1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
/**
 * MOAB, a Mesh-Oriented datABase, is a software component for creating,
 * storing and accessing finite element mesh data.
 *
 * Copyright 2004 Sandia Corporation.  Under the terms of Contract
 * DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government
 * retains certain rights in this software.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 */

/****************************************************
 * File     :      Range.cpp
 *
 * Purpose  :      Stores contiguous or partially
 *                 contiguous values in an optimized
 *                 fashion.  Partially contiguous
 *                 accessing patterns is also optimized.
 *
 * Creator  :      Clinton Stimpson
 *
 * Date     :      15 April 2002
 *
 *******************************************************/

#include <cassert>
#include "moab/Range.hpp"
#include "Internals.hpp"
#include "moab/CN.hpp"
#include <iostream>
#include <sstream>
#include <string>

#ifdef HAVE_BOOST_POOL_SINGLETON_POOL_HPP
#include <boost/pool/singleton_pool.hpp>
typedef boost::singleton_pool< moab::Range::PairNode, sizeof( moab::Range::PairNode ) > PairAlloc;
//   static inline moab::Range::PairNode* alloc_pair()
//    { return new (PairAlloc::malloc()) moab::Range::PairNode; }
static inline moab::Range::PairNode* alloc_pair( moab::Range::PairNode* n,
                                                 moab::Range::PairNode* p,
                                                 moab::EntityHandle f,
                                                 moab::EntityHandle s )
{
    return new( PairAlloc::malloc() ) moab::Range::PairNode( n, p, f, s );
}
static inline void free_pair( moab::Range::PairNode* node )
{
    node->~PairNode();
    PairAlloc::free( node );
}
#else
//   static inline moab::Range::PairNode* alloc_pair()
//    { return new moab::Range::PairNode; }
static inline moab::Range::PairNode* alloc_pair( moab::Range::PairNode* n,
                                                 moab::Range::PairNode* p,
                                                 moab::EntityHandle f,
                                                 moab::EntityHandle s )
{
    return new moab::Range::PairNode( n, p, f, s );
}
static inline void free_pair( moab::Range::PairNode* node )
{
    delete node;
}
#endif

namespace moab
{

/*!
  returns the number of values this list represents
 */
size_t Range::size() const
{
    // go through each pair and add up the number of values
    // we have.
    size_t sz = 0;
    for( PairNode* iter = mHead.mNext; iter != &mHead; iter = iter->mNext )
    {
        sz += ( ( iter->second - iter->first ) + 1 );
    }
    return sz;
}

/*!
  advance iterator
*/
Range::const_iterator& Range::const_iterator::operator+=( EntityID sstep )
{
    // Check negative now to avoid infinite loop below.
    if( sstep < 0 )
    {
        return operator-=( -sstep );
    }
    EntityHandle step = sstep;

    // Handle current PairNode.  Either step is within the current
    // node or need to remove the remainder of the current node
    // from step.
    EntityHandle this_node_rem = mNode->second - mValue;
    if( this_node_rem >= step )
    {
        mValue += step;
        return *this;
    }
    step -= this_node_rem + 1;

    // For each node we are stepping past, decrement step
    // by the size of the node.
    PairNode* node         = mNode->mNext;
    EntityHandle node_size = node->second - node->first + 1;
    while( step >= node_size )
    {
        step -= node_size;
        node      = node->mNext;
        node_size = node->second - node->first + 1;
    }

    // Advance into the resulting node by whatever is
    // left in step.
    mNode  = node;
    mValue = mNode->first + step;
    return *this;
}

/*!
  regress iterator
*/
Range::const_iterator& Range::const_iterator::operator-=( EntityID sstep )
{
    // Check negative now to avoid infinite loop below.
    if( sstep < 0 )
    {
        return operator+=( -sstep );
    }
    EntityHandle step = sstep;

    // Handle current PairNode.  Either step is within the current
    // node or need to remove the remainder of the current node
    // from step.
    EntityHandle this_node_rem = mValue - mNode->first;
    if( this_node_rem >= step )
    {
        mValue -= step;
        return *this;
    }
    step -= this_node_rem + 1;

