesh_count = oppEdges[j]->measure() / sfe->size();
if (mesh_count % 2 && oppEdges[j]->constrain_even())
++mesh_count;
}
}
// push it to the list if it is not setup to another mesh op (edge mesher) already
//if (oppEdges[j]->is_meshops_list_empty())// it will create an EdgeMesher later
if ((j == 0 || (oppEdges[j] != oppEdges[0])) &&
oppEdges[j]->is_meshops_list_empty())
{
edgesToMesh.push_back(oppEdges[j]);
}
}
}
// decide on a mesh count now, if edgesToMesh.size()>0
if (edgesToMesh.size() > 0)
{
EdgeMesher * em = (EdgeMesher*) me->mk_core()->construct_meshop("EdgeMesher", edgesToMesh);
if (mesh_count < 0)
{
std::cout << "mesh count not set properly on opposite edges, set it to 10\n";
mesh_count = 10; // 4 is a nice number, used in the default edge mesher;
// but I like 10 more
}
for (unsigned int j = 0; j < edgesToMesh.size(); j++)
{
int edgeMeshCount = 0;
int edgeSfIndex =
edgesToMesh[j]->sizing_function_index();
if (edgeSfIndex >= 0)
{
SizingFunction* edgeSf =
mk_core()->sizing_function(edgeSfIndex);
edgeMeshCount = edgeSf->intervals();
}
if (mesh_count != edgeMeshCount)
{
edgesToMesh[j]->mesh_intervals(mesh_count);
}
if (force)
{
// the opposite edge is already meshed, so the number
// of intervals is a hard constraint for this edge
edgesToMesh[j]->interval_firmness(HARD);
}
edgesToMesh[j]->add_meshop(em);
}
mk_core()->insert_node(em, (GraphNode*)this,
mk_core()->root_node());
}
} // end loop over pair of opposite edges
}
}// end loop over surfaces
ensure_facet_dependencies(false);
mk_core()->print_graph("AfterTFISetup.eps");
}
//---------------------------------------------------------------------------//
// execute function: generate the all-quad mesh through the TFI mapping
void TFIMapping::execute_this()
{
//loop over the surfaces
for (MEntSelection::iterator mit = mentSelection.begin(); mit != mentSelection.end(); mit++)<--- Prefer prefix ++/-- operators for non-primitive types.
{
ModelEnt *me = mit -> first;
//first check whether the surface is meshed or not
if (me->get_meshed_state() >= COMPLETE_MESH){
#ifdef HAVE_MESQUITE
iBase_EntitySetHandle entityset;
iRel::Error r_err = mk_core()->irel_pair(me->iRelPairIndex())->getEntSetRelation(me->geom_handle(), 0, entityset);
IBERRCHK(r_err, "Trouble get the entityset w.r.t a surface!");
MeshImprove shapesmooth(mk_core(), false, false, true, false, mk_core()->igeom_instance(me->iGeomIndex()));
shapesmooth.SurfMeshImprove(me->geom_handle(), entityset, iBase_FACE);
#endif
continue;
}
MEntVector boundEdges;
std::vector<int> senses, group_sizes;
me->ModelEnt::boundary(1, boundEdges, &senses, &group_sizes);
set<ModelEnt*> distinctBoundEdges;
distinctBoundEdges.insert(boundEdges.begin(), boundEdges.end());
if (distinctBoundEdges.size() == 4)
SurfMapping(me);
else
cylinderSurfMapping(me);
//ok, we are done, commit to ME
me->commit_mesh(mit->second, COMPLETE_MESH);
}
}
int TFIMapping::cylinderSurfMapping(ModelEnt *ent)
{
int irelPairIndex = ent->iRelPairIndex();
// determine whether there is an edge along the linking surface
MEntVector allBoundEdges;
std::vector<int> allSenses, group_sizes;
ent->ModelEnt::boundary(1, allBoundEdges, &allSenses, &group_sizes);
map<ModelEnt*, int> boundEdgeCount;
for (unsigned int i = 0; i < allBoundEdges.size(); ++i)
{
boundEdgeCount[allBoundEdges[i]] = 0;
}
for (unsigned int i = 0; i < allBoundEdges.size(); ++i)
{
++boundEdgeCount[allBoundEdges[i]];
}
MEntVector boundEdges;
std::vector<int> boundEdgeSenses;
ModelEnt* linkSurfEdge = NULL;
for (unsigned int i = 0; i < allBoundEdges.size(); ++i)
{
if (boundEdgeCount[allBoundEdges[i]] == 1)
{
boundEdges.push_back(allBoundEdges[i]);
boundEdgeSenses.push_back(allSenses[i]);
}
else
{
linkSurfEdge = allBoundEdges[i];
}
}
if (boundEdges.size() != 2)
{
ECERRCHK(MK_FAILURE, "Cylinder TFIMapping does not have exactly two distinct bounding edges");
}
std::cout << "TFIMapping on cylinder\n";
std::vector<moab::EntityHandle> nList;
std::vector<iBase_EntityHandle> List_i, List_ii;
// get nodes of bounding edge 0 into List_i
boundEdges[0]->get_mesh(0, nList, true);
unsigned int ix = 0;
int size_i = (int)nList.size()-1;
for (ix = 0; ix < nList.size(); ix++)
{
List_i.push_back((iBase_EntityHandle) nList[ix]);
}
// we reverse the first boundary edge if it is "negative" in the loop
if (boundEdgeSenses[0] == -1)
{
std::reverse(List_i.begin(), List_i.end());
}
nList.clear();
// get nodes of bounding edge 1 into List_ii
boundEdges[1]->get_mesh(0, nList, true);
int size_ii = nList.size() - 1;
for (ix = 0; ix < nList.size(); ix++)
{
List_ii.push_back((iBase_EntityHandle) nList[ix]);
}
// we reverse the second boundary edge if it is "positive" in the loop
if (boundEdgeSenses[1] == 1)
{
std::reverse(List_ii.begin(), List_ii.end());
}
if (size_i != size_ii)
ECERRCHK(MK_FAILURE, "Opposite edges have different mesh count, abort");
// get nodes that are on the linking surface edge, if any,
// and identify where they start on the source and target
int linkingEdgeNodeI = -1;
int linkingEdgeNodeII = -1;<--- The scope of the variable 'linkingEdgeNodeII' can be reduced.
