1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571 | /*
* =====================================================================================
*
* Filename: TempestOnlineMapIO.cpp
*
* Description: All I/O implementations related to TempestOnlineMap
*
* Version: 1.0
* Created: 02/06/2021 02:35:41
*
* Author: Vijay S. Mahadevan (vijaysm), [email protected]
* Company: Argonne National Lab
*
* =====================================================================================
*/
#include "FiniteElementTools.h"
#include "moab/Remapping/TempestOnlineMap.hpp"
#include "moab/TupleList.hpp"
#ifdef MOAB_HAVE_NETCDFPAR
#include "netcdfcpp_par.hpp"
#else
#include "netcdfcpp.h"
#endif
#ifdef MOAB_HAVE_PNETCDF
#include <pnetcdf.h>
#define ERR_PARNC( err ) \
if( err != NC_NOERR ) \
{ \
fprintf( stderr, "Error at line %d: %s\n", __LINE__, ncmpi_strerror( err ) ); \
MPI_Abort( MPI_COMM_WORLD, 1 ); \
}
#endif
#ifdef MOAB_HAVE_MPI
#define MPI_CHK_ERR( err ) \
if( err ) \
{ \
std::cout << "MPI Failure. ErrorCode (" << ( err ) << ") "; \
std::cout << "\nMPI Aborting... \n"; \
return moab::MB_FAILURE; \
}
int moab::TempestOnlineMap::rearrange_arrays_by_dofs( const std::vector< unsigned int >& gdofmap,
DataArray1D< double >& vecFaceArea,
DataArray1D< double >& dCenterLon,
DataArray1D< double >& dCenterLat,
DataArray2D< double >& dVertexLon,
DataArray2D< double >& dVertexLat,
std::vector< int >& masks,
unsigned& N, // will have the local, after
int nv,
int& maxdof )
{
// first decide maxdof, for partitioning
unsigned int localmax = 0;
for( unsigned i = 0; i < N; i++ )
if( gdofmap[i] > localmax ) localmax = gdofmap[i];
// decide partitioning based on maxdof/size
MPI_Allreduce( &localmax, &maxdof, 1, MPI_INT, MPI_MAX, m_pcomm->comm() );
// maxdof is 0 based, so actual number is +1
// maxdof
int size_per_task = ( maxdof + 1 ) / size; // based on this, processor to process dof x is x/size_per_task
// so we decide to reorder by actual dof, such that task 0 has dofs from [0 to size_per_task), etc
moab::TupleList tl;
unsigned numr = 2 * nv + 3; // doubles: area, centerlon, center lat, nv (vertex lon, vertex lat)
tl.initialize( 3, 0, 0, numr, N ); // to proc, dof, then
tl.enableWriteAccess();
// populate
for( unsigned i = 0; i < N; i++ )
{
int gdof = gdofmap[i];
int to_proc = gdof / size_per_task;
int mask = masks[i];
if( to_proc >= size ) to_proc = size - 1; // the last ones go to last proc
int n = tl.get_n();
tl.vi_wr[3 * n] = to_proc;
tl.vi_wr[3 * n + 1] = gdof;
tl.vi_wr[3 * n + 2] = mask;
tl.vr_wr[n * numr] = vecFaceArea[i];
tl.vr_wr[n * numr + 1] = dCenterLon[i];
tl.vr_wr[n * numr + 2] = dCenterLat[i];
for( int j = 0; j < nv; j++ )
{
tl.vr_wr[n * numr + 3 + j] = dVertexLon[i][j];
tl.vr_wr[n * numr + 3 + nv + j] = dVertexLat[i][j];
}
tl.inc_n();
}
// now do the heavy communication
( m_pcomm->proc_config().crystal_router() )->gs_transfer( 1, tl, 0 );
// after communication, on each processor we should have tuples coming in
// still need to order by global dofs; then rearrange input vectors
moab::TupleList::buffer sort_buffer;
sort_buffer.buffer_init( tl.get_n() );
tl.sort( 1, &sort_buffer );
// count how many are unique, and collapse
int nb_unique = 1;
for( unsigned i = 0; i < tl.get_n() - 1; i++ )
{
if( tl.vi_wr[3 * i + 1] != tl.vi_wr[3 * i + 4] ) nb_unique++;
}
vecFaceArea.Allocate( nb_unique );
dCenterLon.Allocate( nb_unique );
dCenterLat.Allocate( nb_unique );
dVertexLon.Allocate( nb_unique, nv );
dVertexLat.Allocate( nb_unique, nv );
masks.resize( nb_unique );
int current_size = 1;
vecFaceArea[0] = tl.vr_wr[0];
dCenterLon[0] = tl.vr_wr[1];
dCenterLat[0] = tl.vr_wr[2];
masks[0] = tl.vi_wr[2];
for( int j = 0; j < nv; j++ )
{
dVertexLon[0][j] = tl.vr_wr[3 + j];
dVertexLat[0][j] = tl.vr_wr[3 + nv + j];
}
for( unsigned i = 0; i < tl.get_n() - 1; i++ )
{
int i1 = i + 1;
if( tl.vi_wr[3 * i + 1] != tl.vi_wr[3 * i + 4] )
{
vecFaceArea[current_size] = tl.vr_wr[i1 * numr];
dCenterLon[current_size] = tl.vr_wr[i1 * numr + 1];
dCenterLat[current_size] = tl.vr_wr[i1 * numr + 2];
for( int j = 0; j < nv; j++ )
{
dVertexLon[current_size][j] = tl.vr_wr[i1 * numr + 3 + j];
dVertexLat[current_size][j] = tl.vr_wr[i1 * numr + 3 + nv + j];
}
masks[current_size] = tl.vi_wr[3 * i1 + 2];
current_size++;
}
else
{
vecFaceArea[current_size - 1] += tl.vr_wr[i1 * numr]; // accumulate areas; will come here only for cgll ?
}
}
N = current_size; // or nb_unique, should be the same
return 0;
}
#endif
///////////////////////////////////////////////////////////////////////////////
moab::ErrorCode moab::TempestOnlineMap::WriteParallelMap( const std::string& strFilename )
{
moab::ErrorCode rval;
size_t lastindex = strFilename.find_last_of( "." );
std::string extension = strFilename.substr( lastindex + 1, strFilename.size() );
// Write the map file to disk in parallel
if( extension == "nc" )
{
/* Invoke the actual call to write the parallel map to disk in SCRIP format */
rval = this->WriteSCRIPMapFile( strFilename.c_str() );MB_CHK_ERR( rval );
}
else
{
/* Write to the parallel H5M format */
rval = this->WriteHDF5MapFile( strFilename.c_str() );MB_CHK_ERR( rval );
}
return rval;
}
///////////////////////////////////////////////////////////////////////////////
moab::ErrorCode moab::TempestOnlineMap::WriteSCRIPMapFile( const std::string& strFilename )
{
NcError error( NcError::silent_nonfatal );
#ifdef MOAB_HAVE_NETCDFPAR
bool is_independent = true;
ParNcFile ncMap( m_pcomm->comm(), MPI_INFO_NULL, strFilename.c_str(), NcFile::Replace, NcFile::Netcdf4 );
// ParNcFile ncMap( m_pcomm->comm(), MPI_INFO_NULL, strFilename.c_str(), NcmpiFile::replace, NcmpiFile::classic5 );
#else
NcFile ncMap( strFilename.c_str(), NcFile::Replace );
#endif
if( !ncMap.is_valid() )
{
_EXCEPTION1( "Unable to open output map file \"%s\"", strFilename.c_str() );
}
// Attributes
ncMap.add_att( "Title", "MOAB-TempestRemap Online Regridding Weight Generator" );
/**
* Need to get the global maximum of number of vertices per element
* Key issue is that when calling InitializeCoordinatesFromMeshFV, the allocation for
*dVertexLon/dVertexLat are made based on the maximum vertices in the current process. However,
*when writing this out, other processes may have a different size for the same array. This is
*hence a mess to consolidate in h5mtoscrip eventually.
