1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#include "moab/LocalDiscretization/LinearTet.hpp"
#include "moab/Forward.hpp"
#include <algorithm>
#include <cmath>
#include <limits>

namespace moab
{

const double LinearTet::corner[4][3] = { { 0, 0, 0 }, { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } };

ErrorCode LinearTet::initFcn( const double* verts, const int nverts, double*& work )
{
    // allocate work array as:
    // work[0..8] = T
    // work[9..17] = Tinv
    // work[18] = detT
    // work[19] = detTinv
    if( nverts != 4 )
    {
        std::cout << "Invalid Tetrahedron. Expected 4 vertices.\n";
        return MB_FAILURE;
    }

    assert( verts );

    Matrix3 J( verts[1 * 3 + 0] - verts[0 * 3 + 0], verts[2 * 3 + 0] - verts[0 * 3 + 0],
               verts[3 * 3 + 0] - verts[0 * 3 + 0], verts[1 * 3 + 1] - verts[0 * 3 + 1],
               verts[2 * 3 + 1] - verts[0 * 3 + 1], verts[3 * 3 + 1] - verts[0 * 3 + 1],
               verts[1 * 3 + 2] - verts[0 * 3 + 2], verts[2 * 3 + 2] - verts[0 * 3 + 2],
               verts[3 * 3 + 2] - verts[0 * 3 + 2] );

    // Update the work array
    if( !work ) work = new double[20];

    J.copyto( work );
    J.inverse().copyto( work + Matrix3::size );
    work[18] = J.determinant();
    work[19] = ( work[18] < 1e-12 ? std::numeric_limits< double >::max() : 1.0 / work[18] );

    return MB_SUCCESS;
}

ErrorCode LinearTet::evalFcn( const double* params,
                              const double* field,
                              const int /*ndim*/,
                              const int num_tuples,
                              double* /*work*/,
                              double* result )
{
    assert( params && field && num_tuples > 0 );
    std::vector< double > f0( num_tuples );
    std::copy( field, field + num_tuples, f0.begin() );
    std::copy( field, field + num_tuples, result );

    for( unsigned i = 1; i < 4; ++i )
    {
        double p = 0.5 * ( params[i - 1] + 1 );  // transform from -1 <= p <= 1 to 0 <= p <= 1
        for( int j = 0; j < num_tuples; j++ )
            result[j] += ( field[i * num_tuples + j] - f0[j] ) * p;
    }

    return MB_SUCCESS;
}

ErrorCode LinearTet::integrateFcn( const double* field,
                                   const double* /*verts*/,
                                   const int nverts,
                                   const int /*ndim*/,
                                   const int num_tuples,
                                   double* work,
                                   double* result )
{
    assert( field && num_tuples > 0 );
    std::fill( result, result + num_tuples, 0.0 );
    for( int i = 0; i < nverts; ++i )
    {
        for( int j = 0; j < num_tuples; j++ )
            result[j] += field[i * num_tuples + j];
    }
    double tmp = work[18] / 24.0;
    for( int i = 0; i < num_tuples; i++ )
        result[i] *= tmp;

    return MB_SUCCESS;
}

ErrorCode LinearTet::jacobianFcn( const double*, const double*, const int, const int, double* work, double* result )
{
    // jacobian is cached in work array
    assert( work );
    std::copy( work, work + 9, result );
    return MB_SUCCESS;
}

ErrorCode LinearTet::reverseEvalFcn( EvalFcn eval,
                                     JacobianFcn jacob,
                                     InsideFcn ins,
                                     const double* posn,
                                     const double* verts,
                                     const int nverts,
                                     const int ndim,
                                     const double iter_tol,
                                     const double inside_tol,
                                     double* work,
                                     double* params,
                                     int* is_inside )
{
    assert( posn && verts );
    return evaluate_reverse( eval, jacob, ins, posn, verts, nverts, ndim, iter_tol, inside_tol, work, params,
                             is_inside );
}

int LinearTet::insideFcn( const double* params, const int, const double tol )
{
    return ( params[0] >= -1.0 - tol && params[1] >= -1.0 - tol && params[2] >= -1.0 - tol &&
             params[0] + params[1] + params[2] <= 1.0 + tol );
}