int offset = 0;
std::vector<iBase_EntityHandle> linkEdgeNodeList;
if (linkSurfEdge != NULL)
{
std::vector<moab::EntityHandle> lseNodes;
linkSurfEdge->get_mesh(0, lseNodes, true);
for (ix = 0; ix < lseNodes.size(); ++ix)
{
linkEdgeNodeList.push_back((iBase_EntityHandle)lseNodes[ix]);
}
iBase_EntityHandle nodeOnI = linkEdgeNodeList[0];
iBase_EntityHandle nodeOnII = linkEdgeNodeList[linkEdgeNodeList.size() - 1];
for (ix = 0; ix < List_i.size(); ix++)
{
if (nodeOnI == List_i[ix])
{
linkingEdgeNodeI = (int)ix;
}
else if (nodeOnI == List_ii[ix])
{
linkingEdgeNodeII = (int)ix;
}
if (nodeOnII == List_i[ix])
{
linkingEdgeNodeI = (int)ix;
}
else if (nodeOnII == List_ii[ix])
{
linkingEdgeNodeII = (int)ix;
}
if (linkingEdgeNodeI != -1 && linkingEdgeNodeII != -1)
{
offset = linkingEdgeNodeII - linkingEdgeNodeI;
if (offset < 0)
{
offset += size_i;
}
break;
}
}
if (linkingEdgeNodeI == -1 || linkingEdgeNodeII == -1)
{
ECERRCHK(MK_FAILURE, "Could not find vertices of linking surface edge on source and target.");
}
if (nodeOnI != List_i[linkingEdgeNodeI])
{
std::reverse(linkEdgeNodeList.begin(), linkEdgeNodeList.end());
nodeOnI = linkEdgeNodeList[0];
nodeOnII = linkEdgeNodeList[linkEdgeNodeList.size() - 1];
}
}
// done with all the initalizations
// get all the position vectors in 3D
std::vector<Vector3D> pos_i(size_i), pos_ii(size_ii);
iGeom::Error g_err =
mk_core()->imesh_instance()->getVtxArrCoords(&(List_i[0]),
size_i, iBase_INTERLEAVED, &(pos_i[0][0]));
IBERRCHK(g_err, "Trouble get the xyz coordinates for nodes i");
g_err = mk_core()->imesh_instance()->getVtxArrCoords(&(List_ii[0]),
size_ii, iBase_INTERLEAVED, &(pos_ii[0][0]));
IBERRCHK(g_err, "Trouble get the xyz coordinates for nodes i");
// compute the number of layers to use based on the sizing function
unsigned int mesh_count = 0;
SizingFunction *surfSizing =
ent->mk_core()->sizing_function(ent->sizing_function_index());
if (surfSizing->intervals() > 0)
{
mesh_count = surfSizing->intervals();
if (ent->constrain_even() && mesh_count % 2)
++mesh_count;
}
else if (surfSizing->size() > 0)
{
double estLinkSurfWidth =
(boundEdges[0]->measure() + boundEdges[1]->measure()) / 2.0;
// the 1 + epsilon factor gets the correct number of edges in a test case
// where the math would work if exact, but fails due to rounding error
double estLinkSurfLength = (1 + 1e-15) * ent->measure() / estLinkSurfWidth;
mesh_count = estLinkSurfLength / surfSizing->size();
if (!mesh_count)
++mesh_count;
if (ent->constrain_even() && mesh_count % 2)
++mesh_count;
}
else if (linkEdgeNodeList.empty())
{
throw Error(MK_INCOMPLETE_MESH_SPECIFICATION, "Sizing function for cylindrical linking surface with no link edge had neither positive size nor positive intervals.");
}
// compute the interior nodes based on transforming the source and target
// edges in position
unsigned int numCreatedNodes = 0;
if (!linkEdgeNodeList.empty())
{
if (mesh_count != linkEdgeNodeList.size() - 1)
{
mesh_count = linkEdgeNodeList.size() - 1;
std::cout << "Warning: The number of nodes on the linking surface edge "
<< "does not match the number of intervals from the sizing "
<< "function on the surface.\n";
}
numCreatedNodes = (size_i - 1) * (mesh_count - 1);
}
else
{
numCreatedNodes = size_i * (mesh_count - 1);
}
std::vector<iBase_EntityHandle> createdNodes(numCreatedNodes);
std::vector<iBase_EntityHandle> interiorNodes(size_i * (mesh_count-1));
Vector3D c0, c1;
for (unsigned int k = 1; k < mesh_count; k++) //compute layer by layer
{
double interpolationFactor = 1.0-double(k)/double(mesh_count);
for (int i = 0; i < size_i; i++){
c0 = pos_i[i];
c1 = pos_ii[(i + offset) % size_i];
Vector3D pts = c0*interpolationFactor + c1*(1.0-interpolationFactor);
Vector3D coords;
g_err = ent->igeom_instance()->getEntClosestPtTrimmed(ent->geom_handle(), pts[0], pts[1], pts[2], coords[0], coords[1], coords[2]);
if (g_err)
{
g_err = ent->igeom_instance()->getEntClosestPt(ent->geom_handle(), pts[0], pts[1], pts[2], coords[0], coords[1], coords[2]);
}
IBERRCHK(g_err, "Trouble get the closest xyz coordinates on the linking surface.");
int pastLinkEdgeOffset = 0;
if (i == linkingEdgeNodeI)
{
// this node corresponds to one that should already exist on the edge
interiorNodes[(k - 1)*size_i +i] = linkEdgeNodeList[k];
}
else if (i > linkingEdgeNodeI && linkingEdgeNodeI >= 0)
{
pastLinkEdgeOffset = -1;
}
iMesh::Error m_err =
mk_core()->imesh_instance()->createVtx(coords[0], coords[1],
coords[2], interiorNodes[(k-1)*size_i+i]);
if (i != linkingEdgeNodeI)
{
createdNodes[(k - 1)*(size_i - 1) + i + pastLinkEdgeOffset] =
interiorNodes[(k - 1)*size_i + i];
}
IBERRCHK(m_err, "Trouble create the interior node.");
}
}
//finish creating the interior nodes