**/
/* Let us compute all relevant data for the current original source mesh on the process */
DataArray1D< double > vecSourceFaceArea, vecTargetFaceArea;
DataArray1D< double > dSourceCenterLon, dSourceCenterLat, dTargetCenterLon, dTargetCenterLat;
DataArray2D< double > dSourceVertexLon, dSourceVertexLat, dTargetVertexLon, dTargetVertexLat;
if( m_srcDiscType == DiscretizationType_FV || m_srcDiscType == DiscretizationType_PCLOUD )
{
this->InitializeCoordinatesFromMeshFV(
*m_meshInput, dSourceCenterLon, dSourceCenterLat, dSourceVertexLon, dSourceVertexLat,
( this->m_remapper->m_source_type == moab::TempestRemapper::RLL ), /* fLatLon = false */
m_remapper->max_source_edges );
vecSourceFaceArea.Allocate( m_meshInput->vecFaceArea.GetRows() );
for( unsigned i = 0; i < m_meshInput->vecFaceArea.GetRows(); ++i )
vecSourceFaceArea[i] = m_meshInput->vecFaceArea[i];
}
else
{
DataArray3D< double > dataGLLJacobianSrc;
this->InitializeCoordinatesFromMeshFE( *m_meshInput, m_nDofsPEl_Src, dataGLLNodesSrc, dSourceCenterLon,
dSourceCenterLat, dSourceVertexLon, dSourceVertexLat );
// Generate the continuous Jacobian for input mesh
GenerateMetaData( *m_meshInput, m_nDofsPEl_Src, false /* fBubble */, dataGLLNodesSrc, dataGLLJacobianSrc );
if( m_srcDiscType == DiscretizationType_CGLL )
{
GenerateUniqueJacobian( dataGLLNodesSrc, dataGLLJacobianSrc, vecSourceFaceArea );
}
else
{
GenerateDiscontinuousJacobian( dataGLLJacobianSrc, vecSourceFaceArea );
}
}
if( m_destDiscType == DiscretizationType_FV || m_destDiscType == DiscretizationType_PCLOUD )
{
this->InitializeCoordinatesFromMeshFV(
*m_meshOutput, dTargetCenterLon, dTargetCenterLat, dTargetVertexLon, dTargetVertexLat,
( this->m_remapper->m_target_type == moab::TempestRemapper::RLL ), /* fLatLon = false */
m_remapper->max_target_edges );
vecTargetFaceArea.Allocate( m_meshOutput->vecFaceArea.GetRows() );
for( unsigned i = 0; i < m_meshOutput->vecFaceArea.GetRows(); ++i )
{
vecTargetFaceArea[i] = m_meshOutput->vecFaceArea[i];
}
}
else
{
DataArray3D< double > dataGLLJacobianDest;
this->InitializeCoordinatesFromMeshFE( *m_meshOutput, m_nDofsPEl_Dest, dataGLLNodesDest, dTargetCenterLon,
dTargetCenterLat, dTargetVertexLon, dTargetVertexLat );
// Generate the continuous Jacobian for input mesh
GenerateMetaData( *m_meshOutput, m_nDofsPEl_Dest, false /* fBubble */, dataGLLNodesDest, dataGLLJacobianDest );
if( m_destDiscType == DiscretizationType_CGLL )
{
GenerateUniqueJacobian( dataGLLNodesDest, dataGLLJacobianDest, vecTargetFaceArea );
}
else
{
GenerateDiscontinuousJacobian( dataGLLJacobianDest, vecTargetFaceArea );
}
}
// Map dimensions
unsigned nA = ( vecSourceFaceArea.GetRows() );
unsigned nB = ( vecTargetFaceArea.GetRows() );
std::vector< int > masksA, masksB;
ErrorCode rval = m_remapper->GetIMasks( moab::Remapper::SourceMesh, masksA );MB_CHK_SET_ERR( rval, "Trouble getting masks for source" );
rval = m_remapper->GetIMasks( moab::Remapper::TargetMesh, masksB );MB_CHK_SET_ERR( rval, "Trouble getting masks for target" );
// Number of nodes per Face
int nSourceNodesPerFace = dSourceVertexLon.GetColumns();
int nTargetNodesPerFace = dTargetVertexLon.GetColumns();
// if source or target cells have triangles at poles, center of those triangles need to come from
// the original quad, not from center in 3d, converted to 2d again
// start copy OnlineMap.cpp tempestremap
// right now, do this only for source mesh; copy the logic for target mesh
for( unsigned i = 0; i < nA; i++ )
{
const Face& face = m_meshInput->faces[i];
int nNodes = face.edges.size();
int indexNodeAtPole = -1;
if( 3 == nNodes ) // check if one node at the poles
{
for( int j = 0; j < nNodes; j++ )
if( fabs( fabs( dSourceVertexLat[i][j] ) - 90.0 ) < 1.0e-12 )
{
indexNodeAtPole = j;
break;
}
}
if( indexNodeAtPole < 0 ) continue; // continue i loop, do nothing
// recompute center of cell, from 3d data; add one 2 nodes at pole, and average
int nodeAtPole = face[indexNodeAtPole]; // use the overloaded operator
Node nodePole = m_meshInput->nodes[nodeAtPole];
Node newCenter = nodePole * 2;
for( int j = 1; j < nNodes; j++ )
{
int indexi = ( indexNodeAtPole + j ) % nNodes; // nNodes is 3 !
const Node& node = m_meshInput->nodes[face[indexi]];
newCenter = newCenter + node;
}
newCenter = newCenter * 0.25;
newCenter = newCenter.Normalized();
#ifdef VERBOSE
double iniLon = dSourceCenterLon[i], iniLat = dSourceCenterLat[i];
#endif
// dSourceCenterLon, dSourceCenterLat
XYZtoRLL_Deg( newCenter.x, newCenter.y, newCenter.z, dSourceCenterLon[i], dSourceCenterLat[i] );
#ifdef VERBOSE
std::cout << " modify center of triangle from " << iniLon << " " << iniLat << " to " << dSourceCenterLon[i]
<< " " << dSourceCenterLat[i] << "\n";
#endif
}
// first move data if in parallel
#if defined( MOAB_HAVE_MPI )
int max_row_dof, max_col_dof; // output; arrays will be re-distributed in chunks [maxdof/size]
// if (size > 1)
{
int ierr = rearrange_arrays_by_dofs( srccol_gdofmap, vecSourceFaceArea, dSourceCenterLon, dSourceCenterLat,
dSourceVertexLon, dSourceVertexLat, masksA, nA, nSourceNodesPerFace,
max_col_dof ); // now nA will be close to maxdof/size
if( ierr != 0 )
{
_EXCEPTION1( "Unable to arrange source data %d ", nA );
}
// rearrange target data: (nB)
//
ierr = rearrange_arrays_by_dofs( row_gdofmap, vecTargetFaceArea, dTargetCenterLon, dTargetCenterLat,
dTargetVertexLon, dTargetVertexLat, masksB, nB, nTargetNodesPerFace,
max_row_dof ); // now nA will be close to maxdof/size
if( ierr != 0 )
{
_EXCEPTION1( "Unable to arrange target data %d ", nB );
}
}
#endif
// Number of non-zeros in the remap matrix operator
int nS = m_weightMatrix.nonZeros();
#if defined( MOAB_HAVE_MPI ) && defined( MOAB_HAVE_NETCDFPAR )
int locbuf[5] = { (int)nA, (int)nB, nS, nSourceNodesPerFace, nTargetNodesPerFace };
int offbuf[3] = { 0, 0, 0 };
int globuf[5] = { 0, 0, 0, 0, 0 };
MPI_Scan( locbuf, offbuf, 3, MPI_INT, MPI_SUM, m_pcomm->comm() );
MPI_Allreduce( locbuf, globuf, 3, MPI_INT, MPI_SUM, m_pcomm->comm() );
MPI_Allreduce( &locbuf[3], &globuf[3], 2, MPI_INT, MPI_MAX, m_pcomm->comm() );
// MPI_Scan is inclusive of data in current rank; modify accordingly.
offbuf[0] -= nA;
offbuf[1] -= nB;
offbuf[2] -= nS;
#else
int offbuf[3] = { 0, 0, 0 };
int globuf[5] = { (int)nA, (int)nB, nS, nSourceNodesPerFace, nTargetNodesPerFace };
#endif
// Write output dimensions entries
unsigned nSrcGridDims = ( m_vecSourceDimSizes.size() );
unsigned nDstGridDims = ( m_vecTargetDimSizes.size() );
NcDim* dimSrcGridRank = ncMap.add_dim( "src_grid_rank", nSrcGridDims );
NcDim* dimDstGridRank = ncMap.add_dim( "dst_grid_rank", nDstGridDims );
NcVar* varSrcGridDims = ncMap.add_var( "src_grid_dims", ncInt, dimSrcGridRank );
NcVar* varDstGridDims = ncMap.add_var( "dst_grid_dims", ncInt, dimDstGridRank );
#ifdef MOAB_HAVE_NETCDFPAR
ncMap.enable_var_par_access( varSrcGridDims, is_independent );
ncMap.enable_var_par_access( varDstGridDims, is_independent );
#endif
char szDim[64];
if( ( nSrcGridDims == 1 ) && ( m_vecSourceDimSizes[0] != (int)nA ) )
{
varSrcGridDims->put( &globuf[0], 1 );
varSrcGridDims->add_att( "name0", "num_dof" );
}
else
{
for( unsigned i = 0; i < m_vecSourceDimSizes.size(); i++ )
{
int tmp = ( i == 0 ? globuf[0] : m_vecSourceDimSizes[i] );
varSrcGridDims->set_cur( nSrcGridDims - i - 1 );
varSrcGridDims->put( &( tmp ), 1 );
}
for( unsigned i = 0; i < m_vecSourceDimSizes.size(); i++ )
{
sprintf( szDim, "name%i", i );<--- %i in format string (no. 1) requires 'int' but the argument type is 'unsigned int'.
varSrcGridDims->add_att( szDim, m_vecSourceDimNames[nSrcGridDims - i - 1].c_str() );
}
}
if( ( nDstGridDims == 1 ) && ( m_vecTargetDimSizes[0] != (int)nB ) )
{
varDstGridDims->put( &globuf[1], 1 );
varDstGridDims->add_att( "name0", "num_dof" );
}
else
{
for( unsigned i = 0; i < m_vecTargetDimSizes.size(); i++ )
{
int tmp = ( i == 0 ? globuf[1] : m_vecTargetDimSizes[i] );
varDstGridDims->set_cur( nDstGridDims - i - 1 );
varDstGridDims->put( &( tmp ), 1 );
}
for( unsigned i = 0; i < m_vecTargetDimSizes.size(); i++ )
{
sprintf( szDim, "name%i", i );<--- %i in format string (no. 1) requires 'int' but the argument type is 'unsigned int'.
