1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
/**
 * MOAB, a Mesh-Oriented datABase, is a software component for creating,
 * storing and accessing finite element mesh data.
 *
 * Copyright 2004 Sandia Corporation.  Under the terms of Contract
 * DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government
 * retains certain rights in this software.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 */

#ifdef WIN32
#pragma warning( disable : 4786 )
#endif

#include "moab/MeshTopoUtil.hpp"
#include "moab/Range.hpp"
#include "Internals.hpp"
#include "moab/Interface.hpp"
#include "moab/CN.hpp"

#include <cassert>

#define RR                                        \
    {                                             \
        if( MB_SUCCESS != result ) return result; \
    }

namespace moab
{

//! generate all the AEntities bounding the vertices
ErrorCode MeshTopoUtil::construct_aentities( const Range& vertices )
{
    Range out_range;
    ErrorCode result;
    result = mbImpl->get_adjacencies( vertices, 1, true, out_range, Interface::UNION );
    if( MB_SUCCESS != result ) return result;
    out_range.clear();
    result = mbImpl->get_adjacencies( vertices, 2, true, out_range, Interface::UNION );
    if( MB_SUCCESS != result ) return result;
    out_range.clear();
    result = mbImpl->get_adjacencies( vertices, 3, true, out_range, Interface::UNION );

    return result;
}

//! given an entity, get its average position (avg vertex locations)
ErrorCode MeshTopoUtil::get_average_position( Range& entities, double* avg_position )<--- Parameter 'entities' can be declared with const
{
    std::vector< EntityHandle > ent_vec;
    std::copy( entities.begin(), entities.end(), std::back_inserter( ent_vec ) );
    return get_average_position( &ent_vec[0], ent_vec.size(), avg_position );
}

//! given an entity, get its average position (avg vertex locations)
ErrorCode MeshTopoUtil::get_average_position( const EntityHandle* entities,
                                              const int num_entities,
                                              double* avg_position )
{
    double dum_pos[3];
    avg_position[0] = avg_position[1] = avg_position[2] = 0.0;

    Range connect;
    ErrorCode result = mbImpl->get_adjacencies( entities, num_entities, 0, false, connect, Interface::UNION );
    if( MB_SUCCESS != result ) return result;

    if( connect.empty() ) return MB_FAILURE;

    for( Range::iterator rit = connect.begin(); rit != connect.end(); ++rit )
    {
        result = mbImpl->get_coords( &( *rit ), 1, dum_pos );
        if( MB_SUCCESS != result ) return result;
        avg_position[0] += dum_pos[0];
        avg_position[1] += dum_pos[1];
        avg_position[2] += dum_pos[2];
    }
    avg_position[0] /= (double)connect.size();
    avg_position[1] /= (double)connect.size();
    avg_position[2] /= (double)connect.size();

    return MB_SUCCESS;
}

//! given an entity, get its average position (avg vertex locations)
ErrorCode MeshTopoUtil::get_average_position( const EntityHandle entity, double* avg_position )
{
    const EntityHandle* connect = NULL;
    int num_connect             = 0;
    if( MBVERTEX == mbImpl->type_from_handle( entity ) ) return mbImpl->get_coords( &entity, 1, avg_position );

    ErrorCode result = mbImpl->get_connectivity( entity, connect, num_connect );
    if( MB_SUCCESS != result ) return result;

    return get_average_position( connect, num_connect, avg_position );
}

// given an entity, find the entities of next higher dimension around
// that entity, ordered by connection through next higher dimension entities;
// if any of the star entities is in only one entity of next higher dimension,
// on_boundary is returned true
ErrorCode MeshTopoUtil::star_entities( const EntityHandle star_center,
                                       std::vector< EntityHandle >& star_ents,
                                       bool& bdy_entity,
                                       const EntityHandle starting_star_entity,
                                       std::vector< EntityHandle >* star_entities_dp2,
                                       Range* star_candidates_dp2 )
{
    // now start the traversal
    bdy_entity               = false;
    EntityHandle last_entity = starting_star_entity, last_dp2 = 0, next_entity, next_dp2;
    std::vector< EntityHandle > star_dp2;
    ErrorCode result;
    int center_dim = mbImpl->dimension_from_handle( star_center );

    Range tmp_candidates_dp2;
    if( NULL != star_candidates_dp2 )
        tmp_candidates_dp2 = *star_candidates_dp2;
    else
    {
        result = mbImpl->get_adjacencies( &star_center, 1, center_dim + 2, false, tmp_candidates_dp2 );
        if( MB_SUCCESS != result ) return result;
    }

    do
    {
        // get the next star entity
        result = star_next_entity( star_center, last_entity, last_dp2, &tmp_candidates_dp2, next_entity, next_dp2 );
        if( MB_SUCCESS != result ) return result;

        // special case: if starting_star_entity isn't connected to any entities of next
        // higher dimension, it's the only entity in the star; put it on the list and return
        if( star_ents.empty() && next_entity == 0 && next_dp2 == 0 )
        {
            star_ents.push_back( last_entity );
            bdy_entity = true;
            return MB_SUCCESS;
        }