iBase_EntitySetHandle entityset;
iRel::Error r_err = mk_core()->irel_pair(irelPairIndex)->getEntSetRelation(ent->geom_handle(), 0, entityset);
if (r_err){
//create the entityset
iMesh::Error m_err = mk_core()->imesh_instance()->createEntSet(true, entityset);
IBERRCHK(m_err, "Trouble create the entity set.");
r_err = mk_core()->irel_pair(irelPairIndex)->setEntSetRelation(ent->geom_handle(), entityset);
IBERRCHK(r_err, "Trouble create the association between the geometry and mesh entity set.");
}
iMesh::Error m_err = mk_core()->imesh_instance()->addEntArrToSet(&createdNodes[0], createdNodes.size(), entityset);
IBERRCHK(m_err, "Trouble add an array of entities to the mesh entity set.");
// copy nodes in a vector to create quads easier
std::vector<iBase_EntityHandle> Nodes((mesh_count+1)*size_i);
//create the int data for mesh nodes on the linking surface
iBase_TagHandle mesh_tag;
// TODO: Don't use a tag here, since multiple TFIMapping may occur at the
// same time
m_err = mk_core()->imesh_instance()->getTagHandle("MeshTFIMapping", mesh_tag);
if (m_err)
{
m_err = mk_core()->imesh_instance()->createTag("MeshTFIMapping", 1, iBase_INTEGER, mesh_tag);
IBERRCHK(m_err, "Trouble create the mesh_tag for the surface.");
}
int intdata = -1;
for (int i = 0; i < size_i; i++){
intdata++;
m_err = mk_core()->imesh_instance()->setIntData(List_i[i], mesh_tag, intdata);
IBERRCHK(m_err, "Trouble set the int data for mesh nodes.");
Nodes[i] = List_i[i];
m_err = mk_core()->imesh_instance()->setIntData(List_ii[i], mesh_tag, (intdata + mesh_count*size_i));
IBERRCHK(m_err, "Trouble set the int data for mesh nodes.");
Nodes[size_i*mesh_count+i] = List_ii[i];
}
for (int ii = 0; ii < int(interiorNodes.size()); ii++){
intdata++;
m_err = mk_core()->imesh_instance()->setIntData(interiorNodes[ii], mesh_tag, intdata);
IBERRCHK(m_err, "Trouble set the int data for mesh nodes.");
Nodes[intdata] = interiorNodes[ii];
}
//we will always create them in the positive orientation, because we already reversed the Lists with nodes
std::vector<iBase_EntityHandle> qNodes(4);//a generic quad
std::vector<iBase_EntityHandle> Quads(size_i*mesh_count);
for (unsigned int k = 0; k < mesh_count; k++){
for (int i = 0; i < size_i; i++){
qNodes[0] = Nodes[ k*size_i + i ];
qNodes[1] = Nodes[ k*size_i + (i + 1)%size_i ];
qNodes[2] = Nodes[ (k+1)*size_i + (i + 1)%size_i ];
qNodes[3] = Nodes[ (k+1)*size_i + i ];
m_err = mk_core()->imesh_instance()->createEnt(iMesh_QUADRILATERAL, &qNodes[0], 4, Quads[k*size_i+i]);
IBERRCHK(m_err, "Trouble create the quadrilateral element.");
}
}
//finish creating the quads
m_err = mk_core()->imesh_instance()->addEntArrToSet(&Quads[0], Quads.size(), entityset);
IBERRCHK(m_err, "Trouble add an array of quads to the mesh entity set.");
//set int data for quads
for (unsigned int i = 0; i < Quads.size(); i++)
{
m_err = mk_core()->imesh_instance()->setIntData(Quads[i], mesh_tag, i);
IBERRCHK(m_err, "Trouble set the int data for quadrilateral elements.");
}
//Get the global id tag
const char *tag = "GLOBAL_ID";
iBase_TagHandle mesh_id_tag;
m_err = mk_core()->imesh_instance()->getTagHandle(tag, mesh_id_tag);
IBERRCHK(m_err, "Trouble get the mesh_id_tag for 'GLOBAL_ID'.");
std::vector<iBase_EntityHandle> m_Nodes, m_Edges, m_Quads;
//set the int data for Global ID tag
iBase_EntitySetHandle root_set;
int err;
iMesh_getRootSet(mk_core()->imesh_instance()->instance(), &root_set, &err);
assert(!err);
m_err = mk_core()->imesh_instance()->getEntities(root_set, iBase_VERTEX, iMesh_POINT, m_Nodes);
IBERRCHK(m_err, "Trouble get the node list from the mesh entity set.");
m_err = mk_core()->imesh_instance()->getEntities(root_set, iBase_EDGE, iMesh_LINE_SEGMENT, m_Edges);
IBERRCHK(m_err, "Trouble get the edges from the mesh entity set.");
m_err = mk_core()->imesh_instance()->getEntities(root_set, iBase_FACE, iMesh_QUADRILATERAL, m_Quads);
IBERRCHK(m_err, "Trouble get the faces from the mesh entity set.");
for (unsigned int i = 0; i < m_Nodes.size(); i++)
{
m_err = mk_core()->imesh_instance()->setIntData(m_Nodes[i], mesh_id_tag, i);
IBERRCHK(m_err, "Trouble set the int data for 'GLOBAL_ID'.");
}
for (unsigned int i = 0; i < m_Edges.size(); i++)
{
m_err = mk_core()->imesh_instance()->setIntData(m_Edges[i], mesh_id_tag, i);
IBERRCHK(m_err, "Trouble set the int data for 'GLOBAL_ID'.");
}
for (unsigned int i = 0; i < m_Quads.size(); i++)
{
m_err = mk_core()->imesh_instance()->setIntData(m_Quads[i], mesh_id_tag, i);
IBERRCHK(m_err, "Trouble set the int data for 'GLOBAL_ID'.");
}
//SurfImprove(ent->geom_handle(), entityset, iBase_FACE);
mk_core()->save_mesh("InitialMapping.vtk");
if (_shapeImprove)
{
#ifdef HAVE_MESQUITE
iGeom * ig_inst = mk_core()->igeom_instance(ent->iGeomIndex());