    // For each node we are stepping past, decrement step
    // by the size of the node.
    PairNode* node         = mNode->mPrev;
    EntityHandle node_size = node->second - node->first + 1;
    while( step >= node_size )
    {
        step -= node_size;
        node      = node->mPrev;
        node_size = node->second - node->first + 1;
    }

    // Advance into the resulting node by whatever is
    // left in step.
    mNode  = node;
    mValue = mNode->second - step;
    return *this;
}

//! another constructor that takes an initial range
Range::Range( EntityHandle val1, EntityHandle val2 )
{
    mHead.mNext = mHead.mPrev = alloc_pair( &mHead, &mHead, val1, val2 );
    mHead.first = mHead.second = 0;
}

//! copy constructor
Range::Range( const Range& copy )
{
    // set the head node to point to itself
    mHead.mNext = mHead.mPrev = &mHead;
    mHead.first = mHead.second = 0;

    const PairNode* copy_node = copy.mHead.mNext;
    PairNode* new_node        = &mHead;
    for( ; copy_node != &( copy.mHead ); copy_node = copy_node->mNext )
    {
        PairNode* tmp_node     = alloc_pair( new_node->mNext, new_node, copy_node->first, copy_node->second );
        new_node->mNext->mPrev = tmp_node;
        new_node->mNext        = tmp_node;
        new_node               = tmp_node;
    }
}

//! clears the contents of the list
void Range::clear()
{
    PairNode* tmp_node = mHead.mNext;
    while( tmp_node != &mHead )
    {
        PairNode* to_delete = tmp_node;
        tmp_node            = tmp_node->mNext;
        free_pair( to_delete );
    }
    mHead.mNext = &mHead;
    mHead.mPrev = &mHead;
}

Range& Range::operator=( const Range& copy )
{
    clear();
    const PairNode* copy_node = copy.mHead.mNext;
    PairNode* new_node        = &mHead;
    for( ; copy_node != &( copy.mHead ); copy_node = copy_node->mNext )
    {
        PairNode* tmp_node     = alloc_pair( new_node->mNext, new_node, copy_node->first, copy_node->second );
        new_node->mNext->mPrev = tmp_node;
        new_node->mNext        = tmp_node;
        new_node               = tmp_node;
    }
    return *this;
}

/*!
  inserts a single value into this range
*/

Range::iterator Range::insert( Range::iterator hint, EntityHandle val )
{
    // don't allow zero-valued handles in Range
    if( val == 0 ) return end();

    // if this is empty, just add it and return an iterator to it
    if( &mHead == mHead.mNext )
    {
        mHead.mNext = mHead.mPrev = alloc_pair( &mHead, &mHead, val, val );
        return iterator( mHead.mNext, val );
    }

    // find the location in the list where we can safely insert
    // new items and keep it ordered
    PairNode* hter = hint.mNode;
    PairNode* jter = hter->first <= val ? hter : mHead.mNext;
    for( ; ( jter != &mHead ) && ( jter->second < val ); jter = jter->mNext )
        ;
    PairNode* iter = jter;
    jter           = jter->mPrev;

    // if this val is already in the list
    if( ( iter->first <= val && iter->second >= val ) && ( iter != &mHead ) )
    {
        // return an iterator pointing to this location
        return iterator( iter, val );
    }

    // one of a few things can happen at this point
    // 1. this range needs to be backwardly extended
    // 2. the previous range needs to be forwardly extended
    // 3. a new range needs to be added

    // extend this range back a bit
    else if( ( iter->first == ( val + 1 ) ) && ( iter != &mHead ) )
    {
        iter->first = val;
        // see if we need to merge two ranges
        if( ( iter != mHead.mNext ) && ( jter->second == ( val - 1 ) ) )
        {
            jter->second       = iter->second;
            iter->mPrev->mNext = iter->mNext;
            iter->mNext->mPrev = iter->mPrev;
            free_pair( iter );
            return iterator( jter, val );
        }
        else
        {
            return iterator( iter, val );
        }
    }
    // extend the previous range forward a bit
    else if( ( jter->second == ( val - 1 ) ) && ( iter != mHead.mNext ) )
    {
        jter->second = val;
        return iterator( jter, val );
    }
    // make a new range
    else
    {
        PairNode* new_node = alloc_pair( iter, iter->mPrev, val, val );
        iter->mPrev = new_node->mPrev->mNext = new_node;
        return iterator( new_node, val );
    }
}