        // if we're at a bdy and bdy_entity hasn't been set yet, we're at the
        // first bdy; reverse the lists and start traversing in the other direction; but,
        // pop the last star entity off the list and find it again, so that we properly
        // check for next_dp2
        if( 0 == next_dp2 && !bdy_entity )
        {
            star_ents.push_back( next_entity );
            bdy_entity = true;
            std::reverse( star_ents.begin(), star_ents.end() );
            star_ents.pop_back();
            last_entity = star_ents.back();
            if( !star_dp2.empty() )
            {
                std::reverse( star_dp2.begin(), star_dp2.end() );
                last_dp2 = star_dp2.back();
            }
        }
        // else if we're not on the bdy and next_entity is already in star, that means
        // we've come all the way around; don't put next_entity on list again, and
        // zero out last_dp2 to terminate while loop
        else if( !bdy_entity && std::find( star_ents.begin(), star_ents.end(), next_entity ) != star_ents.end() &&
                 ( std::find( star_dp2.begin(), star_dp2.end(), next_dp2 ) != star_dp2.end() || !next_dp2 ) )
        {
            last_dp2 = 0;
        }

        // else, just assign last entities seen and go on to next iteration
        else
        {
            if( std::find( star_ents.begin(), star_ents.end(), next_entity ) == star_ents.end() )
                star_ents.push_back( next_entity );
            if( 0 != next_dp2 )
            {
                star_dp2.push_back( next_dp2 );
                tmp_candidates_dp2.erase( next_dp2 );
            }
            last_entity = next_entity;
            last_dp2    = next_dp2;
        }
    } while( 0 != last_dp2 );

    // copy over the star_dp2 list, if requested
    if( NULL != star_entities_dp2 ) ( *star_entities_dp2 ).swap( star_dp2 );

    return MB_SUCCESS;
}

ErrorCode MeshTopoUtil::star_next_entity( const EntityHandle star_center,
                                          const EntityHandle last_entity,
                                          const EntityHandle last_dp1,
                                          Range* star_candidates_dp1,
                                          EntityHandle& next_entity,
                                          EntityHandle& next_dp1 )
{
    // given a star_center, a last_entity (whose dimension should be 1 greater than center)
    // and last_dp1 (dimension 2 higher than center), returns the next star entity across
    // last_dp1, and the next dp1 entity sharing next_entity; if star_candidates is non-empty,
    // star must come from those
    Range from_ents, to_ents;
    from_ents.insert( star_center );
    if( 0 != last_dp1 ) from_ents.insert( last_dp1 );

    int dim = mbImpl->dimension_from_handle( star_center );

    ErrorCode result = mbImpl->get_adjacencies( from_ents, dim + 1, true, to_ents );
    if( MB_SUCCESS != result ) return result;

    // remove last_entity from result, and should only have 1 left, if any
    if( 0 != last_entity ) to_ents.erase( last_entity );

    // if no last_dp1, contents of to_ents should share dp1-dimensional entity with last_entity
    if( 0 != last_entity && 0 == last_dp1 )
    {
        Range tmp_to_ents;
        for( Range::iterator rit = to_ents.begin(); rit != to_ents.end(); ++rit )
        {
            if( 0 != common_entity( last_entity, *rit, dim + 2 ) ) tmp_to_ents.insert( *rit );
        }
        to_ents = tmp_to_ents;
    }

    if( 0 == last_dp1 && to_ents.size() > 1 && NULL != star_candidates_dp1 && !star_candidates_dp1->empty() )
    {
        // if we have a choice of to_ents and no previous dp1 and there are dp1 candidates,
        // the one we choose needs to be adjacent to one of the candidates
        result = mbImpl->get_adjacencies( *star_candidates_dp1, dim + 1, true, from_ents, Interface::UNION );
        if( MB_SUCCESS != result ) return result;
        to_ents = intersect( to_ents, from_ents );
    }

    if( !to_ents.empty() )
        next_entity = *to_ents.begin();
    else
    {
        next_entity = 0;
        next_dp1    = 0;
        return MB_SUCCESS;
    }

    // get next_dp1
    if( 0 != star_candidates_dp1 )
        to_ents = *star_candidates_dp1;
    else
        to_ents.clear();

    result = mbImpl->get_adjacencies( &next_entity, 1, dim + 2, true, to_ents );
    if( MB_SUCCESS != result ) return result;

    // can't be last one
    if( 0 != last_dp1 ) to_ents.erase( last_dp1 );

    if( !to_ents.empty() ) next_dp1 = *to_ents.begin();