MeshImprove meshopt(mk_core(), true, false, false, false, ig_inst);
meshopt.SurfMeshImprove(ent->geom_handle(), entityset, iBase_FACE);
#endif
mk_core()->save_mesh("AfterWinslow.vtk");
#ifdef HAVE_MESQUITE
MeshImprove shapesmooth(mk_core(), false, false, true, false, ig_inst);
shapesmooth.SurfMeshImprove(ent->geom_handle(), entityset, iBase_FACE);
#endif
}
//remove the mesh tag
m_err = mk_core()->imesh_instance()->rmvArrTag(&Quads[0], Quads.size(), mesh_tag);
IBERRCHK(m_err, "Trouble remove the tag values from an array of entities.");
m_err = mk_core()->imesh_instance()->rmvArrTag(&List_i[0], List_i.size(), mesh_tag);
IBERRCHK(m_err, "Trouble remove the tag values from an array of entities.");
m_err = mk_core()->imesh_instance()->rmvArrTag(&List_ii[0], List_ii.size(), mesh_tag);
IBERRCHK(m_err, "Trouble remove the tag values from an array of entities.");
if (interiorNodes.size() > 0)
{
m_err = mk_core()->imesh_instance()->rmvArrTag(&interiorNodes[0], interiorNodes.size(), mesh_tag);
IBERRCHK(m_err, "Trouble remove the tag values from an array of entities.");
}
return 1;
}
/***********************************************************************************/
/*function : SurfMapping */
/*Date : Mar 3, 2011 */
/*Description: Generate the mesh on the linking surface by using TFI */
/* prepare to generate the surface by using TFI mapping interpolation */
/* 1. Get the mesh(edge mesh) from the bounding geometric edges */
/* 2. Find the corresponding relationship between edges, vertices */
/* 3. Check the nodes' corresponding relationship on the 4 bounding edges */
/* 4. Do the TFI interpolation for interior nodes' location */
/***********************************************************************************/
int TFIMapping::SurfMapping(ModelEnt *ent)
{
int irelPairIndex = ent->iRelPairIndex();
MEntVector boundEdges;
std::vector<int> senses, group_sizes;
ent->ModelEnt::boundary(1, boundEdges, &senses, &group_sizes);
//remove this constraint in case of the side-cylinder case
//if (boundEdges.size() != 4)
// ECERRCHK(MK_FAILURE, "bad input for TFI Mapping, we can only mesh surfaces with 4 edges");
std::cout << "Surf mapping\n";
std::vector<iBase_EntityHandle> List_i, List_j, List_ii, List_jj;
std::vector<moab::EntityHandle> nList;
/*
corner[2] NodeList_ii -> corner[3]
^ ^
| |
NodeList_j NodeList_jj
^ ^
| |
corner[0] NodeList_i -> corner[1]
*/
//get the nodes on each edge
// we want the start of node list i and j to be the same (corner 0)
boundEdges[0]->get_mesh(0, nList, true); // include start and end vertices (corners)
unsigned int ix = 0;
int size_i=(int)nList.size();
for (ix = 0; ix < nList.size(); ix++)
List_i.push_back((iBase_EntityHandle) nList[ix]);
// if sense is reverse for edge 0, reverse list,
if (senses[0] == -1)
std::reverse(List_i.begin(), List_i.end());
// so we know for sure corner 0 is at NodeList_i[0]!!
nList.clear();
boundEdges[1]->get_mesh(0, nList, true);
int size_j=(int)nList.size();
for (ix = 0; ix < nList.size(); ix++)
List_jj.push_back((iBase_EntityHandle) nList[ix]);
if (senses[1] == -1)
std::reverse(List_jj.begin(), List_jj.end());
nList.clear();
boundEdges[2]->get_mesh(0, nList, true);
for (ix = 0; ix < nList.size(); ix++)
List_ii.push_back((iBase_EntityHandle) nList[ix]);
if (senses[2] == 1) // we reverse it if this edge is "positive" in the loop
std::reverse(List_ii.begin(), List_ii.end());
nList.clear();
boundEdges[3]->get_mesh(0, nList, true);
for (ix = 0; ix < nList.size(); ix++)
List_j.push_back((iBase_EntityHandle) nList[ix]);
if (senses[3] == 1) // we reverse it if this edge is "positive" in the loop
std::reverse(List_j.begin(), List_j.end());
if (List_i.size() != List_ii.size())
ECERRCHK(MK_FAILURE, "opposite edges have different mesh count, abort");
if (List_j.size() != List_jj.size())
ECERRCHK(MK_FAILURE, "opposite edges have different mesh count, abort");
//ok, done with all the initializations
// get all the vectors in 3d
std::vector<Vector3D> pos_ii(List_ii.size());
std::vector<Vector3D> pos_i(List_i.size());
std::vector<Vector3D> pos_j(List_j.size());
std::vector<Vector3D> pos_jj(List_jj.size());
// iBase_INTERLEAVED
/*getVtxArrCoords( const EntityHandle* vertex_handles,
int vertex_handles_size,
StorageOrder storage_order,
double* coords_out ) const*/
iGeom::Error g_err = mk_core()->imesh_instance()->getVtxArrCoords(&(List_ii[0]), List_ii.size(), iBase_INTERLEAVED, &(pos_ii[0][0]));
IBERRCHK(g_err, "Trouble get the xyz coordinates for nodes ii.");
g_err = mk_core()->imesh_instance()->getVtxArrCoords(&(List_i[0]), List_i.size(), iBase_INTERLEAVED, &(pos_i[0][0]));
IBERRCHK(g_err, "Trouble get the xyz coordinates for nodes i.");