varDstGridDims->add_att( szDim, m_vecTargetDimNames[nDstGridDims - i - 1].c_str() );
}
}
// Source and Target mesh resolutions
NcDim* dimNA = ncMap.add_dim( "n_a", globuf[0] );
NcDim* dimNB = ncMap.add_dim( "n_b", globuf[1] );
// Number of nodes per Face
NcDim* dimNVA = ncMap.add_dim( "nv_a", globuf[3] );
NcDim* dimNVB = ncMap.add_dim( "nv_b", globuf[4] );
// Write coordinates
NcVar* varYCA = ncMap.add_var( "yc_a", ncDouble, dimNA );
NcVar* varYCB = ncMap.add_var( "yc_b", ncDouble, dimNB );
NcVar* varXCA = ncMap.add_var( "xc_a", ncDouble, dimNA );
NcVar* varXCB = ncMap.add_var( "xc_b", ncDouble, dimNB );
NcVar* varYVA = ncMap.add_var( "yv_a", ncDouble, dimNA, dimNVA );
NcVar* varYVB = ncMap.add_var( "yv_b", ncDouble, dimNB, dimNVB );
NcVar* varXVA = ncMap.add_var( "xv_a", ncDouble, dimNA, dimNVA );
NcVar* varXVB = ncMap.add_var( "xv_b", ncDouble, dimNB, dimNVB );
// Write masks
NcVar* varMaskA = ncMap.add_var( "mask_a", ncInt, dimNA );
NcVar* varMaskB = ncMap.add_var( "mask_b", ncInt, dimNB );
#ifdef MOAB_HAVE_NETCDFPAR
ncMap.enable_var_par_access( varYCA, is_independent );
ncMap.enable_var_par_access( varYCB, is_independent );
ncMap.enable_var_par_access( varXCA, is_independent );
ncMap.enable_var_par_access( varXCB, is_independent );
ncMap.enable_var_par_access( varYVA, is_independent );
ncMap.enable_var_par_access( varYVB, is_independent );
ncMap.enable_var_par_access( varXVA, is_independent );
ncMap.enable_var_par_access( varXVB, is_independent );
ncMap.enable_var_par_access( varMaskA, is_independent );
ncMap.enable_var_par_access( varMaskB, is_independent );
#endif
varYCA->add_att( "units", "degrees" );
varYCB->add_att( "units", "degrees" );
varXCA->add_att( "units", "degrees" );
varXCB->add_att( "units", "degrees" );
varYVA->add_att( "units", "degrees" );
varYVB->add_att( "units", "degrees" );
varXVA->add_att( "units", "degrees" );
varXVB->add_att( "units", "degrees" );
// Verify dimensionality
if( dSourceCenterLon.GetRows() != nA )
{
_EXCEPTIONT( "Mismatch between dSourceCenterLon and nA" );
}
if( dSourceCenterLat.GetRows() != nA )
{
_EXCEPTIONT( "Mismatch between dSourceCenterLat and nA" );
}
if( dTargetCenterLon.GetRows() != nB )
{
_EXCEPTIONT( "Mismatch between dTargetCenterLon and nB" );
}
if( dTargetCenterLat.GetRows() != nB )
{
_EXCEPTIONT( "Mismatch between dTargetCenterLat and nB" );
}
if( dSourceVertexLon.GetRows() != nA )
{
_EXCEPTIONT( "Mismatch between dSourceVertexLon and nA" );
}
if( dSourceVertexLat.GetRows() != nA )
{
_EXCEPTIONT( "Mismatch between dSourceVertexLat and nA" );
}
if( dTargetVertexLon.GetRows() != nB )
{
_EXCEPTIONT( "Mismatch between dTargetVertexLon and nB" );
}
if( dTargetVertexLat.GetRows() != nB )
{
_EXCEPTIONT( "Mismatch between dTargetVertexLat and nB" );
}
varYCA->set_cur( (long)offbuf[0] );
varYCA->put( &( dSourceCenterLat[0] ), nA );
varYCB->set_cur( (long)offbuf[1] );
varYCB->put( &( dTargetCenterLat[0] ), nB );
varXCA->set_cur( (long)offbuf[0] );
varXCA->put( &( dSourceCenterLon[0] ), nA );
varXCB->set_cur( (long)offbuf[1] );
varXCB->put( &( dTargetCenterLon[0] ), nB );
varYVA->set_cur( (long)offbuf[0] );
varYVA->put( &( dSourceVertexLat[0][0] ), nA, nSourceNodesPerFace );
varYVB->set_cur( (long)offbuf[1] );
varYVB->put( &( dTargetVertexLat[0][0] ), nB, nTargetNodesPerFace );
varXVA->set_cur( (long)offbuf[0] );
varXVA->put( &( dSourceVertexLon[0][0] ), nA, nSourceNodesPerFace );
varXVB->set_cur( (long)offbuf[1] );
varXVB->put( &( dTargetVertexLon[0][0] ), nB, nTargetNodesPerFace );
varMaskA->set_cur( (long)offbuf[0] );
varMaskA->put( &( masksA[0] ), nA );
varMaskB->set_cur( (long)offbuf[1] );
varMaskB->put( &( masksB[0] ), nB );
// Write areas
NcVar* varAreaA = ncMap.add_var( "area_a", ncDouble, dimNA );
#ifdef MOAB_HAVE_NETCDFPAR
ncMap.enable_var_par_access( varAreaA, is_independent );
#endif
varAreaA->set_cur( (long)offbuf[0] );
varAreaA->put( &( vecSourceFaceArea[0] ), nA );
NcVar* varAreaB = ncMap.add_var( "area_b", ncDouble, dimNB );
#ifdef MOAB_HAVE_NETCDFPAR
ncMap.enable_var_par_access( varAreaB, is_independent );
#endif
varAreaB->set_cur( (long)offbuf[1] );
varAreaB->put( &( vecTargetFaceArea[0] ), nB );
// Write SparseMatrix entries
DataArray1D< int > vecRow( nS );
DataArray1D< int > vecCol( nS );
DataArray1D< double > vecS( nS );
DataArray1D< double > dFracA( nA );
DataArray1D< double > dFracB( nB );
moab::TupleList tlValRow, tlValCol;
unsigned numr = 1; //
// value has to be sent to processor row/nB for for fracA and col/nA for fracB
// vecTargetArea (indexRow ) has to be sent for fracA (index col?)
// vecTargetFaceArea will have to be sent to col index, with its index !
tlValRow.initialize( 2, 0, 0, numr, nS ); // to proc(row), global row , value
tlValCol.initialize( 3, 0, 0, numr, nS ); // to proc(col), global row / col, value
tlValRow.enableWriteAccess();
tlValCol.enableWriteAccess();
/*
*
dFracA[ col ] += val / vecSourceFaceArea[ col ] * vecTargetFaceArea[ row ];
dFracB[ row ] += val ;
*/
int offset = 0;
#if defined( MOAB_HAVE_MPI )
int nAbase = ( max_col_dof + 1 ) / size; // it is nA, except last rank ( == size - 1 )
int nBbase = ( max_row_dof + 1 ) / size; // it is nB, except last rank ( == size - 1 )
#endif
for( int i = 0; i < m_weightMatrix.outerSize(); ++i )
{
for( WeightMatrix::InnerIterator it( m_weightMatrix, i ); it; ++it )
{
vecRow[offset] = 1 + this->GetRowGlobalDoF( it.row() ); // row index
vecCol[offset] = 1 + this->GetColGlobalDoF( it.col() ); // col index
vecS[offset] = it.value(); // value
#if defined( MOAB_HAVE_MPI )
{
// value M(row, col) will contribute to procRow and procCol values for fracA and fracB
int procRow = ( vecRow[offset] - 1 ) / nBbase;
if( procRow >= size ) procRow = size - 1;
int procCol = ( vecCol[offset] - 1 ) / nAbase;
if( procCol >= size ) procCol = size - 1;
int nrInd = tlValRow.get_n();
tlValRow.vi_wr[2 * nrInd] = procRow;
tlValRow.vi_wr[2 * nrInd + 1] = vecRow[offset] - 1;
tlValRow.vr_wr[nrInd] = vecS[offset];
tlValRow.inc_n();
int ncInd = tlValCol.get_n();
tlValCol.vi_wr[3 * ncInd] = procCol;
tlValCol.vi_wr[3 * ncInd + 1] = vecRow[offset] - 1;
tlValCol.vi_wr[3 * ncInd + 2] = vecCol[offset] - 1; // this is column
tlValCol.vr_wr[ncInd] = vecS[offset];
tlValCol.inc_n();
}
#endif
offset++;
}
}
#if defined( MOAB_HAVE_MPI )
// need to send values for their row and col processors, to compute fractions there
// now do the heavy communication
( m_pcomm->proc_config().crystal_router() )->gs_transfer( 1, tlValCol, 0 );
( m_pcomm->proc_config().crystal_router() )->gs_transfer( 1, tlValRow, 0 );
// we have now, for example, dFracB[ row ] += val ;
// so we know that on current task, we received tlValRow
// reminder dFracA[ col ] += val / vecSourceFaceArea[ col ] * vecTargetFaceArea[ row ];
// dFracB[ row ] += val ;
for( unsigned i = 0; i < tlValRow.get_n(); i++ )
{
// int fromProc = tlValRow.vi_wr[2 * i];
int gRowInd = tlValRow.vi_wr[2 * i + 1];
int localIndexRow = gRowInd - nBbase * rank; // modulo nBbase rank is from 0 to size - 1;
double wgt = tlValRow.vr_wr[i];
assert( localIndexRow >= 0 );
assert( nB - localIndexRow > 0 );
dFracB[localIndexRow] += wgt;
}
// to compute dFracA we need vecTargetFaceArea[ row ]; we know the row, and we can get the proc we need it from
std::set< int > neededRows;
for( unsigned i = 0; i < tlValCol.get_n(); i++ )
{
int rRowInd = tlValCol.vi_wr[3 * i + 1];
neededRows.insert( rRowInd );
// we need vecTargetFaceAreaGlobal[ rRowInd ]; this exists on proc procRow
}
moab::TupleList tgtAreaReq;
tgtAreaReq.initialize( 2, 0, 0, 0, neededRows.size() );
tgtAreaReq.enableWriteAccess();
for( std::set< int >::iterator sit = neededRows.begin(); sit != neededRows.end(); sit++ )<--- Prefer prefix ++/-- operators for non-primitive types. [+]Prefix ++/-- operators should be preferred for non-primitive types. Pre-increment/decrement can be more efficient than post-increment/decrement. Post-increment/decrement usually involves keeping a copy of the previous value around and adds a little extra code.