    // could be zero, means we're at bdy
    else
        next_dp1 = 0;

    return MB_SUCCESS;
}

ErrorCode MeshTopoUtil::star_entities_nonmanifold( const EntityHandle star_entity,<--- The function 'star_entities_nonmanifold' is never used.
                                                   std::vector< std::vector< EntityHandle > >& stars,
                                                   std::vector< bool >* bdy_flags,
                                                   std::vector< std::vector< EntityHandle > >* dp2_stars )
{
    // Get a series of (d+1)-dimensional stars around a d-dimensional entity, such that
    // each star is on a (d+2)-manifold containing the d-dimensional entity; each star
    // is either open or closed, and also defines a (d+2)-star whose entities are bounded by
    // (d+1)-entities on the star and on the (d+2)-manifold
    //
    // Algorithm:
    // get the (d+2)-manifold entities; for d=1 / d+2=3, just assume all connected elements, since
    //   we don't do 4d yet
    // get intersection of (d+1)-entities adjacent to star entity and union of (d+1)-entities
    //   adjacent to (d+2)-manifold entities; these will be the entities in the star
    // while (d+1)-entities
    //   remove (d+1)-entity from (d+1)-entities
    //   get the (d+1)-star and (d+2)-star around that (d+1)-entity (using star_entities)
    //   save that star to the star list, and the bdy flag and (d+2)-star if requested
    //   remove (d+2)-entities from the (d+2)-manifold entities
    //   remove (d+1)-entities from the (d+1)-entities
    // (end while)

    int this_dim = mbImpl->dimension_from_handle( star_entity );
    if( 3 <= this_dim || 0 > this_dim ) return MB_FAILURE;

    // get the (d+2)-manifold entities; for d=1 / d+2=3, just assume all connected elements, since
    //   we don't do 4d yet
    Range dp2_manifold;
    ErrorCode result = get_manifold( star_entity, this_dim + 2, dp2_manifold );
    if( MB_SUCCESS != result ) return result;

    // get intersection of (d+1)-entities adjacent to star and union of (d+1)-entities
    //   adjacent to (d+2)-manifold entities; also add manifold (d+1)-entities, to catch
    //   any not connected to (d+2)-entities
    Range dp1_manifold;
    result = mbImpl->get_adjacencies( dp2_manifold, this_dim + 1, false, dp1_manifold, Interface::UNION );
    if( MB_SUCCESS != result ) return result;

    result = mbImpl->get_adjacencies( &star_entity, 1, this_dim + 1, false, dp1_manifold );
    if( MB_SUCCESS != result ) return result;

    result = get_manifold( star_entity, this_dim + 1, dp1_manifold );
    if( MB_SUCCESS != result ) return result;

    // while (d+1)-entities
    while( !dp1_manifold.empty() )
    {

        //   get (d+1)-entity from (d+1)-entities (don't remove it until after star,
        //     since the star entities must come from dp1_manifold)
        EntityHandle this_ent = *dp1_manifold.begin();

        //   get the (d+1)-star and (d+2)-star around that (d+1)-entity (using star_entities)
        std::vector< EntityHandle > this_star_dp1, this_star_dp2;
        bool on_bdy;
        result = star_entities( star_entity, this_star_dp1, on_bdy, this_ent, &this_star_dp2, &dp2_manifold );
        if( MB_SUCCESS != result ) return result;

        // if there's no star entities, it must mean this_ent isn't bounded by any dp2
        // entities (wasn't put into star in star_entities 'cuz we're passing in non-null
        // dp2_manifold above); put it in
        if( this_star_dp1.empty() )
        {
            Range dum_range;
            result = mbImpl->get_adjacencies( &this_ent, 1, this_dim + 2, false, dum_range );
            if( MB_SUCCESS != result ) return result;
            if( dum_range.empty() ) this_star_dp1.push_back( this_ent );
        }

        // now we can remove it
        dp1_manifold.erase( dp1_manifold.begin() );

        //   save that star to the star list, and the bdy flag and (d+2)-star if requested
        if( !this_star_dp1.empty() )
        {
            stars.push_back( this_star_dp1 );
            if( NULL != bdy_flags ) bdy_flags->push_back( on_bdy );
            if( NULL != dp2_stars ) dp2_stars->push_back( this_star_dp2 );
        }

        //   remove (d+2)-entities from the (d+2)-manifold entities
        for( std::vector< EntityHandle >::iterator vit = this_star_dp2.begin(); vit != this_star_dp2.end(); ++vit )
            dp2_manifold.erase( *vit );

        //   remove (d+1)-entities from the (d+1)-entities
        for( std::vector< EntityHandle >::iterator vit = this_star_dp1.begin(); vit != this_star_dp1.end(); ++vit )
            dp1_manifold.erase( *vit );

        // (end while)
    }

    // check for leftover dp2 manifold entities, these should be in one of the
    // stars
    if( !dp2_manifold.empty() )
    {
        for( Range::iterator rit = dp2_manifold.begin(); rit != dp2_manifold.end(); ++rit )
        {
        }
    }

    return MB_SUCCESS;
}

//! get (target_dim)-dimensional manifold entities connected to star_entity; that is,
//! the entities with <= 1 connected (target_dim+2)-dimensional adjacent entities;
//! for target_dim=3, just return all of them
//! just insert into the list, w/o clearing manifold list first
ErrorCode MeshTopoUtil::get_manifold( const EntityHandle star_entity, const int target_dim, Range& manifold )
{
    // get all the entities of target dimension connected to star
    Range tmp_range;
    ErrorCode result = mbImpl->get_adjacencies( &star_entity, 1, target_dim, false, tmp_range );
    if( MB_SUCCESS != result ) return result;