Range::iterator Range::insert( Range::iterator prev, EntityHandle val1, EntityHandle val2 )
{
    if( val1 == 0 || val1 > val2 ) return end();

    // Empty
    if( mHead.mNext == &mHead )
    {
        assert( prev == end() );
        PairNode* new_node = alloc_pair( &mHead, &mHead, val1, val2 );
        mHead.mNext = mHead.mPrev = new_node;
        return iterator( mHead.mNext, val1 );
    }

    PairNode* iter = prev.mNode;
    // If iterator is at end, set it to last.
    // Thus if the hint was to append, we start searching
    // at the end of the list.
    if( iter == &mHead ) iter = mHead.mPrev;
    // if hint (prev) is past insert position, reset it to the beginning.
    if( iter != &mHead && iter->first > val2 + 1 ) iter = mHead.mNext;

    // If hint is bogus then search backwards
    while( iter != mHead.mNext && iter->mPrev->second >= val1 - 1 )
        iter = iter->mPrev;

    // Input range is before beginning?
    if( iter->mPrev == &mHead && val2 < iter->first - 1 )
    {
        PairNode* new_node = alloc_pair( iter, &mHead, val1, val2 );
        mHead.mNext = iter->mPrev = new_node;
        return iterator( mHead.mNext, val1 );
    }

    // Find first intersecting list entry, or the next entry
    // if none intersects.
    while( iter != &mHead && iter->second + 1 < val1 )
        iter = iter->mNext;

    // Need to insert new pair (don't intersect any existing pair)?
    if( iter == &mHead || iter->first - 1 > val2 )
    {
        PairNode* new_node = alloc_pair( iter, iter->mPrev, val1, val2 );
        iter->mPrev = iter->mPrev->mNext = new_node;
        return iterator( iter->mPrev, val1 );
    }

    // Make the first intersecting pair the union of itself with [val1,val2]
    if( iter->first > val1 ) iter->first = val1;
    if( iter->second >= val2 ) return iterator( iter, val1 );
    iter->second = val2;

    // Merge any remaining pairs that intersect [val1,val2]
    while( iter->mNext != &mHead && iter->mNext->first <= val2 + 1 )
    {
        PairNode* dead     = iter->mNext;
        iter->mNext        = dead->mNext;
        dead->mNext->mPrev = iter;

        if( dead->second > val2 ) iter->second = dead->second;
        free_pair( dead );
    }

    return iterator( iter, val1 );
}

/*!
  erases an item from this list and returns an iterator to the next item
*/

Range::iterator Range::erase( iterator iter )
{
    // one of a few things could happen
    // 1. shrink a range
    // 2. split a range
    // 3. remove a range

    if( iter == end() ) return end();

    // the iterator most likely to be returned
    iterator new_iter = iter;
    ++new_iter;

    PairNode* kter = iter.mNode;

    // just remove the range
    if( kter->first == kter->second )
    {
        kter->mNext->mPrev = kter->mPrev;
        kter->mPrev->mNext = kter->mNext;
        free_pair( kter );
        return new_iter;
    }
    // shrink it
    else if( kter->first == iter.mValue )
    {
        kter->first++;
        return new_iter;
    }
    // shrink it the other way
    else if( kter->second == iter.mValue )
    {
        kter->second--;
        return new_iter;
    }
    // split the range
    else
    {
        PairNode* new_node     = alloc_pair( iter.mNode->mNext, iter.mNode, iter.mValue + 1, kter->second );
        new_node->mPrev->mNext = new_node->mNext->mPrev = new_node;
        iter.mNode->second                              = iter.mValue - 1;
        new_iter                                        = const_iterator( new_node, new_node->first );
        return new_iter;
    }
}

//! remove a range of items from the list
Range::iterator Range::erase( iterator iter1, iterator iter2 )
{
    iterator result;

    if( iter1.mNode == iter2.mNode )
    {
        if( iter2.mValue <= iter1.mValue )
        {
            // empty range OK, otherwise invalid input
            return iter2;
        }

        // If both iterators reference the same pair node, then
        // we're either removing values from the front of the
        // node or splitting the node.  We can never be removing
        // the last value in the node in this case because iter2
        // points *after* the last entry to be removed.