{
int neededRow = *sit;
int procRow = neededRow / nBbase;
if( procRow >= size ) procRow = size - 1;
int nr = tgtAreaReq.get_n();
tgtAreaReq.vi_wr[2 * nr] = procRow;
tgtAreaReq.vi_wr[2 * nr + 1] = neededRow;
tgtAreaReq.inc_n();
}
( m_pcomm->proc_config().crystal_router() )->gs_transfer( 1, tgtAreaReq, 0 );
// we need to send back the tgtArea corresponding to row
moab::TupleList tgtAreaInfo; // load it with tgtArea at row
tgtAreaInfo.initialize( 2, 0, 0, 1, tgtAreaReq.get_n() );
tgtAreaInfo.enableWriteAccess();
for( unsigned i = 0; i < tgtAreaReq.get_n(); i++ )
{
int from_proc = tgtAreaReq.vi_wr[2 * i];
int row = tgtAreaReq.vi_wr[2 * i + 1];
int locaIndexRow = row - rank * nBbase;
double areaToSend = vecTargetFaceArea[locaIndexRow];
// int remoteIndex = tgtAreaReq.vi_wr[3*i + 2] ;
tgtAreaInfo.vi_wr[2 * i] = from_proc; // send back requested info
tgtAreaInfo.vi_wr[2 * i + 1] = row;
tgtAreaInfo.vr_wr[i] = areaToSend; // this will be tgt area at row
tgtAreaInfo.inc_n();
}
( m_pcomm->proc_config().crystal_router() )->gs_transfer( 1, tgtAreaInfo, 0 );
std::map< int, double > areaAtRow;
for( unsigned i = 0; i < tgtAreaInfo.get_n(); i++ )
{
// we have received from proc, value for row !
int row = tgtAreaInfo.vi_wr[2 * i + 1];
areaAtRow[row] = tgtAreaInfo.vr_wr[i];
}
// we have now for rows the
// it is ordered by index, so:
// now compute reminder dFracA[ col ] += val / vecSourceFaceArea[ col ] * vecTargetFaceArea[ row ];
// tgtAreaInfo will have at index i the area we need (from row)
// there should be an easier way :(
for( unsigned i = 0; i < tlValCol.get_n(); i++ )
{
int rRowInd = tlValCol.vi_wr[3 * i + 1];
int colInd = tlValCol.vi_wr[3 * i + 2];
double val = tlValCol.vr_wr[i];
int localColInd = colInd - rank * nAbase; // < local nA
// we need vecTargetFaceAreaGlobal[ rRowInd ]; this exists on proc procRow
auto itMap = areaAtRow.find( rRowInd ); // it should be different from end
if( itMap != areaAtRow.end() )
{
double areaRow = itMap->second; // we fished a lot for this !
dFracA[localColInd] += val / vecSourceFaceArea[localColInd] * areaRow;
}
}
#endif
// Load in data
NcDim* dimNS = ncMap.add_dim( "n_s", globuf[2] );
NcVar* varRow = ncMap.add_var( "row", ncInt, dimNS );
NcVar* varCol = ncMap.add_var( "col", ncInt, dimNS );
NcVar* varS = ncMap.add_var( "S", ncDouble, dimNS );
#ifdef MOAB_HAVE_NETCDFPAR
ncMap.enable_var_par_access( varRow, is_independent );
ncMap.enable_var_par_access( varCol, is_independent );
ncMap.enable_var_par_access( varS, is_independent );
#endif
varRow->set_cur( (long)offbuf[2] );
varRow->put( vecRow, nS );
varCol->set_cur( (long)offbuf[2] );
varCol->put( vecCol, nS );
varS->set_cur( (long)offbuf[2] );
varS->put( &( vecS[0] ), nS );
// Calculate and write fractional coverage arrays
NcVar* varFracA = ncMap.add_var( "frac_a", ncDouble, dimNA );
#ifdef MOAB_HAVE_NETCDFPAR
ncMap.enable_var_par_access( varFracA, is_independent );
#endif
varFracA->add_att( "name", "fraction of target coverage of source dof" );
varFracA->add_att( "units", "unitless" );
varFracA->set_cur( (long)offbuf[0] );
varFracA->put( &( dFracA[0] ), nA );
NcVar* varFracB = ncMap.add_var( "frac_b", ncDouble, dimNB );
#ifdef MOAB_HAVE_NETCDFPAR
ncMap.enable_var_par_access( varFracB, is_independent );
#endif
varFracB->add_att( "name", "fraction of source coverage of target dof" );
varFracB->add_att( "units", "unitless" );
varFracB->set_cur( (long)offbuf[1] );
varFracB->put( &( dFracB[0] ), nB );
// Add global attributes
// std::map<std::string, std::string>::const_iterator iterAttributes =
// mapAttributes.begin();
// for (; iterAttributes != mapAttributes.end(); iterAttributes++) {
// ncMap.add_att(
// iterAttributes->first.c_str(),
// iterAttributes->second.c_str());
// }
ncMap.close();
return moab::MB_SUCCESS;
}
///////////////////////////////////////////////////////////////////////////////
moab::ErrorCode moab::TempestOnlineMap::WriteHDF5MapFile( const std::string& strOutputFile )
{
moab::ErrorCode rval;
/**
* Need to get the global maximum of number of vertices per element
* Key issue is that when calling InitializeCoordinatesFromMeshFV, the allocation for
*dVertexLon/dVertexLat are made based on the maximum vertices in the current process. However,
*when writing this out, other processes may have a different size for the same array. This is
*hence a mess to consolidate in h5mtoscrip eventually.
**/
/* Let us compute all relevant data for the current original source mesh on the process */
DataArray1D< double > vecSourceFaceArea, vecTargetFaceArea;
DataArray1D< double > dSourceCenterLon, dSourceCenterLat, dTargetCenterLon, dTargetCenterLat;
DataArray2D< double > dSourceVertexLon, dSourceVertexLat, dTargetVertexLon, dTargetVertexLat;
if( m_srcDiscType == DiscretizationType_FV || m_srcDiscType == DiscretizationType_PCLOUD )
{
this->InitializeCoordinatesFromMeshFV(
*m_meshInput, dSourceCenterLon, dSourceCenterLat, dSourceVertexLon, dSourceVertexLat,
( this->m_remapper->m_source_type == moab::TempestRemapper::RLL ) /* fLatLon = false */,
m_remapper->max_source_edges );
vecSourceFaceArea.Allocate( m_meshInput->vecFaceArea.GetRows() );
for( unsigned i = 0; i < m_meshInput->vecFaceArea.GetRows(); ++i )
vecSourceFaceArea[i] = m_meshInput->vecFaceArea[i];
}
else
{
DataArray3D< double > dataGLLJacobianSrc;
this->InitializeCoordinatesFromMeshFE( *m_meshInput, m_nDofsPEl_Src, dataGLLNodesSrc, dSourceCenterLon,
dSourceCenterLat, dSourceVertexLon, dSourceVertexLat );
// Generate the continuous Jacobian for input mesh
GenerateMetaData( *m_meshInput, m_nDofsPEl_Src, false /* fBubble */, dataGLLNodesSrc, dataGLLJacobianSrc );
if( m_srcDiscType == DiscretizationType_CGLL )
{
GenerateUniqueJacobian( dataGLLNodesSrc, dataGLLJacobianSrc, m_meshInput->vecFaceArea );
}
else
{
GenerateDiscontinuousJacobian( dataGLLJacobianSrc, m_meshInput->vecFaceArea );
}
vecSourceFaceArea.Allocate( m_meshInput->faces.size() * m_nDofsPEl_Src * m_nDofsPEl_Src );
int offset = 0;
for( size_t e = 0; e < m_meshInput->faces.size(); e++ )
{
for( int s = 0; s < m_nDofsPEl_Src; s++ )
{
for( int t = 0; t < m_nDofsPEl_Src; t++ )
{
vecSourceFaceArea[srccol_dtoc_dofmap[offset + s * m_nDofsPEl_Src + t]] =
dataGLLJacobianSrc[s][t][e];
}
}
offset += m_nDofsPEl_Src * m_nDofsPEl_Src;
}
}
if( m_destDiscType == DiscretizationType_FV || m_destDiscType == DiscretizationType_PCLOUD )
{
this->InitializeCoordinatesFromMeshFV(
*m_meshOutput, dTargetCenterLon, dTargetCenterLat, dTargetVertexLon, dTargetVertexLat,
( this->m_remapper->m_target_type == moab::TempestRemapper::RLL ) /* fLatLon = false */,
m_remapper->max_target_edges );
vecTargetFaceArea.Allocate( m_meshOutput->vecFaceArea.GetRows() );
for( unsigned i = 0; i < m_meshOutput->vecFaceArea.GetRows(); ++i )
vecTargetFaceArea[i] = m_meshOutput->vecFaceArea[i];
}
else
{
DataArray3D< double > dataGLLJacobianDest;
this->InitializeCoordinatesFromMeshFE( *m_meshOutput, m_nDofsPEl_Dest, dataGLLNodesDest, dTargetCenterLon,
dTargetCenterLat, dTargetVertexLon, dTargetVertexLat );
// Generate the continuous Jacobian for input mesh
GenerateMetaData( *m_meshOutput, m_nDofsPEl_Dest, false /* fBubble */, dataGLLNodesDest, dataGLLJacobianDest );
if( m_destDiscType == DiscretizationType_CGLL )
{
GenerateUniqueJacobian( dataGLLNodesDest, dataGLLJacobianDest, m_meshOutput->vecFaceArea );
}
else
{
GenerateDiscontinuousJacobian( dataGLLJacobianDest, m_meshOutput->vecFaceArea );
}
vecTargetFaceArea.Allocate( m_meshOutput->faces.size() * m_nDofsPEl_Dest * m_nDofsPEl_Dest );
int offset = 0;
for( size_t e = 0; e < m_meshOutput->faces.size(); e++ )
{
for( int s = 0; s < m_nDofsPEl_Dest; s++ )
{
for( int t = 0; t < m_nDofsPEl_Dest; t++ )
{
vecTargetFaceArea[row_dtoc_dofmap[offset + s * m_nDofsPEl_Dest + t]] = dataGLLJacobianDest[s][t][e];
