1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000 | /**
* MOAB, a Mesh-Oriented datABase, is a software component for creating,
* storing and accessing finite element mesh data.
*
* Copyright 2004 Sandia Corporation. Under the terms of Contract
* DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government
* retains certain rights in this software.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
*/
#ifdef WIN32
#pragma warning( disable : 4786 )
#endif
#include "moab/MeshTopoUtil.hpp"
#include "moab/Range.hpp"
#include "Internals.hpp"
#include "moab/Interface.hpp"
#include "moab/CN.hpp"
#include <cassert>
#define RR \
{ \
if( MB_SUCCESS != result ) return result; \
}
namespace moab
{
//! generate all the AEntities bounding the vertices
ErrorCode MeshTopoUtil::construct_aentities( const Range& vertices )
{
Range out_range;
ErrorCode result;
result = mbImpl->get_adjacencies( vertices, 1, true, out_range, Interface::UNION );
if( MB_SUCCESS != result ) return result;
out_range.clear();
result = mbImpl->get_adjacencies( vertices, 2, true, out_range, Interface::UNION );
if( MB_SUCCESS != result ) return result;
out_range.clear();
result = mbImpl->get_adjacencies( vertices, 3, true, out_range, Interface::UNION );
return result;
}
//! given an entity, get its average position (avg vertex locations)
ErrorCode MeshTopoUtil::get_average_position( Range& entities, double* avg_position )<--- Parameter 'entities' can be declared with const
{
std::vector< EntityHandle > ent_vec;
std::copy( entities.begin(), entities.end(), std::back_inserter( ent_vec ) );
return get_average_position( &ent_vec[0], ent_vec.size(), avg_position );
}
//! given an entity, get its average position (avg vertex locations)
ErrorCode MeshTopoUtil::get_average_position( const EntityHandle* entities,
const int num_entities,
double* avg_position )
{
double dum_pos[3];
avg_position[0] = avg_position[1] = avg_position[2] = 0.0;
Range connect;
ErrorCode result = mbImpl->get_adjacencies( entities, num_entities, 0, false, connect, Interface::UNION );
if( MB_SUCCESS != result ) return result;
if( connect.empty() ) return MB_FAILURE;
for( Range::iterator rit = connect.begin(); rit != connect.end(); ++rit )
{
result = mbImpl->get_coords( &( *rit ), 1, dum_pos );
if( MB_SUCCESS != result ) return result;
avg_position[0] += dum_pos[0];
avg_position[1] += dum_pos[1];
avg_position[2] += dum_pos[2];
}
avg_position[0] /= (double)connect.size();
avg_position[1] /= (double)connect.size();
avg_position[2] /= (double)connect.size();
return MB_SUCCESS;
}
//! given an entity, get its average position (avg vertex locations)
ErrorCode MeshTopoUtil::get_average_position( const EntityHandle entity, double* avg_position )
{
const EntityHandle* connect = NULL;
int num_connect = 0;
if( MBVERTEX == mbImpl->type_from_handle( entity ) ) return mbImpl->get_coords( &entity, 1, avg_position );
ErrorCode result = mbImpl->get_connectivity( entity, connect, num_connect );
if( MB_SUCCESS != result ) return result;
return get_average_position( connect, num_connect, avg_position );
}
// given an entity, find the entities of next higher dimension around
// that entity, ordered by connection through next higher dimension entities;
// if any of the star entities is in only one entity of next higher dimension,
// on_boundary is returned true
ErrorCode MeshTopoUtil::star_entities( const EntityHandle star_center,
std::vector< EntityHandle >& star_ents,
bool& bdy_entity,
const EntityHandle starting_star_entity,
std::vector< EntityHandle >* star_entities_dp2,
Range* star_candidates_dp2 )
{
// now start the traversal
bdy_entity = false;
EntityHandle last_entity = starting_star_entity, last_dp2 = 0, next_entity, next_dp2;
std::vector< EntityHandle > star_dp2;
ErrorCode result;
int center_dim = mbImpl->dimension_from_handle( star_center );
Range tmp_candidates_dp2;
if( NULL != star_candidates_dp2 )
tmp_candidates_dp2 = *star_candidates_dp2;
else
{
result = mbImpl->get_adjacencies( &star_center, 1, center_dim + 2, false, tmp_candidates_dp2 );
if( MB_SUCCESS != result ) return result;
}
do
{
// get the next star entity
result = star_next_entity( star_center, last_entity, last_dp2, &tmp_candidates_dp2, next_entity, next_dp2 );