    // now save the ones which are (target_dim+1)-dimensional manifold;
    // for target_dim=3, just return whole range, since we don't do 4d
    if( target_dim == 3 )
    {
        manifold.merge( tmp_range );
        return MB_SUCCESS;
    }

    for( Range::iterator rit = tmp_range.begin(); rit != tmp_range.end(); ++rit )
    {
        Range dum_range;
        // get (target_dim+1)-dimensional entities
        result = mbImpl->get_adjacencies( &( *rit ), 1, target_dim + 1, false, dum_range );
        if( MB_SUCCESS != result ) return result;

        // if there are only 1 or zero, add to manifold list
        if( 1 >= dum_range.size() ) manifold.insert( *rit );
    }

    return MB_SUCCESS;
}

//! get "bridge" or "2nd order" adjacencies, going through dimension bridge_dim
ErrorCode MeshTopoUtil::get_bridge_adjacencies( Range& from_entities,<--- Parameter 'from_entities' can be declared with const
                                                int bridge_dim,
                                                int to_dim,
                                                Range& to_ents,
                                                int num_layers )
{
    Range bridge_ents, accum_layers, new_toents( from_entities );
    ErrorCode result;
    if( 0 == num_layers || from_entities.empty() ) return MB_FAILURE;

    // for each layer, get bridge-adj entities and accumulate
    for( int nl = 0; nl < num_layers; nl++ )
    {
        Range new_bridges;
        // get bridge ents
        result = mbImpl->get_adjacencies( new_toents, bridge_dim, true, new_bridges, Interface::UNION );
        if( MB_SUCCESS != result ) return result;

        // get to_dim adjacencies, merge into to_ents
        Range new_layer;
        if( -1 == to_dim )
        {
            result = mbImpl->get_adjacencies( new_bridges, 3, false, new_layer, Interface::UNION );
            if( MB_SUCCESS != result ) return result;
            for( int d = 2; d >= 1; d-- )
            {
                result = mbImpl->get_adjacencies( to_ents, d, true, new_layer, Interface::UNION );
                if( MB_SUCCESS != result ) return result;
            }
        }
        else
        {
            result = mbImpl->get_adjacencies( new_bridges, to_dim, false, new_layer, Interface::UNION );
            if( MB_SUCCESS != result ) return result;
        }

        // subtract last_toents to get new_toents
        accum_layers.merge( new_layer );
        if( nl < num_layers - 1 ) new_toents = subtract( new_layer, new_toents );
    }
    to_ents.merge( accum_layers );

    return MB_SUCCESS;
}

//! get "bridge" or "2nd order" adjacencies, going through dimension bridge_dim
ErrorCode MeshTopoUtil::get_bridge_adjacencies( const EntityHandle from_entity,
                                                const int bridge_dim,
                                                const int to_dim,
                                                Range& to_adjs )
{
    // get pointer to connectivity for this entity
    const EntityHandle* connect;
    int num_connect;
    ErrorCode result     = MB_SUCCESS;
    EntityType from_type = TYPE_FROM_HANDLE( from_entity );
    if( from_type == MBVERTEX )
    {
        connect     = &from_entity;
        num_connect = 1;
    }
    else
    {
        result = mbImpl->get_connectivity( from_entity, connect, num_connect );
        if( MB_SUCCESS != result ) return result;
    }

    if( from_type >= MBENTITYSET ) return MB_FAILURE;

    int from_dim = CN::Dimension( from_type );

    Range to_ents;

    if( bridge_dim < from_dim )
    {
        // looping over each sub-entity of dimension bridge_dim...
        if( MBPOLYGON == from_type )
        {
            for( int i = 0; i < num_connect; i++ )
            {
                // loop over edges, and get the vertices
                EntityHandle verts_on_edge[2] = { connect[i], connect[( i + 1 ) % num_connect] };
                to_ents.clear();
                ErrorCode tmp_result =
                    mbImpl->get_adjacencies( verts_on_edge, 2, to_dim, false, to_ents, Interface::INTERSECT );
                if( MB_SUCCESS != tmp_result ) result = tmp_result;
                to_adjs.merge( to_ents );
            }
        }
        else
        {
            EntityHandle bridge_verts[MAX_SUB_ENTITIES];
            int bridge_indices[MAX_SUB_ENTITIES];
            for( int i = 0; i < CN::NumSubEntities( from_type, bridge_dim ); i++ )
            {

                // get the vertices making up this sub-entity
                int num_bridge_verts = CN::VerticesPerEntity( CN::SubEntityType( from_type, bridge_dim, i ) );
                assert( num_bridge_verts >= 0 && num_bridge_verts <= MAX_SUB_ENTITIES );
                CN::SubEntityVertexIndices( from_type, bridge_dim, i, bridge_indices );
                for( int j = 0; j < num_bridge_verts; ++j )
                {
                    if( bridge_indices[j] >= 0 && bridge_indices[j] < num_connect )
                        bridge_verts[j] = connect[bridge_indices[j]];
                    else
                        bridge_verts[j] = 0;
                }
                // CN::SubEntityConn(connect, from_type, bridge_dim, i, &bridge_verts[0],
                // num_bridge_verts);