}
}
offset += m_nDofsPEl_Dest * m_nDofsPEl_Dest;
}
}
moab::EntityHandle& m_meshOverlapSet = m_remapper->m_overlap_set;
int tot_src_ents = m_remapper->m_source_entities.size();
int tot_tgt_ents = m_remapper->m_target_entities.size();
int tot_src_size = dSourceCenterLon.GetRows();
int tot_tgt_size = m_dTargetCenterLon.GetRows();
int tot_vsrc_size = dSourceVertexLon.GetRows() * dSourceVertexLon.GetColumns();
int tot_vtgt_size = m_dTargetVertexLon.GetRows() * m_dTargetVertexLon.GetColumns();
const int weightMatNNZ = m_weightMatrix.nonZeros();
moab::Tag tagMapMetaData, tagMapIndexRow, tagMapIndexCol, tagMapValues, srcEleIDs, tgtEleIDs;
rval = m_interface->tag_get_handle( "SMAT_DATA", 13, moab::MB_TYPE_INTEGER, tagMapMetaData,
moab::MB_TAG_CREAT | moab::MB_TAG_SPARSE );MB_CHK_SET_ERR( rval, "Retrieving tag handles failed" );
rval = m_interface->tag_get_handle( "SMAT_ROWS", weightMatNNZ, moab::MB_TYPE_INTEGER, tagMapIndexRow,
moab::MB_TAG_CREAT | moab::MB_TAG_SPARSE | moab::MB_TAG_VARLEN );MB_CHK_SET_ERR( rval, "Retrieving tag handles failed" );
rval = m_interface->tag_get_handle( "SMAT_COLS", weightMatNNZ, moab::MB_TYPE_INTEGER, tagMapIndexCol,
moab::MB_TAG_CREAT | moab::MB_TAG_SPARSE | moab::MB_TAG_VARLEN );MB_CHK_SET_ERR( rval, "Retrieving tag handles failed" );
rval = m_interface->tag_get_handle( "SMAT_VALS", weightMatNNZ, moab::MB_TYPE_DOUBLE, tagMapValues,
moab::MB_TAG_CREAT | moab::MB_TAG_SPARSE | moab::MB_TAG_VARLEN );MB_CHK_SET_ERR( rval, "Retrieving tag handles failed" );
rval = m_interface->tag_get_handle( "SourceGIDS", tot_src_size, moab::MB_TYPE_INTEGER, srcEleIDs,
moab::MB_TAG_CREAT | moab::MB_TAG_SPARSE | moab::MB_TAG_VARLEN );MB_CHK_SET_ERR( rval, "Retrieving tag handles failed" );
rval = m_interface->tag_get_handle( "TargetGIDS", tot_tgt_size, moab::MB_TYPE_INTEGER, tgtEleIDs,
moab::MB_TAG_CREAT | moab::MB_TAG_SPARSE | moab::MB_TAG_VARLEN );MB_CHK_SET_ERR( rval, "Retrieving tag handles failed" );
moab::Tag srcAreaValues, tgtAreaValues;
rval = m_interface->tag_get_handle( "SourceAreas", tot_src_size, moab::MB_TYPE_DOUBLE, srcAreaValues,
moab::MB_TAG_CREAT | moab::MB_TAG_SPARSE | moab::MB_TAG_VARLEN );MB_CHK_SET_ERR( rval, "Retrieving tag handles failed" );
rval = m_interface->tag_get_handle( "TargetAreas", tot_tgt_size, moab::MB_TYPE_DOUBLE, tgtAreaValues,
moab::MB_TAG_CREAT | moab::MB_TAG_SPARSE | moab::MB_TAG_VARLEN );MB_CHK_SET_ERR( rval, "Retrieving tag handles failed" );
moab::Tag tagSrcCoordsCLon, tagSrcCoordsCLat, tagTgtCoordsCLon, tagTgtCoordsCLat;
rval = m_interface->tag_get_handle( "SourceCoordCenterLon", tot_src_size, moab::MB_TYPE_DOUBLE, tagSrcCoordsCLon,
moab::MB_TAG_CREAT | moab::MB_TAG_SPARSE | moab::MB_TAG_VARLEN );MB_CHK_SET_ERR( rval, "Retrieving tag handles failed" );
rval = m_interface->tag_get_handle( "SourceCoordCenterLat", tot_src_size, moab::MB_TYPE_DOUBLE, tagSrcCoordsCLat,
moab::MB_TAG_CREAT | moab::MB_TAG_SPARSE | moab::MB_TAG_VARLEN );MB_CHK_SET_ERR( rval, "Retrieving tag handles failed" );
rval = m_interface->tag_get_handle( "TargetCoordCenterLon", tot_tgt_size, moab::MB_TYPE_DOUBLE, tagTgtCoordsCLon,
moab::MB_TAG_CREAT | moab::MB_TAG_SPARSE | moab::MB_TAG_VARLEN );MB_CHK_SET_ERR( rval, "Retrieving tag handles failed" );
rval = m_interface->tag_get_handle( "TargetCoordCenterLat", tot_tgt_size, moab::MB_TYPE_DOUBLE, tagTgtCoordsCLat,
moab::MB_TAG_CREAT | moab::MB_TAG_SPARSE | moab::MB_TAG_VARLEN );MB_CHK_SET_ERR( rval, "Retrieving tag handles failed" );
moab::Tag tagSrcCoordsVLon, tagSrcCoordsVLat, tagTgtCoordsVLon, tagTgtCoordsVLat;
rval = m_interface->tag_get_handle( "SourceCoordVertexLon", tot_vsrc_size, moab::MB_TYPE_DOUBLE, tagSrcCoordsVLon,
moab::MB_TAG_CREAT | moab::MB_TAG_SPARSE | moab::MB_TAG_VARLEN );MB_CHK_SET_ERR( rval, "Retrieving tag handles failed" );
rval = m_interface->tag_get_handle( "SourceCoordVertexLat", tot_vsrc_size, moab::MB_TYPE_DOUBLE, tagSrcCoordsVLat,
moab::MB_TAG_CREAT | moab::MB_TAG_SPARSE | moab::MB_TAG_VARLEN );MB_CHK_SET_ERR( rval, "Retrieving tag handles failed" );
rval = m_interface->tag_get_handle( "TargetCoordVertexLon", tot_vtgt_size, moab::MB_TYPE_DOUBLE, tagTgtCoordsVLon,
moab::MB_TAG_CREAT | moab::MB_TAG_SPARSE | moab::MB_TAG_VARLEN );MB_CHK_SET_ERR( rval, "Retrieving tag handles failed" );
rval = m_interface->tag_get_handle( "TargetCoordVertexLat", tot_vtgt_size, moab::MB_TYPE_DOUBLE, tagTgtCoordsVLat,
moab::MB_TAG_CREAT | moab::MB_TAG_SPARSE | moab::MB_TAG_VARLEN );MB_CHK_SET_ERR( rval, "Retrieving tag handles failed" );
moab::Tag srcMaskValues, tgtMaskValues;
if( m_iSourceMask.IsAttached() )
{
rval = m_interface->tag_get_handle( "SourceMask", m_iSourceMask.GetRows(), moab::MB_TYPE_INTEGER, srcMaskValues,
moab::MB_TAG_CREAT | moab::MB_TAG_SPARSE | moab::MB_TAG_VARLEN );MB_CHK_SET_ERR( rval, "Retrieving tag handles failed" );
}
if( m_iTargetMask.IsAttached() )
{
rval = m_interface->tag_get_handle( "TargetMask", m_iTargetMask.GetRows(), moab::MB_TYPE_INTEGER, tgtMaskValues,
moab::MB_TAG_CREAT | moab::MB_TAG_SPARSE | moab::MB_TAG_VARLEN );MB_CHK_SET_ERR( rval, "Retrieving tag handles failed" );
}
std::vector< int > smatrowvals( weightMatNNZ ), smatcolvals( weightMatNNZ );
std::vector< double > smatvals( weightMatNNZ );
// const double* smatvals = m_weightMatrix.valuePtr();
// Loop over the matrix entries and find the max global ID for rows and columns
for( int k = 0, offset = 0; k < m_weightMatrix.outerSize(); ++k )
{
for( moab::TempestOnlineMap::WeightMatrix::InnerIterator it( m_weightMatrix, k ); it; ++it, ++offset )
{
smatrowvals[offset] = this->GetRowGlobalDoF( it.row() );
smatcolvals[offset] = this->GetColGlobalDoF( it.col() );
smatvals[offset] = it.value();
}
}
/* Set the global IDs for the DoFs */
////
// col_gdofmap [ col_ldofmap [ 0 : local_ndofs ] ] = GDOF
// row_gdofmap [ row_ldofmap [ 0 : local_ndofs ] ] = GDOF
////
int maxrow = 0, maxcol = 0;
std::vector< int > src_global_dofs( tot_src_size ), tgt_global_dofs( tot_tgt_size );
for( int i = 0; i < tot_src_size; ++i )
{
src_global_dofs[i] = srccol_gdofmap[i];
maxcol = ( src_global_dofs[i] > maxcol ) ? src_global_dofs[i] : maxcol;
}
for( int i = 0; i < tot_tgt_size; ++i )
{
tgt_global_dofs[i] = row_gdofmap[i];
maxrow = ( tgt_global_dofs[i] > maxrow ) ? tgt_global_dofs[i] : maxrow;
}
///////////////////////////////////////////////////////////////////////////
// The metadata in H5M file contains the following data:
//
// 1. n_a: Total source entities: (number of elements in source mesh)
// 2. n_b: Total target entities: (number of elements in target mesh)
// 3. nv_a: Max edge size of elements in source mesh
// 4. nv_b: Max edge size of elements in target mesh
// 5. maxrows: Number of rows in remap weight matrix
// 6. maxcols: Number of cols in remap weight matrix
// 7. nnz: Number of total nnz in sparse remap weight matrix
// 8. np_a: The order of the field description on the source mesh: >= 1
// 9. np_b: The order of the field description on the target mesh: >= 1
// 10. method_a: The type of discretization for field on source mesh: [0 = FV, 1 = cGLL, 2 =
// dGLL]
// 11. method_b: The type of discretization for field on target mesh: [0 = FV, 1 = cGLL, 2 =
// dGLL]
// 12. conserved: Flag to specify whether the remap operator has conservation constraints: [0,
// 1]
// 13. monotonicity: Flags to specify whether the remap operator has monotonicity constraints:
// [0, 1, 2]
//
///////////////////////////////////////////////////////////////////////////
int map_disc_details[6];
map_disc_details[0] = m_nDofsPEl_Src;
map_disc_details[1] = m_nDofsPEl_Dest;
map_disc_details[2] = ( m_srcDiscType == DiscretizationType_FV || m_srcDiscType == DiscretizationType_PCLOUD
? 0
: ( m_srcDiscType == DiscretizationType_CGLL ? 1 : 2 ) );