if( MB_SUCCESS != result ) return result;
// special case: if starting_star_entity isn't connected to any entities of next
// higher dimension, it's the only entity in the star; put it on the list and return
if( star_ents.empty() && next_entity == 0 && next_dp2 == 0 )
{
star_ents.push_back( last_entity );
bdy_entity = true;
return MB_SUCCESS;
}
// if we're at a bdy and bdy_entity hasn't been set yet, we're at the
// first bdy; reverse the lists and start traversing in the other direction; but,
// pop the last star entity off the list and find it again, so that we properly
// check for next_dp2
if( 0 == next_dp2 && !bdy_entity )
{
star_ents.push_back( next_entity );
bdy_entity = true;
std::reverse( star_ents.begin(), star_ents.end() );
star_ents.pop_back();
last_entity = star_ents.back();
if( !star_dp2.empty() )
{
std::reverse( star_dp2.begin(), star_dp2.end() );
last_dp2 = star_dp2.back();
}
}
// else if we're not on the bdy and next_entity is already in star, that means
// we've come all the way around; don't put next_entity on list again, and
// zero out last_dp2 to terminate while loop
else if( !bdy_entity && std::find( star_ents.begin(), star_ents.end(), next_entity ) != star_ents.end() &&
( std::find( star_dp2.begin(), star_dp2.end(), next_dp2 ) != star_dp2.end() || !next_dp2 ) )
{
last_dp2 = 0;
}
// else, just assign last entities seen and go on to next iteration
else
{
if( std::find( star_ents.begin(), star_ents.end(), next_entity ) == star_ents.end() )
star_ents.push_back( next_entity );
if( 0 != next_dp2 )
{
star_dp2.push_back( next_dp2 );
tmp_candidates_dp2.erase( next_dp2 );
}
last_entity = next_entity;
last_dp2 = next_dp2;
}
} while( 0 != last_dp2 );
// copy over the star_dp2 list, if requested
if( NULL != star_entities_dp2 ) ( *star_entities_dp2 ).swap( star_dp2 );
return MB_SUCCESS;
}
ErrorCode MeshTopoUtil::star_next_entity( const EntityHandle star_center,
const EntityHandle last_entity,
const EntityHandle last_dp1,
Range* star_candidates_dp1,
EntityHandle& next_entity,
EntityHandle& next_dp1 )
{
// given a star_center, a last_entity (whose dimension should be 1 greater than center)
// and last_dp1 (dimension 2 higher than center), returns the next star entity across
// last_dp1, and the next dp1 entity sharing next_entity; if star_candidates is non-empty,
// star must come from those
Range from_ents, to_ents;
from_ents.insert( star_center );
if( 0 != last_dp1 ) from_ents.insert( last_dp1 );
int dim = mbImpl->dimension_from_handle( star_center );
ErrorCode result = mbImpl->get_adjacencies( from_ents, dim + 1, true, to_ents );
if( MB_SUCCESS != result ) return result;
// remove last_entity from result, and should only have 1 left, if any
if( 0 != last_entity ) to_ents.erase( last_entity );
// if no last_dp1, contents of to_ents should share dp1-dimensional entity with last_entity
if( 0 != last_entity && 0 == last_dp1 )
{
Range tmp_to_ents;
for( Range::iterator rit = to_ents.begin(); rit != to_ents.end(); ++rit )
{
if( 0 != common_entity( last_entity, *rit, dim + 2 ) ) tmp_to_ents.insert( *rit );
}
to_ents = tmp_to_ents;
}
if( 0 == last_dp1 && to_ents.size() > 1 && NULL != star_candidates_dp1 && !star_candidates_dp1->empty() )
{
// if we have a choice of to_ents and no previous dp1 and there are dp1 candidates,
// the one we choose needs to be adjacent to one of the candidates
result = mbImpl->get_adjacencies( *star_candidates_dp1, dim + 1, true, from_ents, Interface::UNION );
if( MB_SUCCESS != result ) return result;
to_ents = intersect( to_ents, from_ents );
}
if( !to_ents.empty() )
next_entity = *to_ents.begin();
else
{
next_entity = 0;
next_dp1 = 0;
return MB_SUCCESS;
}
// get next_dp1
if( 0 != star_candidates_dp1 )
to_ents = *star_candidates_dp1;
else
to_ents.clear();
result = mbImpl->get_adjacencies( &next_entity, 1, dim + 2, true, to_ents );
if( MB_SUCCESS != result ) return result;
// can't be last one
if( 0 != last_dp1 ) to_ents.erase( last_dp1 );
if( !to_ents.empty() ) next_dp1 = *to_ents.begin();
// could be zero, means we're at bdy
else
next_dp1 = 0;
return MB_SUCCESS;
}
ErrorCode MeshTopoUtil::star_entities_nonmanifold( const EntityHandle star_entity,<--- The function 'star_entities_nonmanifold' is never used.