                // get the to_dim entities adjacent
                to_ents.clear();
                ErrorCode tmp_result = mbImpl->get_adjacencies( bridge_verts, num_bridge_verts, to_dim, false, to_ents,
                                                                Interface::INTERSECT );
                if( MB_SUCCESS != tmp_result ) result = tmp_result;

                to_adjs.merge( to_ents );
            }
        }
    }

    // now get the direct ones too, or only in the case where we're
    // going to higher dimension for bridge
    Range bridge_ents, tmp_ents;
    tmp_ents.insert( from_entity );
    ErrorCode tmp_result = mbImpl->get_adjacencies( tmp_ents, bridge_dim, false, bridge_ents, Interface::UNION );
    if( MB_SUCCESS != tmp_result ) return tmp_result;

    tmp_result = mbImpl->get_adjacencies( bridge_ents, to_dim, false, to_adjs, Interface::UNION );
    if( MB_SUCCESS != tmp_result ) return tmp_result;

    // if to_dimension is same as that of from_entity, make sure from_entity isn't
    // in list
    if( to_dim == from_dim ) to_adjs.erase( from_entity );

    return result;
}

//! return a common entity of the specified dimension, or 0 if there isn't one
EntityHandle MeshTopoUtil::common_entity( const EntityHandle ent1, const EntityHandle ent2, const int dim )
{
    Range tmp_range, tmp_range2;
    tmp_range.insert( ent1 );
    tmp_range.insert( ent2 );
    ErrorCode result = mbImpl->get_adjacencies( tmp_range, dim, false, tmp_range2 );
    if( MB_SUCCESS != result || tmp_range2.empty() )
        return 0;
    else
        return *tmp_range2.begin();
}

//! return the opposite side entity given a parent and bounding entity.
//! This function is only defined for certain types of parent/child types;
//! See CN.hpp::OppositeSide for details.
//!
//! \param parent The parent element
//! \param child The child element
//! \param opposite_element The index of the opposite element
ErrorCode MeshTopoUtil::opposite_entity( const EntityHandle parent,
                                         const EntityHandle child,
                                         EntityHandle& opposite_element )
{
    // get the side no.
    int side_no, offset, sense;
    ErrorCode result = mbImpl->side_number( parent, child, side_no, offset, sense );
    if( MB_SUCCESS != result ) return result;

    // get the child index from CN
    int opposite_index, opposite_dim;
    int status = CN::OppositeSide( mbImpl->type_from_handle( parent ), side_no, mbImpl->dimension_from_handle( child ),
                                   opposite_index, opposite_dim );
    if( 0 != status ) return MB_FAILURE;

    // now get the side element from MOAB
    result = mbImpl->side_element( parent, opposite_dim, opposite_index, opposite_element );
    if( MB_SUCCESS != result ) return result;

    return MB_SUCCESS;
}

ErrorCode MeshTopoUtil::split_entities_manifold( Range& entities, Range& new_entities, Range* fill_entities )<--- Parameter 'entities' can be declared with const
{
    Range tmp_range, *tmp_ptr_fill_entity;
    if( NULL != fill_entities )
        tmp_ptr_fill_entity = &tmp_range;
    else
        tmp_ptr_fill_entity = NULL;

    for( Range::iterator rit = entities.begin(); rit != entities.end(); ++rit )
    {
        EntityHandle new_entity;
        if( NULL != tmp_ptr_fill_entity ) tmp_ptr_fill_entity->clear();

        EntityHandle this_ent = *rit;
        ErrorCode result      = split_entities_manifold( &this_ent, 1, &new_entity, tmp_ptr_fill_entity );
        if( MB_SUCCESS != result ) return result;

        new_entities.insert( new_entity );
        if( NULL != fill_entities ) fill_entities->merge( *tmp_ptr_fill_entity );
    }

    return MB_SUCCESS;
}

ErrorCode MeshTopoUtil::split_entities_manifold( EntityHandle* entities,
                                                 const int num_entities,
                                                 EntityHandle* new_entities,
                                                 Range* fill_entities,
                                                 EntityHandle* gowith_ents )
{
    // split entities by duplicating them; splitting manifold means that there is at
    // most two higher-dimension entities bounded by a given entity; after split, the
    // new entity bounds one and the original entity bounds the other

#define ITERATE_RANGE( range, it ) for( Range::iterator it = ( range ).begin(); ( it ) != ( range ).end(); ++( it ) )
#define GET_CONNECT_DECL( ent, connect, num_connect )                                     \
    const EntityHandle* connect = NULL;                                                   \
    int num_connect             = 0;                                                      \
    {                                                                                     \
        ErrorCode connect_result = mbImpl->get_connectivity( ent, connect, num_connect ); \
        if( MB_SUCCESS != connect_result ) return connect_result;                         \
    }
#define GET_CONNECT( ent, connect, num_connect )                                          \
    {                                                                                     \
        ErrorCode connect_result = mbImpl->get_connectivity( ent, connect, num_connect ); \
        if( MB_SUCCESS != connect_result ) return connect_result;                         \
    }
#define TC                         \
    if( MB_SUCCESS != tmp_result ) \
    {                              \
        result = tmp_result;       \
        continue;                  \
    }