map_disc_details[3] = ( m_destDiscType == DiscretizationType_FV || m_destDiscType == DiscretizationType_PCLOUD
? 0
: ( m_destDiscType == DiscretizationType_CGLL ? 1 : 2 ) );
map_disc_details[4] = ( m_bConserved ? 1 : 0 );
map_disc_details[5] = m_iMonotonicity;
#ifdef MOAB_HAVE_MPI
int loc_smatmetadata[13] = { tot_src_ents,
tot_tgt_ents,
m_remapper->max_source_edges,
m_remapper->max_target_edges,
maxrow + 1,
maxcol + 1,
weightMatNNZ,
map_disc_details[0],
map_disc_details[1],
map_disc_details[2],
map_disc_details[3],
map_disc_details[4],
map_disc_details[5] };
rval = m_interface->tag_set_data( tagMapMetaData, &m_meshOverlapSet, 1, &loc_smatmetadata[0] );MB_CHK_SET_ERR( rval, "Setting local tag data failed" );
int glb_smatmetadata[13] = { 0,
0,
0,
0,
0,
0,
0,
map_disc_details[0],
map_disc_details[1],
map_disc_details[2],
map_disc_details[3],
map_disc_details[4],
map_disc_details[5] };
int loc_buf[7] = {
tot_src_ents, tot_tgt_ents, weightMatNNZ, m_remapper->max_source_edges, m_remapper->max_target_edges,
maxrow, maxcol };
int glb_buf[4] = { 0, 0, 0, 0 };
MPI_Reduce( &loc_buf[0], &glb_buf[0], 3, MPI_INT, MPI_SUM, 0, m_pcomm->comm() );
glb_smatmetadata[0] = glb_buf[0];
glb_smatmetadata[1] = glb_buf[1];
glb_smatmetadata[6] = glb_buf[2];
MPI_Reduce( &loc_buf[3], &glb_buf[0], 4, MPI_INT, MPI_MAX, 0, m_pcomm->comm() );
glb_smatmetadata[2] = glb_buf[0];
glb_smatmetadata[3] = glb_buf[1];
glb_smatmetadata[4] = glb_buf[2];
glb_smatmetadata[5] = glb_buf[3];
#else
int glb_smatmetadata[13] = { tot_src_ents,
tot_tgt_ents,
m_remapper->max_source_edges,
m_remapper->max_target_edges,
maxrow,
maxcol,
weightMatNNZ,
map_disc_details[0],
map_disc_details[1],
map_disc_details[2],
map_disc_details[3],
map_disc_details[4],
map_disc_details[5] };
#endif
// These values represent number of rows and columns. So should be 1-based.
glb_smatmetadata[4]++;
glb_smatmetadata[5]++;
if( this->is_root )
{
std::cout << " " << this->rank << " Writing remap weights with size [" << glb_smatmetadata[4] << " X "
<< glb_smatmetadata[5] << "] and NNZ = " << glb_smatmetadata[6] << std::endl;
EntityHandle root_set = 0;
rval = m_interface->tag_set_data( tagMapMetaData, &root_set, 1, &glb_smatmetadata[0] );MB_CHK_SET_ERR( rval, "Setting local tag data failed" );
}
int dsize;
const int numval = weightMatNNZ;
const void* smatrowvals_d = smatrowvals.data();
const void* smatcolvals_d = smatcolvals.data();
const void* smatvals_d = smatvals.data();
rval = m_interface->tag_set_by_ptr( tagMapIndexRow, &m_meshOverlapSet, 1, &smatrowvals_d, &numval );MB_CHK_SET_ERR( rval, "Setting local tag data failed" );
rval = m_interface->tag_set_by_ptr( tagMapIndexCol, &m_meshOverlapSet, 1, &smatcolvals_d, &numval );MB_CHK_SET_ERR( rval, "Setting local tag data failed" );
rval = m_interface->tag_set_by_ptr( tagMapValues, &m_meshOverlapSet, 1, &smatvals_d, &numval );MB_CHK_SET_ERR( rval, "Setting local tag data failed" );
/* Set the global IDs for the DoFs */
const void* srceleidvals_d = src_global_dofs.data();
const void* tgteleidvals_d = tgt_global_dofs.data();
dsize = src_global_dofs.size();
rval = m_interface->tag_set_by_ptr( srcEleIDs, &m_meshOverlapSet, 1, &srceleidvals_d, &dsize );MB_CHK_SET_ERR( rval, "Setting local tag data failed" );
dsize = tgt_global_dofs.size();
rval = m_interface->tag_set_by_ptr( tgtEleIDs, &m_meshOverlapSet, 1, &tgteleidvals_d, &dsize );MB_CHK_SET_ERR( rval, "Setting local tag data failed" );
/* Set the source and target areas */
const void* srcareavals_d = vecSourceFaceArea;
const void* tgtareavals_d = vecTargetFaceArea;
dsize = tot_src_size;
rval = m_interface->tag_set_by_ptr( srcAreaValues, &m_meshOverlapSet, 1, &srcareavals_d, &dsize );MB_CHK_SET_ERR( rval, "Setting local tag data failed" );
dsize = tot_tgt_size;
rval = m_interface->tag_set_by_ptr( tgtAreaValues, &m_meshOverlapSet, 1, &tgtareavals_d, &dsize );MB_CHK_SET_ERR( rval, "Setting local tag data failed" );
/* Set the coordinates for source and target center vertices */
const void* srccoordsclonvals_d = &dSourceCenterLon[0];
const void* srccoordsclatvals_d = &dSourceCenterLat[0];
dsize = dSourceCenterLon.GetRows();
rval = m_interface->tag_set_by_ptr( tagSrcCoordsCLon, &m_meshOverlapSet, 1, &srccoordsclonvals_d, &dsize );MB_CHK_SET_ERR( rval, "Setting local tag data failed" );
rval = m_interface->tag_set_by_ptr( tagSrcCoordsCLat, &m_meshOverlapSet, 1, &srccoordsclatvals_d, &dsize );MB_CHK_SET_ERR( rval, "Setting local tag data failed" );
const void* tgtcoordsclonvals_d = &m_dTargetCenterLon[0];
const void* tgtcoordsclatvals_d = &m_dTargetCenterLat[0];
dsize = vecTargetFaceArea.GetRows();
rval = m_interface->tag_set_by_ptr( tagTgtCoordsCLon, &m_meshOverlapSet, 1, &tgtcoordsclonvals_d, &dsize );MB_CHK_SET_ERR( rval, "Setting local tag data failed" );
rval = m_interface->tag_set_by_ptr( tagTgtCoordsCLat, &m_meshOverlapSet, 1, &tgtcoordsclatvals_d, &dsize );MB_CHK_SET_ERR( rval, "Setting local tag data failed" );
/* Set the coordinates for source and target element vertices */
const void* srccoordsvlonvals_d = &( dSourceVertexLon[0][0] );
const void* srccoordsvlatvals_d = &( dSourceVertexLat[0][0] );
dsize = dSourceVertexLon.GetRows() * dSourceVertexLon.GetColumns();
rval = m_interface->tag_set_by_ptr( tagSrcCoordsVLon, &m_meshOverlapSet, 1, &srccoordsvlonvals_d, &dsize );MB_CHK_SET_ERR( rval, "Setting local tag data failed" );
rval = m_interface->tag_set_by_ptr( tagSrcCoordsVLat, &m_meshOverlapSet, 1, &srccoordsvlatvals_d, &dsize );MB_CHK_SET_ERR( rval, "Setting local tag data failed" );
const void* tgtcoordsvlonvals_d = &( m_dTargetVertexLon[0][0] );
const void* tgtcoordsvlatvals_d = &( m_dTargetVertexLat[0][0] );
dsize = m_dTargetVertexLon.GetRows() * m_dTargetVertexLon.GetColumns();
rval = m_interface->tag_set_by_ptr( tagTgtCoordsVLon, &m_meshOverlapSet, 1, &tgtcoordsvlonvals_d, &dsize );MB_CHK_SET_ERR( rval, "Setting local tag data failed" );
rval = m_interface->tag_set_by_ptr( tagTgtCoordsVLat, &m_meshOverlapSet, 1, &tgtcoordsvlatvals_d, &dsize );MB_CHK_SET_ERR( rval, "Setting local tag data failed" );
/* Set the masks for source and target meshes if available */
if( m_iSourceMask.IsAttached() )
{
const void* srcmaskvals_d = m_iSourceMask;
dsize = m_iSourceMask.GetRows();
rval = m_interface->tag_set_by_ptr( srcMaskValues, &m_meshOverlapSet, 1, &srcmaskvals_d, &dsize );MB_CHK_SET_ERR( rval, "Setting local tag data failed" );
}
if( m_iTargetMask.IsAttached() )
{
const void* tgtmaskvals_d = m_iTargetMask;
dsize = m_iTargetMask.GetRows();
rval = m_interface->tag_set_by_ptr( tgtMaskValues, &m_meshOverlapSet, 1, &tgtmaskvals_d, &dsize );MB_CHK_SET_ERR( rval, "Setting local tag data failed" );
}
#ifdef MOAB_HAVE_MPI
const char* writeOptions = ( this->size > 1 ? "PARALLEL=WRITE_PART" : "" );
#else
const char* writeOptions = "";
#endif
// EntityHandle sets[3] = {m_remapper->m_source_set, m_remapper->m_target_set, m_remapper->m_overlap_set};
EntityHandle sets[1] = { m_remapper->m_overlap_set };
rval = m_interface->write_file( strOutputFile.c_str(), NULL, writeOptions, sets, 1 );MB_CHK_ERR( rval );
#ifdef WRITE_SCRIP_FILE
sstr.str( "" );
sstr << ctx.outFilename.substr( 0, lastindex ) << "_" << proc_id << ".nc";
std::map< std::string, std::string > mapAttributes;
mapAttributes["Creator"] = "MOAB mbtempest workflow";
if( !ctx.proc_id ) std::cout << "Writing offline map to file: " << sstr.str() << std::endl;
this->Write( strOutputFile.c_str(), mapAttributes, NcFile::Netcdf4 );
sstr.str( "" );
#endif
return moab::MB_SUCCESS;
}
///////////////////////////////////////////////////////////////////////////////
void print_progress( const int barWidth, const float progress, const char* message )<--- The function 'print_progress' is never used.