        PairNode* node = iter1.mNode;
        if( iter1.mValue == node->first )
        {
            node->first = iter2.mValue;
            result      = iter2;
        }
        else
        {
            PairNode* new_node     = alloc_pair( node->mNext, node, iter2.mValue, node->second );
            new_node->mNext->mPrev = new_node;
            new_node->mPrev->mNext = new_node;
            node->second           = iter1.mValue - 1;
            result                 = iterator( new_node, new_node->first );
        }
    }
    else
    {
        if( iter1.mNode == &mHead ) return iter1;
        PairNode* dn = iter1.mNode;
        if( iter1.mValue > dn->first )
        {
            dn->second = iter1.mValue - 1;
            dn         = dn->mNext;
        }
        if( iter2.mNode != &mHead ) iter2.mNode->first = iter2.mValue;
        while( dn != iter2.mNode )
        {
            PairNode* dead = dn;
            dn             = dn->mNext;

            dead->mPrev->mNext = dead->mNext;
            dead->mNext->mPrev = dead->mPrev;
            // dead->mPrev = dead->mNext = 0;
            delete_pair_node( dead );
        }

        result = iter2;
    }

    return result;
}

void Range::delete_pair_node( PairNode* node )
{
    if( node != &mHead )
    {  // pop_front() and pop_back() rely on this check
        node->mPrev->mNext = node->mNext;
        node->mNext->mPrev = node->mPrev;
        free_pair( node );
    }
}

//! remove first entity from range
EntityHandle Range::pop_front()
{
    EntityHandle retval = front();
    if( mHead.mNext->first == mHead.mNext->second )  // need to remove pair from range
        delete_pair_node( mHead.mNext );
    else
        ++( mHead.mNext->first );  // otherwise just adjust start value of pair

    return retval;
}

//! remove last entity from range
EntityHandle Range::pop_back()
{
    EntityHandle retval = back();
    if( mHead.mPrev->first == mHead.mPrev->second )  // need to remove pair from range
        delete_pair_node( mHead.mPrev );
    else
        --( mHead.mPrev->second );  // otherwise just adjust end value of pair

    return retval;
}

/*!
  finds a value in the list.
  this method is preferred over other algorithms because
  it can be found faster this way.
*/
Range::const_iterator Range::find( EntityHandle val ) const
{
    // iterator through the list
    PairNode* iter = mHead.mNext;
    for( ; iter != &mHead && ( val > iter->second ); iter = iter->mNext )
        ;
    return ( ( iter->second >= val ) && ( iter->first <= val ) ) ? const_iterator( iter, val ) : end();
}

/*!
  merges another Range with this one
*/

void Range::insert( Range::const_iterator begini, Range::const_iterator endi )
{
    if( begini == endi ) return;

    PairNode* node = begini.mNode;
    if( endi.mNode == node )
    {
        insert( *begini, ( *endi ) - 1 );
        return;
    }

    Range::iterator hint = insert( *begini, node->second );
    node                 = node->mNext;
    while( node != endi.mNode )
    {
        hint = insert( hint, node->first, node->second );
        node = node->mNext;
    }

    if( *endi > node->first )
    {
        if( *endi <= node->second )
            insert( hint, node->first, *(endi)-1 );
        else
            insert( hint, node->first, node->second );
    }
}

#include <algorithm>

// checks the range to make sure everything is A-Ok.
void Range::sanity_check() const<--- The function 'sanity_check' is never used.
{
    if( empty() ) return;

    const PairNode* node = mHead.mNext;
    std::vector< const PairNode* > seen_before;
    bool stop_it = false;

    for( ; stop_it == false; node = node->mNext )
    {
        // have we seen this node before?
        assert( std::find( seen_before.begin(), seen_before.end(), node ) == seen_before.end() );
        seen_before.push_back( node );

        // is the connection correct?
        assert( node->mNext->mPrev == node );