std::vector< std::vector< EntityHandle > >& stars,
std::vector< bool >* bdy_flags,
std::vector< std::vector< EntityHandle > >* dp2_stars )
{
// Get a series of (d+1)-dimensional stars around a d-dimensional entity, such that
// each star is on a (d+2)-manifold containing the d-dimensional entity; each star
// is either open or closed, and also defines a (d+2)-star whose entities are bounded by
// (d+1)-entities on the star and on the (d+2)-manifold
//
// Algorithm:
// get the (d+2)-manifold entities; for d=1 / d+2=3, just assume all connected elements, since
// we don't do 4d yet
// get intersection of (d+1)-entities adjacent to star entity and union of (d+1)-entities
// adjacent to (d+2)-manifold entities; these will be the entities in the star
// while (d+1)-entities
// remove (d+1)-entity from (d+1)-entities
// get the (d+1)-star and (d+2)-star around that (d+1)-entity (using star_entities)
// save that star to the star list, and the bdy flag and (d+2)-star if requested
// remove (d+2)-entities from the (d+2)-manifold entities
// remove (d+1)-entities from the (d+1)-entities
// (end while)
int this_dim = mbImpl->dimension_from_handle( star_entity );
if( 3 <= this_dim || 0 > this_dim ) return MB_FAILURE;
// get the (d+2)-manifold entities; for d=1 / d+2=3, just assume all connected elements, since
// we don't do 4d yet
Range dp2_manifold;
ErrorCode result = get_manifold( star_entity, this_dim + 2, dp2_manifold );
if( MB_SUCCESS != result ) return result;
// get intersection of (d+1)-entities adjacent to star and union of (d+1)-entities
// adjacent to (d+2)-manifold entities; also add manifold (d+1)-entities, to catch
// any not connected to (d+2)-entities
Range dp1_manifold;
result = mbImpl->get_adjacencies( dp2_manifold, this_dim + 1, false, dp1_manifold, Interface::UNION );
if( MB_SUCCESS != result ) return result;
result = mbImpl->get_adjacencies( &star_entity, 1, this_dim + 1, false, dp1_manifold );
if( MB_SUCCESS != result ) return result;
result = get_manifold( star_entity, this_dim + 1, dp1_manifold );
if( MB_SUCCESS != result ) return result;
// while (d+1)-entities
while( !dp1_manifold.empty() )
{
// get (d+1)-entity from (d+1)-entities (don't remove it until after star,
// since the star entities must come from dp1_manifold)
EntityHandle this_ent = *dp1_manifold.begin();
// get the (d+1)-star and (d+2)-star around that (d+1)-entity (using star_entities)
std::vector< EntityHandle > this_star_dp1, this_star_dp2;
bool on_bdy;
result = star_entities( star_entity, this_star_dp1, on_bdy, this_ent, &this_star_dp2, &dp2_manifold );
if( MB_SUCCESS != result ) return result;
// if there's no star entities, it must mean this_ent isn't bounded by any dp2
// entities (wasn't put into star in star_entities 'cuz we're passing in non-null
// dp2_manifold above); put it in
if( this_star_dp1.empty() )
{
Range dum_range;
result = mbImpl->get_adjacencies( &this_ent, 1, this_dim + 2, false, dum_range );
if( MB_SUCCESS != result ) return result;
if( dum_range.empty() ) this_star_dp1.push_back( this_ent );
}
// now we can remove it
dp1_manifold.erase( dp1_manifold.begin() );
// save that star to the star list, and the bdy flag and (d+2)-star if requested
if( !this_star_dp1.empty() )
{
stars.push_back( this_star_dp1 );
if( NULL != bdy_flags ) bdy_flags->push_back( on_bdy );
if( NULL != dp2_stars ) dp2_stars->push_back( this_star_dp2 );
}
// remove (d+2)-entities from the (d+2)-manifold entities
for( std::vector< EntityHandle >::iterator vit = this_star_dp2.begin(); vit != this_star_dp2.end(); ++vit )
dp2_manifold.erase( *vit );
// remove (d+1)-entities from the (d+1)-entities
for( std::vector< EntityHandle >::iterator vit = this_star_dp1.begin(); vit != this_star_dp1.end(); ++vit )