g_err = mk_core()->imesh_instance()->getVtxArrCoords(&(List_j[0]), List_j.size(), iBase_INTERLEAVED, &(pos_j[0][0]));
IBERRCHK(g_err, "Trouble get the xyz coordinates for nodes j.");
g_err = mk_core()->imesh_instance()->getVtxArrCoords(&(List_jj[0]), List_jj.size(), iBase_INTERLEAVED, &(pos_jj[0][0]));
IBERRCHK(g_err, "Trouble get the xyz coordinates for nodes jj.");
//calculate the interior nodes based on transforming the top and bottom edges in position
std::vector<iBase_EntityHandle> interiorNodes((List_j.size() - 2) * (List_i.size() - 2));
// reminder
/*
corner[2] NodeList_ii -> corner[3]
^ ^
| |
NodeList_j NodeList_jj
^ ^
| |
corner[0] NodeList_i -> corner[1]
*/
Vector3D c0=pos_i[0], c1=pos_i[size_i-1], c2 = pos_ii[0], c3=pos_ii[size_i-1];
Vector3D bc = 0.5*c0+0.5*c1;
Vector3D tc = 0.5*c2+0.5*c3;
for (int j = 1; j < size_j - 1; j++) // compute layer by layer
// we will start from source (layer 0) to layer j (j>1, j< J-1)
// also , we will look at the target, layer J-1 to layer j
{
// transformation from c0 and c1 to layer j
Matrix3D tr1 , tr2;
//target= A * ( source - 2*sc + tc) + sc
Vector3D cj = 0.5*pos_j[j]+0.5*pos_jj[j]; // center of layer j
computeTransformation(c0, c1, pos_j[j], pos_jj[j], tr1);
// transformation from top, c2 and c3 to layer j
computeTransformation(c2, c3, pos_j[j], pos_jj[j], tr2);
double interpolationFactor = j/(size_j-1.);
for (int i = 1; i < (size_i - 1); i++)
{
// transformation from bottom to layer j; source is b, target is j
Vector3D res1= tr1*(pos_i[i] -2*bc+cj)+bc;
// transformation from top to layer j; source is t, target is j
Vector3D res2= tr2*(pos_ii[i] -2*tc+cj)+tc;
// interpolate this result
Vector3D pts = res1*(1-interpolationFactor) + res2*interpolationFactor;
Vector3D coords;
g_err = ent->igeom_instance()->getEntClosestPtTrimmed(ent->geom_handle(), pts[0], pts[1], pts[2], coords[0], coords[1],
coords[2]);
if (g_err)
{
g_err = ent->igeom_instance()->getEntClosestPt(ent->geom_handle(), pts[0], pts[1], pts[2], coords[0], coords[1], coords[2]);
}
IBERRCHK(g_err, "Trouble get the closest xyz coordinates on the linking surface.");
iMesh::Error m_err = mk_core()->imesh_instance()->createVtx(coords[0], coords[1], coords[2], interiorNodes[(j - 1)
* (size_i - 2) + i - 1]);
IBERRCHK(m_err, "Trouble create the interior node.");
}
}
//finish creating the interior nodes
iBase_EntitySetHandle entityset;
iRel::Error r_err = mk_core()->irel_pair(irelPairIndex)->getEntSetRelation(ent->geom_handle(), 0, entityset);
if (r_err)
{
//create the entityset
iMesh::Error m_err = mk_core()->imesh_instance()->createEntSet(true, entityset);
IBERRCHK(m_err, "Trouble create the entity set.");
r_err = mk_core()->irel_pair(irelPairIndex)->setEntSetRelation(ent->geom_handle(), entityset);
IBERRCHK(r_err, "Trouble create the association between the geometry and mesh entity set.");
}
iMesh::Error m_err = mk_core()->imesh_instance()->addEntArrToSet(&interiorNodes[0], interiorNodes.size(), entityset);
IBERRCHK(m_err, "Trouble add an array of entities to the mesh entity set.");
// copy nodes in a vector to create the quads easier
// they will be arranged in layers, from bottom (j=0) towards top (j=size_j-1)
std::vector<iBase_EntityHandle> Nodes(size_j * size_i);
//create the int data for mesh nodes on the linking surface
iBase_TagHandle mesh_tag;
m_err = mk_core()->imesh_instance()->getTagHandle("MeshTFIMapping", mesh_tag);
if (m_err)
{
m_err = mk_core()->imesh_instance()->createTag("MeshTFIMapping", 1, iBase_INTEGER, mesh_tag);
IBERRCHK(m_err, "Trouble create the mesh_tag for the surface.");
}
int intdata = -1;
for (int i = 0; i < size_i; i++)
{
intdata++;
m_err = mk_core()->imesh_instance()->setIntData(List_i[i], mesh_tag, intdata);
IBERRCHK(m_err, "Trouble set the int data for mesh nodes.");
// bottom row, j=0
Nodes[i]=List_i[i];
m_err = mk_core()->imesh_instance()->setIntData(List_ii[i], mesh_tag, intdata + size_i);
IBERRCHK(m_err, "Trouble set the int data for mesh nodes.");
// top row, j = size_j-1
Nodes[ (size_i)*(size_j-1)+i] = List_ii[i];
}
intdata = 2 * size_i - 1;
for (int j = 1; j < size_j - 1; j++)
{
intdata++;
m_err = mk_core()->imesh_instance()->setIntData(List_j[j], mesh_tag, intdata);
IBERRCHK(m_err, "Trouble set the int data for mesh nodes.");
// right column, i=0
Nodes[size_i*j] = List_j[j];
m_err = mk_core()->imesh_instance()->setIntData(List_jj[j], mesh_tag, intdata + size_j - 2);
IBERRCHK(m_err, "Trouble set the int data for mesh nodes.");
// left column, i = size_i -1
Nodes[size_i*j + size_i-1] = List_jj[j];
}
intdata = 2 * size_i + 2 * (size_j - 2) - 1;
// it is clear that (size_i-2 > 0 and size_j-2 > 0) iff (interiorNodes.size()>0)
for (unsigned int ii = 0; ii < interiorNodes.size(); ii++)
{
intdata++;