        // are the values right?
        assert( node->first <= node->second );
        if( node != &mHead && node->mPrev != &mHead ) assert( node->mPrev->second < node->first );

        if( node == &mHead ) stop_it = true;
    }
}

const std::string Range::str_rep( const char* indent_prefix ) const
{
    std::stringstream str_stream;
    std::string indent_prefix_str;
    if( NULL != indent_prefix )
    {
        indent_prefix_str += indent_prefix;
    }

    if( empty() )
    {
        str_stream << indent_prefix_str << "\tempty" << std::endl;
        return str_stream.str().c_str();
    }

    for( const_pair_iterator i = const_pair_begin(); i != const_pair_end(); ++i )
    {
        EntityType t1 = TYPE_FROM_HANDLE( i->first );
        EntityType t2 = TYPE_FROM_HANDLE( i->second );

        str_stream << indent_prefix_str << "\t" << CN::EntityTypeName( t1 ) << " " << ID_FROM_HANDLE( i->first );
        if( i->first != i->second )
        {
            str_stream << " - ";
            if( t1 != t2 ) str_stream << CN::EntityTypeName( t2 ) << " ";
            str_stream << ID_FROM_HANDLE( i->second );
        }
        str_stream << std::endl;
    }

    return str_stream.str();
}

void Range::print( std::ostream& stream, const char* indent_prefix ) const
{
    stream << str_rep( indent_prefix );
}

// for debugging
void Range::print( const char* indent_prefix ) const
{
    print( std::cout, indent_prefix );
}

// intersect two ranges, placing the results in the return range
#define MAX( a, b ) ( ( a ) < ( b ) ? ( b ) : ( a ) )
#define MIN( a, b ) ( ( a ) > ( b ) ? ( b ) : ( a ) )
Range intersect( const Range& range1, const Range& range2 )
{
    Range::const_pair_iterator r_it[2] = { range1.const_pair_begin(), range2.const_pair_begin() };
    EntityHandle low_it, high_it;

    Range lhs;
    Range::iterator hint = lhs.begin();

    // terminate the while loop when at least one "start" iterator is at the
    // end of the list
    while( r_it[0] != range1.end() && r_it[1] != range2.end() )
    {

        if( r_it[0]->second < r_it[1]->first )
            // 1st subrange completely below 2nd subrange
            ++r_it[0];
        else if( r_it[1]->second < r_it[0]->first )
            // 2nd subrange completely below 1st subrange
            ++r_it[1];

        else
        {
            // else ranges overlap; first find greater start and lesser end
            low_it  = MAX( r_it[0]->first, r_it[1]->first );
            high_it = MIN( r_it[0]->second, r_it[1]->second );

            // insert into result
            hint = lhs.insert( hint, low_it, high_it );

            // now find bounds of this insertion and increment corresponding iterator
            if( high_it == r_it[0]->second ) ++r_it[0];
            if( high_it == r_it[1]->second ) ++r_it[1];
        }
    }

    return lhs;
}

Range subtract( const Range& range1, const Range& range2 )
{
    const bool braindead = false;

    if( braindead )
    {
        // brain-dead implementation right now
        Range res( range1 );
        for( Range::const_iterator rit = range2.begin(); rit != range2.end(); ++rit )
            res.erase( *rit );

        return res;
    }
    else
    {
        Range lhs( range1 );

        Range::pair_iterator r_it0       = lhs.pair_begin();
        Range::const_pair_iterator r_it1 = range2.const_pair_begin();