    ErrorCode result = MB_SUCCESS;
    for( int i = 0; i < num_entities; i++ )
    {
        ErrorCode tmp_result;

        // get original higher-dimensional bounding entities
        Range up_adjs[4];
        // can only do a split_manifold if there are at most 2 entities of each
        // higher dimension; otherwise it's a split non-manifold
        bool valid_up_adjs = true;
        for( int dim = 1; dim <= 3; dim++ )
        {
            tmp_result = mbImpl->get_adjacencies( entities + i, 1, dim, false, up_adjs[dim] );
            TC;
            if( dim > CN::Dimension( TYPE_FROM_HANDLE( entities[i] ) ) && up_adjs[dim].size() > 2 )
            {
                valid_up_adjs = false;
                break;
            }
        }
        if( !valid_up_adjs ) return MB_FAILURE;

        // ok to split; create the new entity, with connectivity of the original
        GET_CONNECT_DECL( entities[i], connect, num_connect );
        EntityHandle new_entity;
        result = mbImpl->create_element( mbImpl->type_from_handle( entities[i] ), connect, num_connect, new_entity );
        TC;

        // by definition, new entity and original will be equivalent; need to add explicit
        // adjs to distinguish them; don't need to check if there's already one there,
        // 'cuz add_adjacency does that for us
        for( int dim = 1; dim <= 3; dim++ )
        {
            if( up_adjs[dim].empty() || dim == CN::Dimension( TYPE_FROM_HANDLE( entities[i] ) ) ) continue;

            if( dim < CN::Dimension( TYPE_FROM_HANDLE( entities[i] ) ) )
            {
                // adjacencies from other entities to this one; if any of those are equivalent
                // entities, need to make explicit adjacency to new entity too
                for( Range::iterator rit = up_adjs[dim].begin(); rit != up_adjs[dim].end(); ++rit )
                {
                    if( equivalent_entities( *rit ) ) result = mbImpl->add_adjacencies( *rit, &new_entity, 1, false );
                }
            }
            else
            {

                // get the two up-elements
                EntityHandle up_elem1 = *( up_adjs[dim].begin() ),
                             up_elem2 = ( up_adjs[dim].size() > 1 ? *( up_adjs[dim].rbegin() ) : 0 );

                // if two, and a gowith entity was input, make sure the new entity goes with
                // that one
                if( gowith_ents && up_elem2 && gowith_ents[i] != up_elem1 && gowith_ents[i] == up_elem2 )
                {
                    EntityHandle tmp_elem = up_elem1;
                    up_elem1              = up_elem2;
                    up_elem2              = tmp_elem;
                }

                mbImpl->remove_adjacencies( entities[i], &up_elem1, 1 );
                // (ok if there's an error, that just means there wasn't an explicit adj)

                tmp_result = mbImpl->add_adjacencies( new_entity, &up_elem1, 1, false );
                TC;
                if( !up_elem2 ) continue;

                // add adj to other up_adj
                tmp_result = mbImpl->add_adjacencies( entities[i], &up_elem2, 1, false );
                TC;
            }
        }

        // if we're asked to build a next-higher-dimension object, do so
        EntityHandle fill_entity = 0;
        EntityHandle tmp_ents[2];
        if( NULL != fill_entities )
        {
            // how to do this depends on dimension
            switch( CN::Dimension( TYPE_FROM_HANDLE( entities[i] ) ) )
            {
                case 0:
                    tmp_ents[0] = entities[i];
                    tmp_ents[1] = new_entity;
                    tmp_result  = mbImpl->create_element( MBEDGE, tmp_ents, 2, fill_entity );
                    TC;
                    break;
                case 1:
                    tmp_result = mbImpl->create_element( MBPOLYGON, connect, 2, fill_entity );
                    TC;
                    // need to create explicit adj in this case
                    tmp_result = mbImpl->add_adjacencies( entities[i], &fill_entity, 1, false );
                    TC;
                    tmp_result = mbImpl->add_adjacencies( new_entity, &fill_entity, 1, false );
                    TC;
                    break;
                case 2:
                    tmp_ents[0] = entities[i];
                    tmp_ents[1] = new_entity;
                    tmp_result  = mbImpl->create_element( MBPOLYHEDRON, tmp_ents, 2, fill_entity );
                    TC;
                    break;
            }
            if( 0 == fill_entity )
            {
                result = MB_FAILURE;
                continue;
            }
            fill_entities->insert( fill_entity );
        }

        new_entities[i] = new_entity;

    }  // end for over input entities

    return result;
}

ErrorCode MeshTopoUtil::split_entity_nonmanifold( EntityHandle split_ent,
                                                  Range& old_adjs,
                                                  Range& new_adjs,
                                                  EntityHandle& new_entity )
{
    // split an entity into two entities; new entity gets explicit adj to new_adjs,
    // old to old_adjs

