1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242 | #include "moab/LocalDiscretization/LinearTri.hpp"
#include "moab/Forward.hpp"
#include <algorithm>
#include <cmath>
#include <limits>
namespace moab
{
const double LinearTri::corner[3][2] = { { 0, 0 }, { 1, 0 }, { 0, 1 } };
ErrorCode LinearTri::initFcn( const double* verts, const int nverts, double*& work )
{
// allocate work array as:
// work[0..8] = T
// work[9..17] = Tinv
// work[18] = detT
// work[19] = detTinv
if( nverts != 3 )
{
std::cout << "Invalid Triangle. Expected 3 vertices.\n";
return MB_FAILURE;
}
assert( verts );
Matrix3 J( verts[1 * 3 + 0] - verts[0 * 3 + 0], verts[2 * 3 + 0] - verts[0 * 3 + 0], 0.0,
verts[1 * 3 + 1] - verts[0 * 3 + 1], verts[2 * 3 + 1] - verts[0 * 3 + 1], 0.0,
verts[1 * 3 + 2] - verts[0 * 3 + 2], verts[2 * 3 + 2] - verts[0 * 3 + 2], 1.0 );
J *= 0.5;
// Update the work array
if( !work ) work = new double[20];
J.copyto( work );
J.inverse().copyto( work + Matrix3::size );
work[18] = J.determinant();
work[19] = ( work[18] < 1e-12 ? std::numeric_limits< double >::max() : 1.0 / work[18] );
return MB_SUCCESS;
}
ErrorCode LinearTri::evalFcn( const double* params,
const double* field,
const int /*ndim*/,
const int num_tuples,
double* /*work*/,
double* result )
{
assert( params && field && num_tuples > 0 );
// convert to [0,1]
double p1 = 0.5 * ( 1.0 + params[0] ), p2 = 0.5 * ( 1.0 + params[1] ), p0 = 1.0 - p1 - p2;
for( int j = 0; j < num_tuples; j++ )
result[j] = p0 * field[0 * num_tuples + j] + p1 * field[1 * num_tuples + j] + p2 * field[2 * num_tuples + j];
return MB_SUCCESS;
}
ErrorCode LinearTri::integrateFcn( const double* field,
const double* /*verts*/,
const int nverts,
const int /*ndim*/,
const int num_tuples,
double* work,
double* result )
{
assert( field && num_tuples > 0 );
std::fill( result, result + num_tuples, 0.0 );
for( int i = 0; i < nverts; ++i )
{
for( int j = 0; j < num_tuples; j++ )
result[j] += field[i * num_tuples + j];
}
double tmp = work[18] / 6.0;
for( int i = 0; i < num_tuples; i++ )
result[i] *= tmp;
return MB_SUCCESS;
}
ErrorCode LinearTri::jacobianFcn( const double*, const double*, const int, const int, double* work, double* result )
{
// jacobian is cached in work array
assert( work );
std::copy( work, work + 9, result );
return MB_SUCCESS;
}
ErrorCode LinearTri::reverseEvalFcn( EvalFcn eval,
JacobianFcn jacob,
InsideFcn ins,
const double* posn,
const double* verts,
const int nverts,
const int ndim,
const double iter_tol,
const double inside_tol,
double* work,
double* params,
int* is_inside )
{
assert( posn && verts );
return evaluate_reverse( eval, jacob, ins, posn, verts, nverts, ndim, iter_tol, inside_tol, work, params,
is_inside );
}
int LinearTri::insideFcn( const double* params, const int, const double tol )
{
return ( params[0] >= -1.0 - tol && params[1] >= -1.0 - tol && params[0] + params[1] <= 1.0 + tol );
}
ErrorCode LinearTri::evaluate_reverse( EvalFcn eval,
JacobianFcn jacob,
InsideFcn inside_f,
const double* posn,
const double* verts,
const int nverts,
const int ndim,
const double iter_tol,
const double inside_tol,
double* work,
double* params,
int* inside )
{
// TODO: should differentiate between epsilons used for
// Newton Raphson iteration, and epsilons used for curved boundary geometry errors
// right now, fix the tolerance used for NR
const double error_tol_sqr = iter_tol * iter_tol;
CartVect* cvparams = reinterpret_cast< CartVect* >( params );
const CartVect* cvposn = reinterpret_cast< const CartVect* >( posn );
// find best initial guess to improve convergence
CartVect tmp_params[] = { CartVect( -1, -1, -1 ), CartVect( 1, -1, -1 ), CartVect( -1, 1, -1 ) };
double resl = std::numeric_limits< double >::max();
CartVect new_pos, tmp_pos;
ErrorCode rval;
for( unsigned int i = 0; i < 3; i++ )
{
rval = ( *eval )( tmp_params[i].array(), verts, ndim, 3, work, tmp_pos.array() );
if( MB_SUCCESS != rval ) return rval;
double tmp_resl = ( tmp_pos - *cvposn ).length_squared();
if( tmp_resl < resl )
{
*cvparams = tmp_params[i];
new_pos = tmp_pos;
resl = tmp_resl;
}
}
// residual is diff between old and new pos; need to minimize that
CartVect res = new_pos - *cvposn;
Matrix3 J;
rval = ( *jacob )( cvparams->array(), verts, nverts, ndim, work, J[0] );<--- Variable 'rval' is assigned a value that is never used.