        // terminate the while loop when at least one "start" iterator is at the
        // end of the list
        while( r_it0 != lhs.end() && r_it1 != range2.end() )
        {
            // case a: pair wholly within subtracted pair
            if( r_it0->first >= r_it1->first && r_it0->second <= r_it1->second )
            {
                Range::PairNode* rtmp = r_it0.node();
                ++r_it0;
                lhs.delete_pair_node( rtmp );
            }
            // case b: pair overlaps upper part of subtracted pair
            else if( r_it0->first <= r_it1->second && r_it0->first >= r_it1->first )
            {
                r_it0->first = r_it1->second + 1;
                ++r_it1;
            }
            // case c: pair overlaps lower part of subtracted pair
            else if( r_it0->second >= r_it1->first && r_it0->second <= r_it1->second )
            {
                r_it0->second = r_it1->first - 1;
                ++r_it0;
            }
            // case d: pair completely surrounds subtracted pair
            else if( r_it0->first < r_it1->first && r_it0->second > r_it1->second )
            {
                Range::PairNode* new_node =
                    alloc_pair( r_it0.node(), r_it0.node()->mPrev, r_it0->first, r_it1->first - 1 );
                new_node->mPrev->mNext = new_node->mNext->mPrev = new_node;
                r_it0.node()->first                             = r_it1->second + 1;
                ++r_it1;
            }
            else
            {
                while( r_it0->second < r_it1->first && r_it0 != lhs.end() )
                    ++r_it0;
                if( r_it0 == lhs.end() ) break;
                while( r_it1->second < r_it0->first && r_it1 != range2.end() )
                    ++r_it1;
            }
        }

        return lhs;
    }
}

Range& Range::operator-=( const Range& range2 )
{
    const bool braindead = false;

    if( braindead )
    {
        // brain-dead implementation right now
        Range res( *this );
        for( Range::const_iterator rit = range2.begin(); rit != range2.end(); ++rit )
            res.erase( *rit );

        return *this;
    }
    else
    {
        Range::pair_iterator r_it0       = this->pair_begin();
        Range::const_pair_iterator r_it1 = range2.const_pair_begin();

        // terminate the while loop when at least one "start" iterator is at the
        // end of the list
        while( r_it0 != this->end() && r_it1 != range2.end() )
        {
            // case a: pair wholly within subtracted pair
            if( r_it0->first >= r_it1->first && r_it0->second <= r_it1->second )
            {
                Range::PairNode* rtmp = r_it0.node();
                ++r_it0;
                this->delete_pair_node( rtmp );
            }
            // case b: pair overlaps upper part of subtracted pair
            else if( r_it0->first <= r_it1->second && r_it0->first >= r_it1->first )
            {
                r_it0->first = r_it1->second + 1;
                ++r_it1;
            }
            // case c: pair overlaps lower part of subtracted pair
            else if( r_it0->second >= r_it1->first && r_it0->second <= r_it1->second )
            {
                r_it0->second = r_it1->first - 1;
                ++r_it0;
            }
            // case d: pair completely surrounds subtracted pair
            else if( r_it0->first < r_it1->first && r_it0->second > r_it1->second )
            {
                Range::PairNode* new_node =
                    alloc_pair( r_it0.node(), r_it0.node()->mPrev, r_it0->first, r_it1->first - 1 );
                new_node->mPrev->mNext = new_node->mNext->mPrev = new_node;
                r_it0.node()->first                             = r_it1->second + 1;
                ++r_it1;
            }
            else
            {
                while( r_it0->second < r_it1->first && r_it0 != this->end() )
                    ++r_it0;
                if( r_it0 == this->end() ) break;
                while( r_it1->second < r_it0->first && r_it1 != range2.end() )
                    ++r_it1;
            }
        }
        return *this;
    }
}

EntityID operator-( const Range::const_iterator& it2, const Range::const_iterator& it1 )<--- Function 'operator-' argument order different: declaration 'it1, it2' definition 'it2, it1'
{
    assert( !it2.mValue || *it2 >= *it1 );
    if( it2.mNode == it1.mNode )
    {
        return *it2 - *it1;
    }

    EntityID result = it1.mNode->second - it1.mValue + 1;
    for( Range::PairNode* n = it1.mNode->mNext; n != it2.mNode; n = n->mNext )
        result += n->second - n->first + 1;
    if( it2.mValue )  // (it2.mNode != &mHead)
        result += it2.mValue - it2.mNode->first;
    return result;
}

Range::const_iterator Range::lower_bound( Range::const_iterator first, Range::const_iterator last, EntityHandle val )
{
    // Find the first pair whose end is >= val
    PairNode* iter;
    for( iter = first.mNode; iter != last.mNode; iter = iter->mNext )
    {
        if( iter->second >= val )
        {
            // This is the correct pair.  Either 'val' is in the range, or
            // the range starts before 'val' and iter->first IS the lower_bound.
            if( iter->first > val ) return const_iterator( iter, iter->first );
            return const_iterator( iter, val );
        }
    }

    if( iter->first >= val )
        return const_iterator( iter, iter->first );
    else if( *last > val )
        return const_iterator( iter, val );
    else
        return last;
}