{
std::cout << message << " [";
int pos = barWidth * progress;
for( int i = 0; i < barWidth; ++i )
{
if( i < pos )
std::cout << "=";
else if( i == pos )
std::cout << ">";
else
std::cout << " ";
}
std::cout << "] " << int( progress * 100.0 ) << " %\r";
std::cout.flush();
}
///////////////////////////////////////////////////////////////////////////////
moab::ErrorCode moab::TempestOnlineMap::ReadParallelMap( const char* strSource,
const std::vector< int >& owned_dof_ids,
bool row_partition )
{
NcError error( NcError::silent_nonfatal );
NcVar *varRow = NULL, *varCol = NULL, *varS = NULL;
int nS = 0, nA = 0, nB = 0;<--- The scope of the variable 'nA' can be reduced. [+]The scope of the variable 'nA' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:<--- Variable 'nA' is assigned a value that is never used.<--- Variable 'nB' is assigned a value that is never used.
void f(int x)<--- Variable 'nA' is assigned a value that is never used.<--- Variable 'nB' is assigned a value that is never used.
{<--- Variable 'nA' is assigned a value that is never used.<--- Variable 'nB' is assigned a value that is never used.
int i = 0;<--- Variable 'nA' is assigned a value that is never used.<--- Variable 'nB' is assigned a value that is never used.
if (x) {<--- Variable 'nA' is assigned a value that is never used.<--- Variable 'nB' is assigned a value that is never used.
// it's safe to move 'int i = 0;' here<--- Variable 'nA' is assigned a value that is never used.<--- Variable 'nB' is assigned a value that is never used.
for (int n = 0; n < 10; ++n) {<--- Variable 'nA' is assigned a value that is never used.<--- Variable 'nB' is assigned a value that is never used.
// it is possible but not safe to move 'int i = 0;' here<--- Variable 'nA' is assigned a value that is never used.<--- Variable 'nB' is assigned a value that is never used.
do_something(&i);<--- Variable 'nA' is assigned a value that is never used.<--- Variable 'nB' is assigned a value that is never used.
}<--- Variable 'nA' is assigned a value that is never used.<--- Variable 'nB' is assigned a value that is never used.
}<--- Variable 'nA' is assigned a value that is never used.<--- Variable 'nB' is assigned a value that is never used.
}<--- Variable 'nA' is assigned a value that is never used.<--- Variable 'nB' is assigned a value that is never used.
When you see this message it is always safe to reduce the variable scope 1 level. <--- The scope of the variable 'nB' can be reduced. [+]The scope of the variable 'nB' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:<--- Variable 'nA' is assigned a value that is never used.<--- Variable 'nB' is assigned a value that is never used.
void f(int x)<--- Variable 'nA' is assigned a value that is never used.<--- Variable 'nB' is assigned a value that is never used.
{<--- Variable 'nA' is assigned a value that is never used.<--- Variable 'nB' is assigned a value that is never used.
int i = 0;<--- Variable 'nA' is assigned a value that is never used.<--- Variable 'nB' is assigned a value that is never used.
if (x) {<--- Variable 'nA' is assigned a value that is never used.<--- Variable 'nB' is assigned a value that is never used.
// it's safe to move 'int i = 0;' here<--- Variable 'nA' is assigned a value that is never used.<--- Variable 'nB' is assigned a value that is never used.
for (int n = 0; n < 10; ++n) {<--- Variable 'nA' is assigned a value that is never used.<--- Variable 'nB' is assigned a value that is never used.
// it is possible but not safe to move 'int i = 0;' here<--- Variable 'nA' is assigned a value that is never used.<--- Variable 'nB' is assigned a value that is never used.
do_something(&i);<--- Variable 'nA' is assigned a value that is never used.<--- Variable 'nB' is assigned a value that is never used.
}<--- Variable 'nA' is assigned a value that is never used.<--- Variable 'nB' is assigned a value that is never used.
}<--- Variable 'nA' is assigned a value that is never used.<--- Variable 'nB' is assigned a value that is never used.
}<--- Variable 'nA' is assigned a value that is never used.<--- Variable 'nB' is assigned a value that is never used.
When you see this message it is always safe to reduce the variable scope 1 level. <--- Variable 'nA' is assigned a value that is never used.<--- Variable 'nB' is assigned a value that is never used.
#ifdef MOAB_HAVE_PNETCDF
// some variables will be used just in the case netcdfpar reader fails
int ncfile = -1, ret = 0;<--- Variable 'ret' is assigned a value that is never used.
int ndims, nvars, ngatts, unlimited;
#endif
#ifdef MOAB_HAVE_NETCDFPAR
bool is_independent = true;<--- The scope of the variable 'is_independent' can be reduced. [+]The scope of the variable 'is_independent' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
ParNcFile ncMap( m_pcomm->comm(), MPI_INFO_NULL, strSource, NcFile::ReadOnly, NcFile::Netcdf4 );
// ParNcFile ncMap( m_pcomm->comm(), MPI_INFO_NULL, strFilename.c_str(), NcmpiFile::replace, NcmpiFile::classic5 );
#else
NcFile ncMap( strSource, NcFile::ReadOnly );
#endif
#define CHECK_EXCEPTION( obj, type, varstr ) \
{ \
if( obj == NULL ) \
{ \
_EXCEPTION3( "Map file \"%s\" does not contain %s \"%s\"", strSource, type, varstr ); \
} \
}
// Read SparseMatrix entries
if( ncMap.is_valid() )
{
NcDim* dimNS = ncMap.get_dim( "n_s" );
CHECK_EXCEPTION( dimNS, "dimension", "n_s" );
NcDim* dimNA = ncMap.get_dim( "n_a" );
CHECK_EXCEPTION( dimNA, "dimension", "n_a" );
NcDim* dimNB = ncMap.get_dim( "n_b" );
CHECK_EXCEPTION( dimNB, "dimension", "n_b" );
// store total number of nonzeros
nS = dimNS->size();
nA = dimNA->size();<--- Variable 'nA' is assigned a value that is never used.
nB = dimNB->size();<--- Variable 'nB' is assigned a value that is never used.
varRow = ncMap.get_var( "row" );
CHECK_EXCEPTION( varRow, "variable", "row" );
varCol = ncMap.get_var( "col" );
CHECK_EXCEPTION( varCol, "variable", "col" );
varS = ncMap.get_var( "S" );
CHECK_EXCEPTION( varS, "variable", "S" );
#ifdef MOAB_HAVE_NETCDFPAR
ncMap.enable_var_par_access( varRow, is_independent );
ncMap.enable_var_par_access( varCol, is_independent );
ncMap.enable_var_par_access( varS, is_independent );
#endif
}
else
{
#ifdef MOAB_HAVE_PNETCDF
// read the file using pnetcdf directly, in parallel; need to have MPI, we do not check that anymore
// why build wth pnetcdf without MPI ?
// ParNcFile ncMap( m_pcomm->comm(), MPI_INFO_NULL, strSource, NcFile::ReadOnly, NcFile::Netcdf4 );
ret = ncmpi_open( m_pcomm->comm(), strSource, NC_NOWRITE, MPI_INFO_NULL, &ncfile );
ERR_PARNC( ret ); // bail out completely
ret = ncmpi_inq( ncfile, &ndims, &nvars, &ngatts, &unlimited );
ERR_PARNC( ret );
// find dimension ids for n_S
int ins;
ret = ncmpi_inq_dimid( ncfile, "n_s", &ins );
ERR_PARNC( ret );
MPI_Offset leng;
ret = ncmpi_inq_dimlen( ncfile, ins, &leng );
ERR_PARNC( ret );
nS = (int)leng;
ret = ncmpi_inq_dimid( ncfile, "n_b", &ins );
ERR_PARNC( ret );
ret = ncmpi_inq_dimlen( ncfile, ins, &leng );
ERR_PARNC( ret );
nB = (int)leng;<--- Variable 'nB' is assigned a value that is never used.