dp1_manifold.erase( *vit );
// (end while)
}
// check for leftover dp2 manifold entities, these should be in one of the
// stars
if( !dp2_manifold.empty() )
{
for( Range::iterator rit = dp2_manifold.begin(); rit != dp2_manifold.end(); ++rit )
{
}
}
return MB_SUCCESS;
}
//! get (target_dim)-dimensional manifold entities connected to star_entity; that is,
//! the entities with <= 1 connected (target_dim+2)-dimensional adjacent entities;
//! for target_dim=3, just return all of them
//! just insert into the list, w/o clearing manifold list first
ErrorCode MeshTopoUtil::get_manifold( const EntityHandle star_entity, const int target_dim, Range& manifold )
{
// get all the entities of target dimension connected to star
Range tmp_range;
ErrorCode result = mbImpl->get_adjacencies( &star_entity, 1, target_dim, false, tmp_range );
if( MB_SUCCESS != result ) return result;
// now save the ones which are (target_dim+1)-dimensional manifold;
// for target_dim=3, just return whole range, since we don't do 4d
if( target_dim == 3 )
{
manifold.merge( tmp_range );
return MB_SUCCESS;
}
for( Range::iterator rit = tmp_range.begin(); rit != tmp_range.end(); ++rit )
{
Range dum_range;
// get (target_dim+1)-dimensional entities
result = mbImpl->get_adjacencies( &( *rit ), 1, target_dim + 1, false, dum_range );
if( MB_SUCCESS != result ) return result;
// if there are only 1 or zero, add to manifold list
if( 1 >= dum_range.size() ) manifold.insert( *rit );
}
return MB_SUCCESS;
}
//! get "bridge" or "2nd order" adjacencies, going through dimension bridge_dim
ErrorCode MeshTopoUtil::get_bridge_adjacencies( Range& from_entities,<--- Parameter 'from_entities' can be declared with const
int bridge_dim,
int to_dim,
Range& to_ents,
int num_layers )
{
Range bridge_ents, accum_layers, new_toents( from_entities );
ErrorCode result;
if( 0 == num_layers || from_entities.empty() ) return MB_FAILURE;
// for each layer, get bridge-adj entities and accumulate
for( int nl = 0; nl < num_layers; nl++ )
{
Range new_bridges;
// get bridge ents
result = mbImpl->get_adjacencies( new_toents, bridge_dim, true, new_bridges, Interface::UNION );
if( MB_SUCCESS != result ) return result;
// get to_dim adjacencies, merge into to_ents
Range new_layer;
if( -1 == to_dim )
{
result = mbImpl->get_adjacencies( new_bridges, 3, false, new_layer, Interface::UNION );
if( MB_SUCCESS != result ) return result;
for( int d = 2; d >= 1; d-- )
{
result = mbImpl->get_adjacencies( to_ents, d, true, new_layer, Interface::UNION );
if( MB_SUCCESS != result ) return result;
}
}
else
{
result = mbImpl->get_adjacencies( new_bridges, to_dim, false, new_layer, Interface::UNION );
if( MB_SUCCESS != result ) return result;
}
// subtract last_toents to get new_toents
accum_layers.merge( new_layer );
if( nl < num_layers - 1 ) new_toents = subtract( new_layer, new_toents );
}
to_ents.merge( accum_layers );
return MB_SUCCESS;
}
//! get "bridge" or "2nd order" adjacencies, going through dimension bridge_dim
ErrorCode MeshTopoUtil::get_bridge_adjacencies( const EntityHandle from_entity,
const int bridge_dim,
const int to_dim,
Range& to_adjs )
{
// get pointer to connectivity for this entity
const EntityHandle* connect;
int num_connect;
ErrorCode result = MB_SUCCESS;
EntityType from_type = TYPE_FROM_HANDLE( from_entity );
if( from_type == MBVERTEX )
{
connect = &from_entity;
num_connect = 1;
}
else
{
result = mbImpl->get_connectivity( from_entity, connect, num_connect );
if( MB_SUCCESS != result ) return result;
}
if( from_type >= MBENTITYSET ) return MB_FAILURE;
int from_dim = CN::Dimension( from_type );
Range to_ents;
if( bridge_dim < from_dim )
{
// looping over each sub-entity of dimension bridge_dim...