Range::const_iterator Range::upper_bound( Range::const_iterator first, Range::const_iterator last, EntityHandle val )
{
    Range::const_iterator result = lower_bound( first, last, val );
    if( result != last && *result == val ) ++result;
    return result;
}

Range::const_iterator Range::lower_bound( EntityType type ) const
{
    int err;
    EntityHandle handle = CREATE_HANDLE( type, 0, err );
    return err ? end() : lower_bound( begin(), end(), handle );
}
Range::const_iterator Range::lower_bound( EntityType type, const_iterator first ) const
{
    int err;
    EntityHandle handle = CREATE_HANDLE( type, 0, err );
    return err ? end() : lower_bound( first, end(), handle );
}

Range::const_iterator Range::upper_bound( EntityType type ) const
{
    // if (type+1) overflows, err will be true and we return end().
    int err;
    EntityHandle handle = CREATE_HANDLE( type + 1, 0, err );
    return err ? end() : lower_bound( begin(), end(), handle );
}
Range::const_iterator Range::upper_bound( EntityType type, const_iterator first ) const
{
    // if (type+1) overflows, err will be true and we return end().
    int err;
    EntityHandle handle = CREATE_HANDLE( type + 1, 0, err );
    return err ? end() : lower_bound( first, end(), handle );
}

std::pair< Range::const_iterator, Range::const_iterator > Range::equal_range( EntityType type ) const
{
    std::pair< Range::const_iterator, Range::const_iterator > result;
    int err;
    EntityHandle handle = CREATE_HANDLE( type, 0, err );
    result.first        = err ? end() : lower_bound( begin(), end(), handle );
    // if (type+1) overflows, err will be true and we return end().
    handle        = CREATE_HANDLE( type + 1, 0, err );
    result.second = err ? end() : lower_bound( result.first, end(), handle );
    return result;
}

bool Range::all_of_type( EntityType type ) const
{
    return empty() || ( TYPE_FROM_HANDLE( front() ) == type && TYPE_FROM_HANDLE( back() ) == type );
}

bool Range::all_of_dimension( int dimension ) const
{
    return empty() || ( CN::Dimension( TYPE_FROM_HANDLE( front() ) ) == dimension &&
                        CN::Dimension( TYPE_FROM_HANDLE( back() ) ) == dimension );
}

unsigned Range::num_of_type( EntityType type ) const
{
    const_pair_iterator iter = const_pair_begin();
    while( iter != const_pair_end() && TYPE_FROM_HANDLE( ( *iter ).second ) < type )
        ++iter;

    unsigned count = 0;
    for( ; iter != const_pair_end(); ++iter )
    {
        EntityType start_type = TYPE_FROM_HANDLE( ( *iter ).first );
        EntityType end_type   = TYPE_FROM_HANDLE( ( *iter ).second );
        if( start_type > type ) break;

        EntityID sid = start_type < type ? 1 : ID_FROM_HANDLE( ( *iter ).first );
        EntityID eid = end_type > type ? MB_END_ID : ID_FROM_HANDLE( ( *iter ).second );
        count += eid - sid + 1;
    }

    return count;
}

unsigned Range::num_of_dimension( int dim ) const
{
    const_pair_iterator iter = const_pair_begin();
    while( iter != const_pair_end() && CN::Dimension( TYPE_FROM_HANDLE( ( *iter ).second ) ) < dim )
        ++iter;

    int junk;
    unsigned count = 0;
    for( ; iter != const_pair_end(); ++iter )
    {
        int start_dim = CN::Dimension( TYPE_FROM_HANDLE( ( *iter ).first ) );
        int end_dim   = CN::Dimension( TYPE_FROM_HANDLE( ( *iter ).second ) );
        if( start_dim > dim ) break;