m_err = mk_core()->imesh_instance()->setIntData(interiorNodes[ii], mesh_tag, intdata);
IBERRCHK(m_err, "Trouble set the int data for mesh nodes.");
int j = ii/(size_i-2) + 1;
int i = (ii -(j-1)*(size_i-2)) + 1;
// copy
Nodes[ j*size_i + i] = interiorNodes[ii];
// compute the row and column
}
// we will always create them in the positive orientation, because we already reversed the Lists
// with nodes
std::vector<iBase_EntityHandle> qNodes(4);// a generic quad
std::vector<iBase_EntityHandle> Quads((size_j - 1) * (size_i - 1));
for (int j=0; j <size_j-1; j++)
{
for (int i=0; i< size_i-1; i++)
{
qNodes[0] = Nodes[ j *size_i+i ];
qNodes[1] = Nodes[ j *size_i+i+1];
qNodes[2] = Nodes[ (j+1)*size_i+i+1];
qNodes[3] = Nodes[ (j+1)*size_i+i ];
m_err = mk_core()->imesh_instance()->createEnt(iMesh_QUADRILATERAL, &qNodes[0], 4, Quads[j*(size_i-1)+i]);
IBERRCHK(m_err, "Trouble create the quadrilateral element.");
}
}
//finish creating the quads
m_err = mk_core()->imesh_instance()->addEntArrToSet(&Quads[0], Quads.size(), entityset);
IBERRCHK(m_err, "Trouble add an array of quads to the mesh entity set.");
//set int data for quads
for (unsigned int i = 0; i < Quads.size(); i++)
{
m_err = mk_core()->imesh_instance()->setIntData(Quads[i], mesh_tag, i);
IBERRCHK(m_err, "Trouble set the int data for quadrilateral elements.");
}
//Get the global id tag
const char *tag = "GLOBAL_ID";
iBase_TagHandle mesh_id_tag;
m_err = mk_core()->imesh_instance()->getTagHandle(tag, mesh_id_tag);
IBERRCHK(m_err, "Trouble get the mesh_id_tag for 'GLOBAL_ID'.");
std::vector<iBase_EntityHandle> m_Nodes, m_Edges, m_Quads;
//set the int data for Global ID tag
iBase_EntitySetHandle root_set;
int err;
iMesh_getRootSet(mk_core()->imesh_instance()->instance(), &root_set, &err);
assert(!err);
m_err = mk_core()->imesh_instance()->getEntities(root_set, iBase_VERTEX, iMesh_POINT, m_Nodes);
IBERRCHK(m_err, "Trouble get the node list from the mesh entity set.");
m_err = mk_core()->imesh_instance()->getEntities(root_set, iBase_EDGE, iMesh_LINE_SEGMENT, m_Edges);
IBERRCHK(m_err, "Trouble get the edges from the mesh entity set.");
m_err = mk_core()->imesh_instance()->getEntities(root_set, iBase_FACE, iMesh_QUADRILATERAL, m_Quads);
IBERRCHK(m_err, "Trouble get the faces from the mesh entity set.");
for (unsigned int i = 0; i < m_Nodes.size(); i++)
{
m_err = mk_core()->imesh_instance()->setIntData(m_Nodes[i], mesh_id_tag, i);
IBERRCHK(m_err, "Trouble set the int data for 'GLOBAL_ID'.");
}
for (unsigned int i = 0; i < m_Edges.size(); i++)
{
m_err = mk_core()->imesh_instance()->setIntData(m_Edges[i], mesh_id_tag, i);
IBERRCHK(m_err, "Trouble set the int data for 'GLOBAL_ID'.");
}
for (unsigned int i = 0; i < m_Quads.size(); i++)
{
m_err = mk_core()->imesh_instance()->setIntData(m_Quads[i], mesh_id_tag, i);
IBERRCHK(m_err, "Trouble set the int data for 'GLOBAL_ID'.");
}
//SurfImprove(ent->geom_handle(), entityset, iBase_FACE);
mk_core()->save_mesh("InitialMapping.vtk");
if (_shapeImprove)
{
#ifdef HAVE_MESQUITE
iGeom * ig_inst = mk_core()->igeom_instance(ent->iGeomIndex());
MeshImprove meshopt(mk_core(), true, false, false, false, ig_inst);
meshopt.SurfMeshImprove(ent->geom_handle(), entityset, iBase_FACE);
#endif
//mk_core()->save_mesh("AfterLaplace.vtk");
//if there is the parametric space, let Winslow smooth inside the parametric space
SmoothWinslow(List_i, List_ii, List_j, List_jj, interiorNodes, Quads, mesh_tag, ent);
mk_core()->save_mesh("AfterWinslow.vtk");
#ifdef HAVE_MESQUITE
MeshImprove shapesmooth(mk_core(), false, false, true, false, ig_inst);
shapesmooth.SurfMeshImprove(ent->geom_handle(), entityset, iBase_FACE);
#endif
}
//remove the mesh tag
m_err = mk_core()->imesh_instance()->rmvArrTag(&Quads[0], Quads.size(), mesh_tag);
IBERRCHK(m_err, "Trouble remove the tag values from an array of entities.");
m_err = mk_core()->imesh_instance()->rmvArrTag(&List_i[0], List_i.size(), mesh_tag);
IBERRCHK(m_err, "Trouble remove the tag values from an array of entities.");
m_err = mk_core()->imesh_instance()->rmvArrTag(&List_ii[0], List_ii.size(), mesh_tag);
IBERRCHK(m_err, "Trouble remove the tag values from an array of entities.");
if (List_j.size() > 2)
{
m_err = mk_core()->imesh_instance()->rmvArrTag(&List_j[0], List_j.size() - 2, mesh_tag);
IBERRCHK(m_err, "Trouble remove the tag values from an array of entities.");
m_err = mk_core()->imesh_instance()->rmvArrTag(&List_jj[0], List_jj.size() - 2, mesh_tag);
IBERRCHK(m_err, "Trouble remove the tag values from an array of entities.");
}
if (interiorNodes.size() > 0)
{
m_err = mk_core()->imesh_instance()->rmvArrTag(&interiorNodes[0], interiorNodes.size(), mesh_tag);
IBERRCHK(m_err, "Trouble remove the tag values from an array of entities.");