if( MBPOLYGON == from_type )
{
for( int i = 0; i < num_connect; i++ )
{
// loop over edges, and get the vertices
EntityHandle verts_on_edge[2] = { connect[i], connect[( i + 1 ) % num_connect] };
to_ents.clear();
ErrorCode tmp_result =
mbImpl->get_adjacencies( verts_on_edge, 2, to_dim, false, to_ents, Interface::INTERSECT );
if( MB_SUCCESS != tmp_result ) result = tmp_result;
to_adjs.merge( to_ents );
}
}
else
{
EntityHandle bridge_verts[MAX_SUB_ENTITIES];
int bridge_indices[MAX_SUB_ENTITIES];
for( int i = 0; i < CN::NumSubEntities( from_type, bridge_dim ); i++ )
{
// get the vertices making up this sub-entity
int num_bridge_verts = CN::VerticesPerEntity( CN::SubEntityType( from_type, bridge_dim, i ) );
assert( num_bridge_verts >= 0 && num_bridge_verts <= MAX_SUB_ENTITIES );
CN::SubEntityVertexIndices( from_type, bridge_dim, i, bridge_indices );
for( int j = 0; j < num_bridge_verts; ++j )
{
if( bridge_indices[j] >= 0 && bridge_indices[j] < num_connect )
bridge_verts[j] = connect[bridge_indices[j]];
else
bridge_verts[j] = 0;
}
// CN::SubEntityConn(connect, from_type, bridge_dim, i, &bridge_verts[0],
// num_bridge_verts);
// get the to_dim entities adjacent
to_ents.clear();
ErrorCode tmp_result = mbImpl->get_adjacencies( bridge_verts, num_bridge_verts, to_dim, false, to_ents,
Interface::INTERSECT );
if( MB_SUCCESS != tmp_result ) result = tmp_result;
to_adjs.merge( to_ents );
}
}
}
// now get the direct ones too, or only in the case where we're
// going to higher dimension for bridge
Range bridge_ents, tmp_ents;
tmp_ents.insert( from_entity );
ErrorCode tmp_result = mbImpl->get_adjacencies( tmp_ents, bridge_dim, false, bridge_ents, Interface::UNION );
if( MB_SUCCESS != tmp_result ) return tmp_result;
tmp_result = mbImpl->get_adjacencies( bridge_ents, to_dim, false, to_adjs, Interface::UNION );
if( MB_SUCCESS != tmp_result ) return tmp_result;
// if to_dimension is same as that of from_entity, make sure from_entity isn't
// in list
if( to_dim == from_dim ) to_adjs.erase( from_entity );
return result;
}
//! return a common entity of the specified dimension, or 0 if there isn't one
EntityHandle MeshTopoUtil::common_entity( const EntityHandle ent1, const EntityHandle ent2, const int dim )
{
Range tmp_range, tmp_range2;
tmp_range.insert( ent1 );
tmp_range.insert( ent2 );
ErrorCode result = mbImpl->get_adjacencies( tmp_range, dim, false, tmp_range2 );
if( MB_SUCCESS != result || tmp_range2.empty() )
return 0;
else
return *tmp_range2.begin();
}
//! return the opposite side entity given a parent and bounding entity.
//! This function is only defined for certain types of parent/child types;
//! See CN.hpp::OppositeSide for details.
//!
//! \param parent The parent element
//! \param child The child element
//! \param opposite_element The index of the opposite element
ErrorCode MeshTopoUtil::opposite_entity( const EntityHandle parent,
const EntityHandle child,
EntityHandle& opposite_element )
{
// get the side no.
int side_no, offset, sense;
ErrorCode result = mbImpl->side_number( parent, child, side_no, offset, sense );
if( MB_SUCCESS != result ) return result;
// get the child index from CN
int opposite_index, opposite_dim;
int status = CN::OppositeSide( mbImpl->type_from_handle( parent ), side_no, mbImpl->dimension_from_handle( child ),
opposite_index, opposite_dim );
if( 0 != status ) return MB_FAILURE;
// now get the side element from MOAB
result = mbImpl->side_element( parent, opposite_dim, opposite_index, opposite_element );
if( MB_SUCCESS != result ) return result;
return MB_SUCCESS;
}
ErrorCode MeshTopoUtil::split_entities_manifold( Range& entities, Range& new_entities, Range* fill_entities )<--- Parameter 'entities' can be declared with const
{
Range tmp_range, *tmp_ptr_fill_entity;
if( NULL != fill_entities )
tmp_ptr_fill_entity = &tmp_range;
else
tmp_ptr_fill_entity = NULL;
for( Range::iterator rit = entities.begin(); rit != entities.end(); ++rit )
{
EntityHandle new_entity;
if( NULL != tmp_ptr_fill_entity ) tmp_ptr_fill_entity->clear();