    // make new entities and add adjacencies
    // create the new entity
    EntityType split_type = mbImpl->type_from_handle( split_ent );

    ErrorCode result;
    if( MBVERTEX == split_type )
    {
        double coords[3];
        result = mbImpl->get_coords( &split_ent, 1, coords );RR;
        result = mbImpl->create_vertex( coords, new_entity );RR;
    }
    else
    {
        const EntityHandle* connect;
        int num_connect;
        result = mbImpl->get_connectivity( split_ent, connect, num_connect );RR;
        result = mbImpl->create_element( split_type, connect, num_connect, new_entity );RR;

        // remove any explicit adjacencies between new_adjs and split entity
        for( Range::iterator rit = new_adjs.begin(); rit != new_adjs.end(); ++rit )
            mbImpl->remove_adjacencies( split_ent, &( *rit ), 1 );
    }

    if( MBVERTEX != split_type )
    {
        //  add adj's between new_adjs & new entity, old_adjs & split_entity
        for( Range::iterator rit = new_adjs.begin(); rit != new_adjs.end(); ++rit )
            mbImpl->add_adjacencies( new_entity, &( *rit ), 1, true );
        for( Range::iterator rit = old_adjs.begin(); rit != old_adjs.end(); ++rit )
            mbImpl->add_adjacencies( split_ent, &( *rit ), 1, true );
    }
    else if( split_ent != new_entity )
    {
        // in addition to explicit adjs, need to check if vertex is part of any
        // other entities, and check those entities against ents in old and new adjs
        Range other_adjs;
        for( int i = 1; i < 4; i++ )
        {
            result = mbImpl->get_adjacencies( &split_ent, 1, i, false, other_adjs, Interface::UNION );RR;
        }
        other_adjs = subtract( other_adjs, old_adjs );
        other_adjs = subtract( other_adjs, new_adjs );
        for( Range::iterator rit1 = other_adjs.begin(); rit1 != other_adjs.end(); ++rit1 )
        {
            // find an adjacent lower-dimensional entity in old_ or new_ adjs
            bool found = false;
            for( Range::iterator rit2 = old_adjs.begin(); rit2 != old_adjs.end(); ++rit2 )
            {
                if( mbImpl->dimension_from_handle( *rit1 ) != mbImpl->dimension_from_handle( *rit2 ) &&
                    common_entity( *rit1, *rit2, mbImpl->dimension_from_handle( *rit1 ) ) )
                {
                    found = true;
                    old_adjs.insert( *rit1 );
                    break;
                }
            }
            if( found ) continue;
            for( Range::iterator rit2 = new_adjs.begin(); rit2 != new_adjs.end(); ++rit2 )
            {
                if( mbImpl->dimension_from_handle( *rit1 ) != mbImpl->dimension_from_handle( *rit2 ) &&
                    common_entity( *rit1, *rit2, mbImpl->dimension_from_handle( *rit1 ) ) )
                {
                    found = true;
                    new_adjs.insert( *rit1 );
                    break;
                }
            }
            if( !found ) return MB_FAILURE;
        }

        // instead of adjs replace in connectivity
        std::vector< EntityHandle > connect;
        for( Range::iterator rit = new_adjs.begin(); rit != new_adjs.end(); ++rit )
        {
            connect.clear();
            result = mbImpl->get_connectivity( &( *rit ), 1, connect );RR;
            std::replace( connect.begin(), connect.end(), split_ent, new_entity );
            result = mbImpl->set_connectivity( *rit, &connect[0], connect.size() );RR;
        }
    }

    return result;

    /*

    Commented out for now, because I decided to do a different implementation
    for the sake of brevity.  However, I still think this function is the right
    way to do it, if I ever get the time.  Sigh.

        // split entity d, producing entity nd; generates various new entities,
        // see algorithm description in notes from 2/25/05
      const EntityHandle split_types = {MBEDGE, MBPOLYGON, MBPOLYHEDRON};
      ErrorCode result = MB_SUCCESS;
      const int dim = CN::Dimension(TYPE_FROM_HANDLE(d));
      MeshTopoUtil mtu(this);

        // get all (d+2)-, (d+1)-cells connected to d
      Range dp2s, dp1s, dp1s_manif, dp2s_manif;
      result = get_adjacencies(&d, 1, dim+2, false, dp2s); RR;
      result = get_adjacencies(&d, 1, dim+1, false, dp1s); RR;

        // also get (d+1)-cells connected to d which are manifold
      get_manifold_dp1s(d, dp1s_manif);
      get_manifold_dp2s(d, dp2s_manif);

        // make new cell nd, then ndp1
      result = copy_entity(d, nd); RR;
      EntityHandle tmp_connect[] = {d, nd};
      EntityHandle ndp1;
      result = create_element(split_types[dim],
                              tmp_connect, 2, ndp1); RR;

        // modify (d+2)-cells, depending on what type they are
      ITERATE_RANGE(dp2s, dp2) {
          // first, get number of connected manifold (d+1)-entities
        Range tmp_range, tmp_range2(dp1s_manif);
        tmp_range.insert(*dp2);
        tmp_range.insert(d);
        tmp_result = get_adjacencies(tmp_range, 1, false, tmp_range2); TC;
        EntityHandle ndp2;