#else
_EXCEPTION1( "cannot read the file %s", strSource );
#endif
}
// Let us declare the map object for every process
SparseMatrix< double >& sparseMatrix = this->GetSparseMatrix();
int localSize = nS / size;
long offsetRead = rank * localSize;
// leftovers on last rank
if( rank == size - 1 )
{
localSize += nS % size;
}
std::vector< int > vecRow, vecCol;
std::vector< double > vecS;
vecRow.resize( localSize );
vecCol.resize( localSize );
vecS.resize( localSize );
if( ncMap.is_valid() )
{
varRow->set_cur( (long)( offsetRead ) );
varRow->get( &( vecRow[0] ), localSize );
varCol->set_cur( (long)( offsetRead ) );
varCol->get( &( vecCol[0] ), localSize );
varS->set_cur( (long)( offsetRead ) );
varS->get( &( vecS[0] ), localSize );
ncMap.close();
}
else
{
#ifdef MOAB_HAVE_PNETCDF
// fill the local vectors with the variables from pnetcdf file; first inquire, then fill
MPI_Offset start = (MPI_Offset)offsetRead;
MPI_Offset count = (MPI_Offset)localSize;
int varid;
ret = ncmpi_inq_varid( ncfile, "S", &varid );
ERR_PARNC( ret );
ret = ncmpi_get_vara_double_all( ncfile, varid, &start, &count, &vecS[0] );
ERR_PARNC( ret );
ret = ncmpi_inq_varid( ncfile, "row", &varid );
ERR_PARNC( ret );
ret = ncmpi_get_vara_int_all( ncfile, varid, &start, &count, &vecRow[0] );
ERR_PARNC( ret );
ret = ncmpi_inq_varid( ncfile, "col", &varid );
ERR_PARNC( ret );
ret = ncmpi_get_vara_int_all( ncfile, varid, &start, &count, &vecCol[0] );
ERR_PARNC( ret );
ret = ncmpi_close( ncfile );
ERR_PARNC( ret );
#endif
}
// Now let us set the necessary global-to-local ID maps so that A*x operations
// can be performed cleanly as if map was computed online
row_dtoc_dofmap.clear();
// row_dtoc_dofmap.reserve( nB / size );
col_dtoc_dofmap.clear();
rowMap.clear();
colMap.clear();
// col_dtoc_dofmap.reserve( 2 * nA / size );
// row_dtoc_dofmap.resize( m_nTotDofs_Dest, UINT_MAX );
// col_dtoc_dofmap.resize( m_nTotDofs_SrcCov, UINT_MAX );
#ifdef MOAB_HAVE_MPI
// bother with tuple list only if size > 1
// otherwise, just fill the sparse matrix
if( size > 1 )
{
std::vector< int > ownership;
// the default trivial partitioning scheme
int nDofs = nB; // this is for row partitioning
if( !row_partition ) nDofs = nA; // column partitioning
// assert(row_major_ownership == true); // this block is valid only for row-based partitioning
ownership.resize( size );
int nPerPart = nDofs / size;
int nRemainder = nDofs % size; // Keep the remainder in root
ownership[0] = nPerPart + nRemainder;
for( int ip = 1, roffset = ownership[0]; ip < size; ++ip )
{
roffset += nPerPart;
ownership[ip] = roffset;
}
moab::TupleList* tl = new moab::TupleList;
unsigned numr = 1; //<--- Shadowed declaration
tl->initialize( 3, 0, 0, numr, localSize ); // to proc, row, col, value
tl->enableWriteAccess();
// populate
for( int i = 0; i < localSize; i++ )
{
int rowval = vecRow[i] - 1; // dofs are 1 based in the file
int colval = vecCol[i] - 1;
int to_proc = -1;
int dof_val = colval;
if( row_partition ) dof_val = rowval;
if( ownership[0] > dof_val )
to_proc = 0;
else
{
for( int ip = 1; ip < size; ++ip )
{
if( ownership[ip - 1] <= dof_val && ownership[ip] > dof_val )
{
to_proc = ip;
break;
}
}
}
int n = tl->get_n();
tl->vi_wr[3 * n] = to_proc;
tl->vi_wr[3 * n + 1] = rowval;
tl->vi_wr[3 * n + 2] = colval;
tl->vr_wr[n] = vecS[i];
tl->inc_n();
}
// heavy communication
( m_pcomm->proc_config().crystal_router() )->gs_transfer( 1, *tl, 0 );
if( owned_dof_ids.size() > 0 )
{
// we need to send desired dof to the rendez_vous point
moab::TupleList tl_re; //
tl_re.initialize( 2, 0, 0, 0, owned_dof_ids.size() ); // to proc, value
tl_re.enableWriteAccess();
// send first to rendez_vous point, decided by trivial partitioning
for( size_t i = 0; i < owned_dof_ids.size(); i++ )
{
int to_proc = -1;
int dof_val = owned_dof_ids[i] - 1; // dofs are 1 based in the file, partition from 0 ?
if( ownership[0] > dof_val )
to_proc = 0;
else
{
for( int ip = 1; ip < size; ++ip )
{
if( ownership[ip - 1] <= dof_val && ownership[ip] > dof_val )
{
to_proc = ip;
break;
}
}
}
int n = tl_re.get_n();
tl_re.vi_wr[2 * n] = to_proc;
tl_re.vi_wr[2 * n + 1] = dof_val;
tl_re.inc_n();
}
( m_pcomm->proc_config().crystal_router() )->gs_transfer( 1, tl_re, 0 );
// now we know in tl_re where do we need to send back dof_val
moab::TupleList::buffer sort_buffer;
sort_buffer.buffer_init( tl_re.get_n() );
tl_re.sort( 1, &sort_buffer ); // so now we order by value
sort_buffer.buffer_init( tl->get_n() );
int indexOrder = 2; // colVal
if( row_partition ) indexOrder = 1; // rowVal
//tl->sort( indexOrder, &sort_buffer );
std::map< int, int > startDofIndex, endDofIndex; // indices in tl_re for values we want
int dofVal = -1;
if( tl_re.get_n() > 0 ) dofVal = tl_re.vi_rd[1]; // first dof val on this rank
startDofIndex[dofVal] = 0;
endDofIndex[dofVal] = 0; // start and end
for( unsigned k = 1; k < tl_re.get_n(); k++ )
{
int newDof = tl_re.vi_rd[2 * k + 1];
if( dofVal == newDof )
{
endDofIndex[dofVal] = k; // increment by 1 actually
}
else
{
dofVal = newDof;
startDofIndex[dofVal] = k;
endDofIndex[dofVal] = k;
}
}
// basically, for each value we are interested in, index in tl_re with those values are
// tl_re.vi_rd[2*startDofIndex+1] == valDof == tl_re.vi_rd[2*endDofIndex+1]
// so now we have ordered
// tl_re shows to what proc do we need to send the tuple (row, col, val)
moab::TupleList* tl_back = new moab::TupleList;
unsigned numr = 1; //<--- Shadow variable
// localSize is a good guess, but maybe it should be bigger ?
// this could be bigger for repeated dofs
tl_back->initialize( 3, 0, 0, numr, tl->get_n() ); // to proc, row, col, value
tl_back->enableWriteAccess();
// now loop over tl and tl_re to see where to send
// form the new tuple, which will contain the desired dofs per task, per row or column distribution
for( unsigned k = 0; k < tl->get_n(); k++ )
{
int valDof = tl->vi_rd[3 * k + indexOrder]; // 1 for row, 2 for column // first value, it should be
for( int ire = startDofIndex[valDof]; ire <= endDofIndex[valDof]; ire++ )
{
int to_proc = tl_re.vi_rd[2 * ire];
int n = tl_back->get_n();
tl_back->vi_wr[3 * n] = to_proc;
tl_back->vi_wr[3 * n + 1] = tl->vi_rd[3 * k + 1]; // row
tl_back->vi_wr[3 * n + 2] = tl->vi_rd[3 * k + 2]; // col
tl_back->vr_wr[n] = tl->vr_rd[k];
tl_back->inc_n();
}
}
// now communicate to the desired tasks:
( m_pcomm->proc_config().crystal_router() )->gs_transfer( 1, *tl_back, 0 );
tl_re.reset(); // clear memory, although this will go out of scope
tl->reset();
tl = tl_back;
}
int rindexMax = 0, cindexMax = 0;
// populate the sparsematrix, using rowMap and colMap
int n = tl->get_n();
for( int i = 0; i < n; i++ )
{
int rindex, cindex;
const int& vecRowValue = tl->vi_wr[3 * i + 1];
const int& vecColValue = tl->vi_wr[3 * i + 2];
std::map< int, int >::iterator riter = rowMap.find( vecRowValue );
if( riter == rowMap.end() )
{
rowMap[vecRowValue] = rindexMax;
rindex = rindexMax;
row_gdofmap.push_back( vecRowValue );
// row_dtoc_dofmap.push_back( vecRowValue );
rindexMax++;
}
else
rindex = riter->second;
std::map< int, int >::iterator citer = colMap.find( vecColValue );
if( citer == colMap.end() )
{
colMap[vecColValue] = cindexMax;
cindex = cindexMax;
col_gdofmap.push_back( vecColValue );
// col_dtoc_dofmap.push_back( vecColValue );
cindexMax++;
}
else
cindex = citer->second;
sparseMatrix( rindex, cindex ) = tl->vr_wr[i];
}
tl->reset();
}
else
#endif
{
int rindexMax = 0, cindexMax = 0;
for( int i = 0; i < nS; i++ )
{
int rindex, cindex;
const int& vecRowValue = vecRow[i] - 1; // the rows, cols are 1 based in the file
const int& vecColValue = vecCol[i] - 1;
std::map< int, int >::iterator riter = rowMap.find( vecRowValue );
if( riter == rowMap.end() )
{
rowMap[vecRowValue] = rindexMax;
rindex = rindexMax;
row_gdofmap.push_back( vecRowValue );
// row_dtoc_dofmap.push_back( vecRowValue );
rindexMax++;
}
else
rindex = riter->second;
std::map< int, int >::iterator citer = colMap.find( vecColValue );
if( citer == colMap.end() )
{
colMap[vecColValue] = cindexMax;
cindex = cindexMax;
col_gdofmap.push_back( vecColValue );
// col_dtoc_dofmap.push_back( vecColValue );
cindexMax++;
}
else
cindex = citer->second;
sparseMatrix( rindex, cindex ) = vecS[i];
}
}
m_nTotDofs_SrcCov = sparseMatrix.GetColumns();
m_nTotDofs_Dest = sparseMatrix.GetRows();
#ifdef MOAB_HAVE_EIGEN3
this->copy_tempest_sparsemat_to_eigen3();
#endif
// Reset the source and target data first
m_rowVector.setZero();
m_colVector.setZero();
return moab::MB_SUCCESS;
}
///////////////////////////////////////////////////////////////////////////////
|