ErrorCode LinearTet::evaluate_reverse( EvalFcn eval,
                                       JacobianFcn jacob,
                                       InsideFcn inside_f,
                                       const double* posn,
                                       const double* verts,
                                       const int nverts,
                                       const int ndim,
                                       const double iter_tol,
                                       const double inside_tol,
                                       double* work,
                                       double* params,
                                       int* inside )
{
    // TODO: should differentiate between epsilons used for
    // Newton Raphson iteration, and epsilons used for curved boundary geometry errors
    // right now, fix the tolerance used for NR
    const double error_tol_sqr = iter_tol * iter_tol;
    CartVect* cvparams         = reinterpret_cast< CartVect* >( params );
    const CartVect* cvposn     = reinterpret_cast< const CartVect* >( posn );

    // find best initial guess to improve convergence
    CartVect tmp_params[] = { CartVect( -1, -1, -1 ), CartVect( 1, -1, -1 ), CartVect( -1, 1, -1 ),
                              CartVect( -1, -1, 1 ) };
    double resl           = std::numeric_limits< double >::max();
    CartVect new_pos, tmp_pos;
    ErrorCode rval;
    for( unsigned int i = 0; i < 4; i++ )
    {
        rval = ( *eval )( tmp_params[i].array(), verts, ndim, ndim, work, tmp_pos.array() );
        if( MB_SUCCESS != rval ) return rval;
        double tmp_resl = ( tmp_pos - *cvposn ).length_squared();
        if( tmp_resl < resl )
        {
            *cvparams = tmp_params[i];
            new_pos   = tmp_pos;
            resl      = tmp_resl;
        }
    }

    // residual is diff between old and new pos; need to minimize that
    CartVect res = new_pos - *cvposn;
    Matrix3 J;
    rval = ( *jacob )( cvparams->array(), verts, nverts, ndim, work, J.array() );<--- Variable 'rval' is assigned a value that is never used.
#ifndef NDEBUG
    double det = J.determinant();
    assert( det > std::numeric_limits< double >::epsilon() );
#endif
    Matrix3 Ji = J.inverse();

    int iters = 0;
    // while |res| larger than tol
    int dum, *tmp_inside = ( inside ? inside : &dum );
    while( res % res > error_tol_sqr )
    {
        if( ++iters > 25 )
        {
            // if we haven't converged but we're outside, that's defined as success
            *tmp_inside = ( *inside_f )( params, ndim, inside_tol );
            if( !( *tmp_inside ) )
                return MB_SUCCESS;
            else
                return MB_INDEX_OUT_OF_RANGE;
        }

        // new params tries to eliminate residual
        *cvparams -= Ji * res;

        // get the new forward-evaluated position, and its difference from the target pt
        rval = ( *eval )( params, verts, ndim, ndim, work, new_pos.array() );
        if( MB_SUCCESS != rval ) return rval;
        res = new_pos - *cvposn;
    }

    if( inside ) *inside = ( *inside_f )( params, ndim, inside_tol );

    return MB_SUCCESS;
}  // Map::evaluate_reverse()

ErrorCode LinearTet::normalFcn( const int ientDim,
                                const int facet,
                                const int nverts,
                                const double* verts,
                                double normal[3] )
{
    // assert(facet < 4 && ientDim == 2 && nverts == 4);
    if( nverts != 4 ) MB_SET_ERR( MB_FAILURE, "Incorrect vertex count for passed tet :: expected value = 4 " );
    if( ientDim != 2 ) MB_SET_ERR( MB_FAILURE, "Requesting normal for unsupported dimension :: expected value = 2 " );
    if( facet > 4 || facet < 0 ) MB_SET_ERR( MB_FAILURE, "Incorrect local face id :: expected value = one of 0-3" );

    int id0 = CN::mConnectivityMap[MBTET][ientDim - 1].conn[facet][0];
    int id1 = CN::mConnectivityMap[MBTET][ientDim - 1].conn[facet][1];
    int id2 = CN::mConnectivityMap[MBTET][ientDim - 1].conn[facet][2];

    double x0[3], x1[3];

    for( int i = 0; i < 3; i++ )
    {
        x0[i] = verts[3 * id1 + i] - verts[3 * id0 + i];
        x1[i] = verts[3 * id2 + i] - verts[3 * id0 + i];
    }

    double a   = x0[1] * x1[2] - x1[1] * x0[2];
    double b   = x1[0] * x0[2] - x0[0] * x1[2];
    double c   = x0[0] * x1[1] - x1[0] * x0[1];
    double nrm = sqrt( a * a + b * b + c * c );

    if( nrm > std::numeric_limits< double >::epsilon() )
    {
        normal[0] = a / nrm;
        normal[1] = b / nrm;
        normal[2] = c / nrm;
    }
    return MB_SUCCESS;
}

}  // namespace moab