          // a. manif (d+1)-cells is zero
        if (tmp_range2.empty()) {
            // construct new (d+1)-cell
          EntityHandle ndp1a;
          EntityHandle tmp_result = create_element(split_types[dim],
                                                     tmp_connect, 2, ndp1a); TC;
            // now make new (d+2)-cell
          EntityHandle tmp_connect2[] = {ndp1, ndp1a};
          tmp_result = create_element(split_types[dim+1],
                                      tmp_connect2, 2, ndp2); TC;
            // need to add explicit adjacencies, since by definition ndp1, ndp1a will be equivalent
          tmp_result = add_adjacencies(ndp1a, &dp2, 1, false); TC;
          tmp_result = add_adjacencies(ndp1a, &ndp2, 1, false); TC;
          tmp_result = add_adjacencies(ndp1, &ndp2, 1, false); TC;

            // now insert nd into connectivity of dp2, right after d if dim < 1
          std::vector<EntityHandle> connect;
          tmp_result = get_connectivity(&dp2, 1, connect); TC;
          if (dim < 1) {
            std::vector<EntityHandle>::iterator vit = std::find(connect.begin(), connect.end(), d);
            if (vit == connect.end()) {
              result = MB_FAILURE;
              continue;
            }
            connect.insert(vit, nd);
          }
          else
            connect.push_back(nd);
          tmp_result = set_connectivity(dp2, connect); TC;

            // if dim < 1, need to add explicit adj from ndp2 to higher-dim ents, since it'll
            // be equiv to other dp2 entities
          if (dim < 1) {
            Range tmp_dp3s;
            tmp_result = get_adjacencies(&dp2, 1, dim+3, false, tmp_dp3s); TC;
            tmp_result = add_adjacencies(ndp2, tmp_dp3s, false); TC;
          }
        } // end if (tmp_range2.empty())

          // b. single manifold (d+1)-cell, which isn't adjacent to manifold (d+2)-cell
        else if (tmp_range2.size() == 1) {
            // b1. check validity, and skip if not valid

            // only change if not dp1-adjacent to manifold dp2cell; check that...
          Range tmp_adjs(dp2s_manif);
          tmp_result = get_adjacencies(&(*tmp_range2.begin()), 1, dim+2, false, tmp_adjs); TC;
          if (!tmp_adjs.empty()) continue;

          EntityHandle dp1 = *tmp_range2.begin();

            // b2. make new (d+1)- and (d+2)-cell next to dp2

            // get the (d+2)-cell on the other side of dp1
          tmp_result = get_adjacencies(&dp1, 1, dim+2, false, tmp_adjs); TC;
          EntityHandle odp2 = *tmp_adjs.begin();
          if (odp2 == dp2) odp2 = *tmp_adjs.rbegin();

            // get od, the d-cell on dp1_manif which isn't d
          tmp_result = get_adjacencies(&dp1_manif, 1, dim, false, tmp_adjs); TC;
          tmp_adjs.erase(d);
          if (tmp_adjs.size() != 1) {
            result = MB_FAILURE;
            continue;
          }
          EntityHandle od = *tmp_adjs.begin();

            // make a new (d+1)-cell from od and nd
          tmp_adjs.insert(nd);
          tmp_result = create_element(split_types[1], tmp_adjs, ndp1a); TC;

            // construct new (d+2)-cell from dp1, ndp1, ndp1a
          tmp_adjs.clear();
          tmp_adjs.insert(dp1); tmp_adjs.insert(ndp1); tmp_adjs.insert(ndp1a);
          tmp_result = create_element(split_types[2], tmp_adjs, ndp2); TC;

            // b3. replace d, dp1 in connect/adjs of odp2
          std::vector<EntityHandle> connect;
          tmp_result = get_connectivity(&odp2, 1, connect); TC;
          if (dim == 0) {
            *(std::find(connect.begin(), connect.end(), d)) = nd;
            remove_adjacency(dp1, odp2);



            // if dp1 was explicitly adj to odp2, remove it
          remove_adjacency

    ...

    */
}

//! return whether entity is equivalent to any other of same type and same vertices;
//! if equivalent entity is found, it's returned in equiv_ents and return value is true,
//! false otherwise.
bool MeshTopoUtil::equivalent_entities( const EntityHandle entity, Range* equiv_ents )
{
    const EntityHandle* connect = NULL;
    int num_connect             = 0;
    ErrorCode result            = mbImpl->get_connectivity( entity, connect, num_connect );
    if( MB_SUCCESS != result ) return false;

    Range dum;
    result = mbImpl->get_adjacencies( connect, num_connect, mbImpl->dimension_from_handle( entity ), false, dum );<--- Variable 'result' is assigned a value that is never used.
    dum.erase( entity );

    if( NULL != equiv_ents )
    {
        equiv_ents->swap( dum );
    }

    if( !dum.empty() )
        return true;
    else
        return false;
}

}  // namespace moab