}
return 1;
}
void TFIMapping::computeTransformation(Vector3D & A, Vector3D & B, Vector3D & C, Vector3D & D,
Matrix3D & M)
{
Matrix3D tmpMatrix;
Matrix3D bMatrix;
Vector3D c1=0.5*A+0.5*B;
Vector3D c2=0.5*C+0.5*D;
Vector3D normal=(A-D)*(B-C);// this should be not modified by the transformation
// we add this just to increase the rank of tmpMatrix
// the normal to the "plane" of interest should not be rotated at all
// as if we say that we want A*normal = normal
Vector3D s1=A-2*c1+c2;
Vector3D s2=B-2*c1+c2;
Vector3D t1=C-c1;
Vector3D t2=D-c1;
// so we are looking for M such that
/*
* M*s1 = t1
* M*s2 = t2
* M*n = n
*
* In simple cases, M is identity
*/
tmpMatrix.set_column(0, s1);
tmpMatrix.set_column(1, s2);
tmpMatrix.set_column(2, normal);
bMatrix.set_column(0, t1);
bMatrix.set_column(1, t2);
bMatrix.set_column(2, normal);
double detValue = det(tmpMatrix);
(void) detValue;
assert(detValue*detValue>1.e-20);
//solve the affine mapping matrix, make use of inverse matrix to get affine mapping matrix
Matrix3D InvMatrix = inverse(tmpMatrix);
M = bMatrix*InvMatrix;
}
//smooth the quadrilateral mesh on the linking surface
void TFIMapping::SmoothWinslow(std::vector<iBase_EntityHandle> &List_i, std::vector<iBase_EntityHandle> &List_ii, std::vector<
iBase_EntityHandle> &List_j, std::vector<iBase_EntityHandle> &List_jj, std::vector<iBase_EntityHandle> &interiorNodes,
std::vector<iBase_EntityHandle> &quads, iBase_TagHandle &taghandle, ModelEnt *ent)
{
std::vector<std::set<int> > AdjElements;
std::vector<std::vector<int> > Quads;
std::vector<std::vector<double> > coords;
std::vector<bool> isBnd;
std::vector<iBase_EntityHandle> nodes;
std::vector<double> weight;<--- Unused variable: weight
bool isParameterized = false;
iGeom::Error g_err = ent->igeom_instance()->isEntParametric(ent->geom_handle(), isParameterized);
IBERRCHK(g_err, "Trouble check whether the surface is parameterized or not.");
isParameterized = false;
//resize the coords to store all the nodes's coordinates on the linking surface
coords.resize(List_i.size() * List_j.size());
isBnd.resize(coords.size());
nodes.resize(coords.size());
for (unsigned int i = 0; i < coords.size(); i++)
coords[i].resize(3);
iMesh::Error m_err;
//input the boundary nodes
for (unsigned int i = 0; i < List_i.size(); i++)
{
m_err = mk_core()->imesh_instance()->getVtxCoord(List_i[i], coords[i][0], coords[i][1], coords[i][2]);
IBERRCHK(m_err, "Trouble get the vertex coordinates.");
nodes[i] = List_i[i];
isBnd[i] = true;
m_err = mk_core()->imesh_instance()->getVtxCoord(List_ii[i], coords[List_i.size() + i][0], coords[List_i.size() + i][1],
coords[List_i.size() + i][2]);
IBERRCHK(m_err, "Trouble get the vertex coordinates.");
if (isParameterized)
{
double uv[2];
g_err = ent->igeom_instance()->getEntXYZtoUV(ent->geom_handle(), coords[List_i.size() + i][0], coords[List_i.size() + i][1],
coords[List_i.size() + i][2], uv[0], uv[1]);
IBERRCHK(g_err, "Trouble get the uv from xyz.");
coords[List_i.size() + i][0] = uv[0];
coords[List_i.size() + i][1] = uv[1];
}
nodes[List_i.size() + i] = List_ii[i];
isBnd[List_i.size() + i] = true;
}
if (int(List_j.size()) > 2)
{
for (unsigned int i = 1; i < (List_j.size() - 1); i++)
{
m_err = mk_core()->imesh_instance()->getVtxCoord(List_j[i], coords[2 * List_i.size() + i - 1][0], coords[2 * List_i.size()
+ i - 1][1], coords[2 * List_i.size() + i - 1][2]);
IBERRCHK(m_err, "Trouble get the vertex coordinates.");
nodes[2 * List_i.size() + i - 1] = List_j[i];
isBnd[2 * List_i.size() + i - 1] = true;
m_err = mk_core()->imesh_instance()->getVtxCoord(List_jj[i], coords[2 * List_i.size() + List_j.size() - 2 + i - 1][0],
coords[2 * List_i.size() + List_j.size() - 2 + i - 1][1], coords[2 * List_i.size() + List_j.size() - 2 + i - 1][2]);
IBERRCHK(m_err, "Trouble get the vertex coordinates.");
nodes[2 * List_i.size() + List_j.size() - 2 + i - 1] = List_jj[i];
isBnd[2 * List_i.size() + List_j.size() - 2 + i - 1] = true;
}
}
//input the interior nodes
if (interiorNodes.size() > 0)
{
for (unsigned int i = 0; i < interiorNodes.size(); i++)
{
m_err = mk_core()->imesh_instance()->getVtxCoord(interiorNodes[i],
coords[2 * List_i.size() + 2 * (List_j.size() - 2) + i][0], coords[2 * List_i.size() + 2 * (List_j.size() - 2) + i][1],
coords[2 * List_i.size() + 2 * (List_j.size() - 2) + i][2]);
IBERRCHK(m_err, "Trouble get the vertex coordinates.");
nodes[2 * List_i.size() + 2 * (List_j.size() - 2) + i] = interiorNodes[i];
isBnd[2 * List_i.size() + 2 * (List_j.size() - 2) + i] = false;
}
}
//update the AdjElements info
//notice: during this process, adjacent quads will be returned around a node. The quads from source surface and target surface may be returned.