EntityHandle this_ent = *rit;
ErrorCode result = split_entities_manifold( &this_ent, 1, &new_entity, tmp_ptr_fill_entity );
if( MB_SUCCESS != result ) return result;
new_entities.insert( new_entity );
if( NULL != fill_entities ) fill_entities->merge( *tmp_ptr_fill_entity );
}
return MB_SUCCESS;
}
ErrorCode MeshTopoUtil::split_entities_manifold( EntityHandle* entities,
const int num_entities,
EntityHandle* new_entities,
Range* fill_entities,
EntityHandle* gowith_ents )
{
// split entities by duplicating them; splitting manifold means that there is at
// most two higher-dimension entities bounded by a given entity; after split, the
// new entity bounds one and the original entity bounds the other
#define ITERATE_RANGE( range, it ) for( Range::iterator it = ( range ).begin(); ( it ) != ( range ).end(); ++( it ) )
#define GET_CONNECT_DECL( ent, connect, num_connect ) \
const EntityHandle* connect = NULL; \
int num_connect = 0; \
{ \
ErrorCode connect_result = mbImpl->get_connectivity( ent, connect, num_connect ); \
if( MB_SUCCESS != connect_result ) return connect_result; \
}
#define GET_CONNECT( ent, connect, num_connect ) \
{ \
ErrorCode connect_result = mbImpl->get_connectivity( ent, connect, num_connect ); \
if( MB_SUCCESS != connect_result ) return connect_result; \
}
#define TC \
if( MB_SUCCESS != tmp_result ) \
{ \
result = tmp_result; \
continue; \
}
ErrorCode result = MB_SUCCESS;
for( int i = 0; i < num_entities; i++ )
{
ErrorCode tmp_result;
// get original higher-dimensional bounding entities
Range up_adjs[4];
// can only do a split_manifold if there are at most 2 entities of each
// higher dimension; otherwise it's a split non-manifold
bool valid_up_adjs = true;
for( int dim = 1; dim <= 3; dim++ )
{
tmp_result = mbImpl->get_adjacencies( entities + i, 1, dim, false, up_adjs[dim] );
TC;
if( dim > CN::Dimension( TYPE_FROM_HANDLE( entities[i] ) ) && up_adjs[dim].size() > 2 )
{
valid_up_adjs = false;
break;
}
}
if( !valid_up_adjs ) return MB_FAILURE;
// ok to split; create the new entity, with connectivity of the original
GET_CONNECT_DECL( entities[i], connect, num_connect );
EntityHandle new_entity;
result = mbImpl->create_element( mbImpl->type_from_handle( entities[i] ), connect, num_connect, new_entity );
TC;
// by definition, new entity and original will be equivalent; need to add explicit
// adjs to distinguish them; don't need to check if there's already one there,
// 'cuz add_adjacency does that for us
for( int dim = 1; dim <= 3; dim++ )
{
if( up_adjs[dim].empty() || dim == CN::Dimension( TYPE_FROM_HANDLE( entities[i] ) ) ) continue;
if( dim < CN::Dimension( TYPE_FROM_HANDLE( entities[i] ) ) )
{
// adjacencies from other entities to this one; if any of those are equivalent
// entities, need to make explicit adjacency to new entity too
for( Range::iterator rit = up_adjs[dim].begin(); rit != up_adjs[dim].end(); ++rit )
{
if( equivalent_entities( *rit ) ) result = mbImpl->add_adjacencies( *rit, &new_entity, 1, false );
}
}
else
{
// get the two up-elements
EntityHandle up_elem1 = *( up_adjs[dim].begin() ),
up_elem2 = ( up_adjs[dim].size() > 1 ? *( up_adjs[dim].rbegin() ) : 0 );
// if two, and a gowith entity was input, make sure the new entity goes with
// that one
if( gowith_ents && up_elem2 && gowith_ents[i] != up_elem1 && gowith_ents[i] == up_elem2 )
{
EntityHandle tmp_elem = up_elem1;
up_elem1 = up_elem2;
up_elem2 = tmp_elem;
}
mbImpl->remove_adjacencies( entities[i], &up_elem1, 1 );
// (ok if there's an error, that just means there wasn't an explicit adj)
tmp_result = mbImpl->add_adjacencies( new_entity, &up_elem1, 1, false );
TC;
if( !up_elem2 ) continue;
// add adj to other up_adj
tmp_result = mbImpl->add_adjacencies( entities[i], &up_elem2, 1, false );
TC;
}
}
// if we're asked to build a next-higher-dimension object, do so
EntityHandle fill_entity = 0;
EntityHandle tmp_ents[2];
if( NULL != fill_entities )
{
// how to do this depends on dimension