        EntityHandle sh = start_dim < dim ? CREATE_HANDLE( CN::TypeDimensionMap[dim].first, 1, junk ) : ( *iter ).first;
        EntityHandle eh =
            end_dim > dim ? CREATE_HANDLE( CN::TypeDimensionMap[dim].second, MB_END_ID, junk ) : ( *iter ).second;
        count += eh - sh + 1;
    }

    return count;
}

//! swap the contents of this range with another one
//! THIS FUNCTION MUST NOT BE INLINED, THAT WILL ELIMINATE RANGE_EMPTY AND THIS_EMPTY
//! BY SUBSTITUTION AND THE FUNCTION WON'T WORK RIGHT!
void Range::swap( Range& range )
{
    // update next/prev nodes of head of both ranges
    bool range_empty = ( range.mHead.mNext == &( range.mHead ) );
    bool this_empty  = ( mHead.mNext == &mHead );

    range.mHead.mNext->mPrev = ( range_empty ? &( range.mHead ) : &mHead );
    range.mHead.mPrev->mNext = ( range_empty ? &( range.mHead ) : &mHead );
    mHead.mNext->mPrev       = ( this_empty ? &mHead : &( range.mHead ) );
    mHead.mPrev->mNext       = ( this_empty ? &mHead : &( range.mHead ) );

    // switch data in head nodes of both ranges
    PairNode *range_next = range.mHead.mNext, *range_prev = range.mHead.mPrev;
    range.mHead.mNext = ( this_empty ? &( range.mHead ) : mHead.mNext );
    range.mHead.mPrev = ( this_empty ? &( range.mHead ) : mHead.mPrev );
    mHead.mNext       = ( range_empty ? &mHead : range_next );
    mHead.mPrev       = ( range_empty ? &mHead : range_prev );
}

//! return a subset of this range, by type
Range Range::subset_by_type( EntityType t ) const
{
    Range result;
    std::pair< const_iterator, const_iterator > iters = equal_range( t );
    result.insert( iters.first, iters.second );
    return result;
}

//! return a subset of this range, by type
Range Range::subset_by_dimension( int d ) const
{
    EntityHandle handle1 = CREATE_HANDLE( CN::TypeDimensionMap[d].first, 0 );
    iterator st          = lower_bound( begin(), end(), handle1 );

    iterator en;
    if( d < 4 )
    {  // dimension 4 is MBENTITYSET
        EntityHandle handle2 = CREATE_HANDLE( CN::TypeDimensionMap[d + 1].first, 0 );
        en                   = lower_bound( st, end(), handle2 );
    }
    else
    {
        en = end();
    }

    Range result;
    result.insert( st, en );
    return result;
}

bool operator==( const Range& r1, const Range& r2 )
{
    Range::const_pair_iterator i1, i2;
    i1 = r1.const_pair_begin();
    i2 = r2.const_pair_begin();
    for( ; i1 != r1.const_pair_end(); ++i1, ++i2 )
        if( i2 == r2.const_pair_end() || i1->first != i2->first || i1->second != i2->second ) return false;
    return i2 == r2.const_pair_end();
}

unsigned long Range::get_memory_use() const
{
    unsigned long result = 0;
    for( const PairNode* n = mHead.mNext; n != &mHead; n = n->mNext )
        result += sizeof( PairNode );
    return result;
}

bool Range::contains( const Range& othr ) const
{
    if( othr.empty() ) return true;
    if( empty() ) return false;

    // neither range is empty, so both have valid pair nodes
    // other than dummy mHead
    const PairNode* this_node = mHead.mNext;
    const PairNode* othr_node = othr.mHead.mNext;
    for( ;; )
    {
        // Loop while the node in this list is entirely before
        // the node in the other list.
        while( this_node->second < othr_node->first )
        {
            this_node = this_node->mNext;
            if( this_node == &mHead ) return false;
        }
        // If other node is not entirely contained in this node
        // then other list is not contained in this list
        if( this_node->first > othr_node->first ) break;
        // Loop while other node is entirely contained in this node.
        while( othr_node->second <= this_node->second )
        {
            othr_node = othr_node->mNext;
            if( othr_node == &othr.mHead ) return true;
        }
        // If other node overlapped end of this node
        if( othr_node->first <= this_node->second ) break;
    }

    // should be unreachable
    return false;
}

}  // namespace moab