AdjElements.resize(nodes.size());
for (unsigned int i = 0; i < AdjElements.size(); i++)
{
if (!isBnd[i])
{
std::vector<iBase_EntityHandle> adjEnts;
adjEnts.clear();
m_err = mk_core()->imesh_instance()->getEntAdj(nodes[i], iBase_FACE, adjEnts);
IBERRCHK(m_err, "Trouble get the adjacent quads wrt a node.");
for (unsigned int j = 0; j < adjEnts.size(); j++)
{
int index_id = -1;
m_err = mk_core()->imesh_instance()->getIntData(adjEnts[j], taghandle, index_id);
IBERRCHK(m_err, "Trouble get int data for quads.");
AdjElements[i].insert(index_id);
//std::cout<< " i= " << i << " index_id:" << index_id << "\n";
}
}
}
//update the Quads' info
Quads.resize(quads.size());
for (unsigned int i = 0; i < Quads.size(); i++)
{
std::vector<iBase_EntityHandle> adjEnts;
adjEnts.clear();
m_err = mk_core()->imesh_instance()->getEntAdj(quads[i], iBase_VERTEX, adjEnts);
IBERRCHK(m_err, "Trouble get the adjacent nodes wrt a quad.");
assert(adjEnts.size()==4);
Quads[i].resize(4);
for (unsigned int j = 0; j < adjEnts.size(); j++)
{
int index_id = -1;
m_err = mk_core()->imesh_instance()->getIntData(adjEnts[j], taghandle, index_id);
IBERRCHK(m_err, "Trouble get int data for nodes.");
Quads[i][j] = index_id;
}
}
//detect the connectivity
std::vector<std::vector<int> > connect(nodes.size(), std::vector<int>(9));
for (unsigned int i = 0; i < nodes.size(); i++)
{
if (!isBnd[i])
{
//there are 4 adjacent quadrilateral elements around node i
//std::cout << " element i:" << i << " AdjElements[i].size() " << AdjElements[i].size() << "\n";
assert(AdjElements[i].size() == 4);
std::set<int>::iterator it = AdjElements[i].begin();
int st_index[4];
//process 4 quad elements
int j = -1;
for (; it != AdjElements[i].end(); it++)<--- Prefer prefix ++/-- operators for non-primitive types.
{
j++;
if (int(i) == Quads[*it][0])
st_index[j] = 0;
else if (int(i) == Quads[*it][1])
st_index[j] = 1;
else if (int(i) == Quads[*it][2])
st_index[j] = 2;
else
st_index[j] = 3;
}
it = AdjElements[i].begin();
connect[i][2] = Quads[*it][(st_index[0] + 3) % 4];
connect[i][8] = Quads[*it][(st_index[0] + 1) % 4];
connect[i][1] = Quads[*it][(st_index[0] + 2) % 4];
//finish processing the quad 1
std::set<int>::iterator it1 = AdjElements[i].begin();
it1++;<--- Prefer prefix ++/-- operators for non-primitive types.
for (j = 1; j < 4; j++, it1++)<--- Prefer prefix ++/-- operators for non-primitive types.
{
if (connect[i][8] == Quads[*it1][(st_index[j] + 1) % 4])
{
connect[i][7] = Quads[*it1][(st_index[j] + 2) % 4];
connect[i][6] = Quads[*it1][(st_index[j] + 3) % 4];
break;
}
else if (connect[i][8] == Quads[*it1][(st_index[j] + 3) % 4])
{
connect[i][7] = Quads[*it1][(st_index[j] + 2) % 4];
connect[i][6] = Quads[*it1][(st_index[j] + 1) % 4];
break;
}
else
continue;
}
//finish processing the quad 2
std::set<int>::iterator it2 = AdjElements[i].begin();
it2++;<--- Prefer prefix ++/-- operators for non-primitive types.
for (j = 1; it2 != AdjElements[i].end(); it2++, j++)<--- Prefer prefix ++/-- operators for non-primitive types.
{
if (connect[i][2] == Quads[*it2][(st_index[j] + 1) % 4])
{
connect[i][3] = Quads[*it2][(st_index[j] + 2) % 4];
connect[i][4] = Quads[*it2][(st_index[j] + 3) % 4];
break;
}
else if (connect[i][2] == Quads[*it2][(st_index[j] + 3) % 4])
{
connect[i][3] = Quads[*it2][(st_index[j] + 2) % 4];
connect[i][4] = Quads[*it2][(st_index[j] + 1) % 4];
break;
}
else
continue;
}
//finish processing the quad 4;
std::set<int>::iterator it3 = AdjElements[i].begin();
it3++;<--- Prefer prefix ++/-- operators for non-primitive types.
for (j = 1; it3 != AdjElements[i].end(); it3++, j++)<--- Prefer prefix ++/-- operators for non-primitive types.
{
if ((it3 != it1) && (it3 != it2))
{
connect[i][5] = Quads[*it2][(st_index[j] + 2) % 4];
}
else
continue;
}
}
}
//finish all the initialization
EquipotentialSmooth smoother;
//IsoLaplace smoother;
smoother.SetupData(AdjElements, Quads, coords, isBnd, connect);
smoother.Execute();
//std::vector<std::vector<double> > coors;
smoother.GetCoords(coords);
//update the new position for nodes
for (unsigned int i = 0; i < nodes.size(); i++)
{
if (!isBnd[i])
{
double tmp_coord[3] = { coords[i][0], coords[i][1], coords[i][2] };
if (!isParameterized)
{
iGeom::Error g_err = ent->igeom_instance()->getEntClosestPt(ent->geom_handle(), coords[i][0], coords[i][1], coords[i][2],
tmp_coord[0], tmp_coord[1], tmp_coord[2]);
IBERRCHK(g_err, "Trouble get a closest point on the linking surface.");
}
else
{
iGeom::Error g_err = ent->igeom_instance()->getEntXYZtoUV(ent->geom_handle(), coords[i][0], coords[i][1], tmp_coord[0],
tmp_coord[1], tmp_coord[2]);
IBERRCHK(g_err, "Trouble get the xyz from uv.");
}
m_err = mk_core()->imesh_instance()->setVtxCoord(nodes[i], tmp_coord[0], tmp_coord[1], tmp_coord[2]);
IBERRCHK(m_err, "Trouble set the new coordinates for nodes.");
}
}
//remove the unnecessary tag after smoothing
m_err = mk_core()->imesh_instance()->rmvArrTag(&nodes[0], nodes.size(), taghandle);
IBERRCHK(m_err, "Trouble remove the tag values from an array of entities.");
m_err = mk_core()->imesh_instance()->rmvArrTag(&quads[0], quads.size(), taghandle);
IBERRCHK(m_err, "Trouble remove the tag values from an array of entities.");
//m_err = mk_core()->imesh_instance()->destroyTag(taghandle, 1);
//IBERRCHK(m_err, "Trouble destroy a tag.");
}
} // namespace MeshKit
|