switch( CN::Dimension( TYPE_FROM_HANDLE( entities[i] ) ) )
{
case 0:
tmp_ents[0] = entities[i];
tmp_ents[1] = new_entity;
tmp_result = mbImpl->create_element( MBEDGE, tmp_ents, 2, fill_entity );
TC;
break;
case 1:
tmp_result = mbImpl->create_element( MBPOLYGON, connect, 2, fill_entity );
TC;
// need to create explicit adj in this case
tmp_result = mbImpl->add_adjacencies( entities[i], &fill_entity, 1, false );
TC;
tmp_result = mbImpl->add_adjacencies( new_entity, &fill_entity, 1, false );
TC;
break;
case 2:
tmp_ents[0] = entities[i];
tmp_ents[1] = new_entity;
tmp_result = mbImpl->create_element( MBPOLYHEDRON, tmp_ents, 2, fill_entity );
TC;
break;
}
if( 0 == fill_entity )
{
result = MB_FAILURE;
continue;
}
fill_entities->insert( fill_entity );
}
new_entities[i] = new_entity;
} // end for over input entities
return result;
}
ErrorCode MeshTopoUtil::split_entity_nonmanifold( EntityHandle split_ent,
Range& old_adjs,
Range& new_adjs,
EntityHandle& new_entity )
{
// split an entity into two entities; new entity gets explicit adj to new_adjs,
// old to old_adjs
// make new entities and add adjacencies
// create the new entity
EntityType split_type = mbImpl->type_from_handle( split_ent );
ErrorCode result;
if( MBVERTEX == split_type )
{
double coords[3];
result = mbImpl->get_coords( &split_ent, 1, coords );RR;
result = mbImpl->create_vertex( coords, new_entity );RR;
}
else
{
const EntityHandle* connect;
int num_connect;
result = mbImpl->get_connectivity( split_ent, connect, num_connect );RR;
result = mbImpl->create_element( split_type, connect, num_connect, new_entity );RR;
// remove any explicit adjacencies between new_adjs and split entity
for( Range::iterator rit = new_adjs.begin(); rit != new_adjs.end(); ++rit )
mbImpl->remove_adjacencies( split_ent, &( *rit ), 1 );
}
if( MBVERTEX != split_type )
{
// add adj's between new_adjs & new entity, old_adjs & split_entity
for( Range::iterator rit = new_adjs.begin(); rit != new_adjs.end(); ++rit )
mbImpl->add_adjacencies( new_entity, &( *rit ), 1, true );
for( Range::iterator rit = old_adjs.begin(); rit != old_adjs.end(); ++rit )
mbImpl->add_adjacencies( split_ent, &( *rit ), 1, true );
}
else if( split_ent != new_entity )
{
// in addition to explicit adjs, need to check if vertex is part of any
// other entities, and check those entities against ents in old and new adjs
Range other_adjs;
for( int i = 1; i < 4; i++ )
{
result = mbImpl->get_adjacencies( &split_ent, 1, i, false, other_adjs, Interface::UNION );RR;
}
other_adjs = subtract( other_adjs, old_adjs );
other_adjs = subtract( other_adjs, new_adjs );
for( Range::iterator rit1 = other_adjs.begin(); rit1 != other_adjs.end(); ++rit1 )
{
// find an adjacent lower-dimensional entity in old_ or new_ adjs
bool found = false;
for( Range::iterator rit2 = old_adjs.begin(); rit2 != old_adjs.end(); ++rit2 )
{
if( mbImpl->dimension_from_handle( *rit1 ) != mbImpl->dimension_from_handle( *rit2 ) &&
common_entity( *rit1, *rit2, mbImpl->dimension_from_handle( *rit1 ) ) )
{
found = true;
old_adjs.insert( *rit1 );
break;
}
}
if( found ) continue;
for( Range::iterator rit2 = new_adjs.begin(); rit2 != new_adjs.end(); ++rit2 )
{
if( mbImpl->dimension_from_handle( *rit1 ) != mbImpl->dimension_from_handle( *rit2 ) &&
common_entity( *rit1, *rit2, mbImpl->dimension_from_handle( *rit1 ) ) )
{
found = true;
new_adjs.insert( *rit1 );
break;
}
}
if( !found ) return MB_FAILURE;
}
// instead of adjs replace in connectivity
std::vector< EntityHandle > connect;
for( Range::iterator rit = new_adjs.begin(); rit != new_adjs.end(); ++rit )
{
connect.clear();
result = mbImpl->get_connectivity( &( *rit ), 1, connect );RR;
std::replace( connect.begin(), connect.end(), split_ent, new_entity );
result = mbImpl->set_connectivity( *rit, &connect[0], connect.size() );RR;
}
}
return result;
/*
Commented out for now, because I decided to do a different implementation
for the sake of brevity. However, I still think this function is the right
way to do it, if I ever get the time. Sigh.