#ifndef NDEBUG
double det = J.determinant();
assert( det > std::numeric_limits< double >::epsilon() );
#endif
Matrix3 Ji = J.inverse();
int iters = 0;
// while |res| larger than tol
while( res % res > error_tol_sqr )
{
if( ++iters > 25 ) return MB_FAILURE;
// new params tries to eliminate residual
*cvparams -= Ji * res;
// get the new forward-evaluated position, and its difference from the target pt
rval = ( *eval )( params, verts, ndim, 3, work, new_pos.array() );
if( MB_SUCCESS != rval ) return rval;
res = new_pos - *cvposn;
}
if( inside ) *inside = ( *inside_f )( params, ndim, inside_tol );
return MB_SUCCESS;
} // Map::evaluate_reverse()
/* ErrorCode LinearTri::get_normal( int facet, double *work, double *normal)
{
ErrorCode error;
//Get the local vertex ids of local edge
int id1 = ledges[facet][0];
int id2 = ledges[facet][1];
//Find the normal to the face
double face_normal[3];
}*/
ErrorCode LinearTri::normalFcn( const int ientDim,
const int facet,
const int nverts,
const double* verts,
double normal[3] )
{
// assert(facet < 3 && ientDim == 1 && nverts==3);
if( nverts != 3 ) MB_SET_ERR( MB_FAILURE, "Incorrect vertex count for passed triangle :: expected value = 3 " );
if( ientDim != 1 ) MB_SET_ERR( MB_FAILURE, "Requesting normal for unsupported dimension :: expected value = 1 " );
if( facet > 3 || facet < 0 ) MB_SET_ERR( MB_FAILURE, "Incorrect local edge id :: expected value = one of 0-2" );
// Get the local vertex ids of local edge
int id0 = CN::mConnectivityMap[MBTRI][ientDim - 1].conn[facet][0];
int id1 = CN::mConnectivityMap[MBTRI][ientDim - 1].conn[facet][1];
// Find a vector along the edge
double edge[3];
for( int i = 0; i < 3; i++ )
{
edge[i] = verts[3 * id1 + i] - verts[3 * id0 + i];
}
// Find the normal of the face
double x0[3], x1[3], fnrm[3];
for( int i = 0; i < 3; i++ )
{
x0[i] = verts[3 * 1 + i] - verts[3 * 0 + i];
x1[i] = verts[3 * 2 + i] - verts[3 * 0 + i];
}
fnrm[0] = x0[1] * x1[2] - x1[1] * x0[2];
fnrm[1] = x1[0] * x0[2] - x0[0] * x1[2];
fnrm[2] = x0[0] * x1[1] - x1[0] * x0[1];
// Find the normal of the edge as the cross product of edge and face normal
double a = edge[1] * fnrm[2] - fnrm[1] * edge[2];
double b = edge[2] * fnrm[0] - fnrm[2] * edge[0];
double c = edge[0] * fnrm[1] - fnrm[0] * edge[1];
double nrm = sqrt( a * a + b * b + c * c );
if( nrm > std::numeric_limits< double >::epsilon() )
{
normal[0] = a / nrm;
normal[1] = b / nrm;
normal[2] = c / nrm;
}
return MB_SUCCESS;
}
} // namespace moab
|