// split entity d, producing entity nd; generates various new entities,
// see algorithm description in notes from 2/25/05
const EntityHandle split_types = {MBEDGE, MBPOLYGON, MBPOLYHEDRON};
ErrorCode result = MB_SUCCESS;
const int dim = CN::Dimension(TYPE_FROM_HANDLE(d));
MeshTopoUtil mtu(this);
// get all (d+2)-, (d+1)-cells connected to d
Range dp2s, dp1s, dp1s_manif, dp2s_manif;
result = get_adjacencies(&d, 1, dim+2, false, dp2s); RR;
result = get_adjacencies(&d, 1, dim+1, false, dp1s); RR;
// also get (d+1)-cells connected to d which are manifold
get_manifold_dp1s(d, dp1s_manif);
get_manifold_dp2s(d, dp2s_manif);
// make new cell nd, then ndp1
result = copy_entity(d, nd); RR;
EntityHandle tmp_connect[] = {d, nd};
EntityHandle ndp1;
result = create_element(split_types[dim],
tmp_connect, 2, ndp1); RR;
// modify (d+2)-cells, depending on what type they are
ITERATE_RANGE(dp2s, dp2) {
// first, get number of connected manifold (d+1)-entities
Range tmp_range, tmp_range2(dp1s_manif);
tmp_range.insert(*dp2);
tmp_range.insert(d);
tmp_result = get_adjacencies(tmp_range, 1, false, tmp_range2); TC;
EntityHandle ndp2;
// a. manif (d+1)-cells is zero
if (tmp_range2.empty()) {
// construct new (d+1)-cell
EntityHandle ndp1a;
EntityHandle tmp_result = create_element(split_types[dim],
tmp_connect, 2, ndp1a); TC;
// now make new (d+2)-cell
EntityHandle tmp_connect2[] = {ndp1, ndp1a};
tmp_result = create_element(split_types[dim+1],
tmp_connect2, 2, ndp2); TC;
// need to add explicit adjacencies, since by definition ndp1, ndp1a will be equivalent
tmp_result = add_adjacencies(ndp1a, &dp2, 1, false); TC;
tmp_result = add_adjacencies(ndp1a, &ndp2, 1, false); TC;
tmp_result = add_adjacencies(ndp1, &ndp2, 1, false); TC;
// now insert nd into connectivity of dp2, right after d if dim < 1
std::vector<EntityHandle> connect;
tmp_result = get_connectivity(&dp2, 1, connect); TC;
if (dim < 1) {
std::vector<EntityHandle>::iterator vit = std::find(connect.begin(), connect.end(), d);
if (vit == connect.end()) {
result = MB_FAILURE;
continue;
}
connect.insert(vit, nd);
}
else
connect.push_back(nd);
tmp_result = set_connectivity(dp2, connect); TC;
// if dim < 1, need to add explicit adj from ndp2 to higher-dim ents, since it'll
// be equiv to other dp2 entities
if (dim < 1) {
Range tmp_dp3s;
tmp_result = get_adjacencies(&dp2, 1, dim+3, false, tmp_dp3s); TC;
tmp_result = add_adjacencies(ndp2, tmp_dp3s, false); TC;
}
} // end if (tmp_range2.empty())
// b. single manifold (d+1)-cell, which isn't adjacent to manifold (d+2)-cell
else if (tmp_range2.size() == 1) {
// b1. check validity, and skip if not valid
// only change if not dp1-adjacent to manifold dp2cell; check that...
Range tmp_adjs(dp2s_manif);
tmp_result = get_adjacencies(&(*tmp_range2.begin()), 1, dim+2, false, tmp_adjs); TC;
if (!tmp_adjs.empty()) continue;
EntityHandle dp1 = *tmp_range2.begin();
// b2. make new (d+1)- and (d+2)-cell next to dp2
// get the (d+2)-cell on the other side of dp1
tmp_result = get_adjacencies(&dp1, 1, dim+2, false, tmp_adjs); TC;
EntityHandle odp2 = *tmp_adjs.begin();
if (odp2 == dp2) odp2 = *tmp_adjs.rbegin();
// get od, the d-cell on dp1_manif which isn't d
tmp_result = get_adjacencies(&dp1_manif, 1, dim, false, tmp_adjs); TC;
tmp_adjs.erase(d);
if (tmp_adjs.size() != 1) {
result = MB_FAILURE;
continue;
}
EntityHandle od = *tmp_adjs.begin();
// make a new (d+1)-cell from od and nd
tmp_adjs.insert(nd);
tmp_result = create_element(split_types[1], tmp_adjs, ndp1a); TC;
// construct new (d+2)-cell from dp1, ndp1, ndp1a
tmp_adjs.clear();
tmp_adjs.insert(dp1); tmp_adjs.insert(ndp1); tmp_adjs.insert(ndp1a);
tmp_result = create_element(split_types[2], tmp_adjs, ndp2); TC;
// b3. replace d, dp1 in connect/adjs of odp2
std::vector<EntityHandle> connect;
tmp_result = get_connectivity(&odp2, 1, connect); TC;
if (dim == 0) {
*(std::find(connect.begin(), connect.end(), d)) = nd;
remove_adjacency(dp1, odp2);
// if dp1 was explicitly adj to odp2, remove it
remove_adjacency
...
*/
}
//! return whether entity is equivalent to any other of same type and same vertices;
//! if equivalent entity is found, it's returned in equiv_ents and return value is true,
//! false otherwise.
bool MeshTopoUtil::equivalent_entities( const EntityHandle entity, Range* equiv_ents )
{
const EntityHandle* connect = NULL;
int num_connect = 0;
ErrorCode result = mbImpl->get_connectivity( entity, connect, num_connect );
if( MB_SUCCESS != result ) return false;
Range dum;
result = mbImpl->get_adjacencies( connect, num_connect, mbImpl->dimension_from_handle( entity ), false, dum );<--- Variable 'result' is assigned a value that is never used.
dum.erase( entity );
if( NULL != equiv_ents )
{
equiv_ents->swap( dum );
}
if( !dum.empty() )
return true;
else
return false;
}
} // namespace moab
|