1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037 | /*
* =====================================================================================
*
* Filename: TempestRemapper.hpp
*
* Description: Interface to the TempestRemap library to enable intersection and
* high-order conservative remapping of climate solution from
* arbitrary resolution of source and target grids on the sphere.
*
* Author: Vijay S. Mahadevan (vijaysm), [email protected]
*
* =====================================================================================
*/
#include <string>
#include <iostream>
#include <cassert>
#include "DebugOutput.hpp"
#include "moab/Remapping/TempestRemapper.hpp"
#include "moab/ReadUtilIface.hpp"
// Intersection includes
#include "moab/IntxMesh/Intx2MeshOnSphere.hpp"
#include "moab/IntxMesh/IntxUtils.hpp"
#include "moab/AdaptiveKDTree.hpp"
#include "moab/SpatialLocator.hpp"
// skinner for augmenting overlap mesh to complete coverage
#include "moab/Skinner.hpp"
#include "MBParallelConventions.h"
#ifdef MOAB_HAVE_TEMPESTREMAP
#include "GaussLobattoQuadrature.h"
#endif
// #define VERBOSE
namespace moab
{
///////////////////////////////////////////////////////////////////////////////////
ErrorCode TempestRemapper::initialize( bool initialize_fsets )
{
ErrorCode rval;
if( initialize_fsets )
{
rval = m_interface->create_meshset( moab::MESHSET_SET, m_source_set );MB_CHK_SET_ERR( rval, "Can't create new set" );
rval = m_interface->create_meshset( moab::MESHSET_SET, m_target_set );MB_CHK_SET_ERR( rval, "Can't create new set" );
rval = m_interface->create_meshset( moab::MESHSET_SET, m_overlap_set );MB_CHK_SET_ERR( rval, "Can't create new set" );
}
else
{
m_source_set = 0;
m_target_set = 0;
m_overlap_set = 0;
}
is_parallel = false;
is_root = true;
rank = 0;
size = 1;
#ifdef MOAB_HAVE_MPI
int flagInit;
MPI_Initialized( &flagInit );
if( flagInit )
{
is_parallel = true;
assert( m_pcomm != NULL );
rank = m_pcomm->rank();
size = m_pcomm->size();
is_root = ( rank == 0 );
}
#endif
m_source = NULL;
m_target = NULL;
m_overlap = NULL;
m_covering_source = NULL;
point_cloud_source = false;
point_cloud_target = false;
return MB_SUCCESS;
}
///////////////////////////////////////////////////////////////////////////////////
TempestRemapper::~TempestRemapper()
{
this->clear();
}
ErrorCode TempestRemapper::clear()
{
// destroy all meshes
if( m_source )
{
delete m_source;
m_source = NULL;
}
if( m_target )
{
delete m_target;
m_target = NULL;
}
if( m_overlap )
{
delete m_overlap;
m_overlap = NULL;
}
if( m_covering_source && size > 1 )
{
delete m_covering_source;
m_covering_source = NULL;
}
point_cloud_source = false;
point_cloud_target = false;
m_source_entities.clear();
m_source_vertices.clear();
m_covering_source_entities.clear();
m_covering_source_vertices.clear();
m_target_entities.clear();
m_target_vertices.clear();
m_overlap_entities.clear();
gid_to_lid_src.clear();
gid_to_lid_tgt.clear();
gid_to_lid_covsrc.clear();
lid_to_gid_src.clear();
lid_to_gid_tgt.clear();
lid_to_gid_covsrc.clear();
return MB_SUCCESS;
}
///////////////////////////////////////////////////////////////////////////////////
ErrorCode TempestRemapper::LoadMesh( Remapper::IntersectionContext ctx,
std::string inputFilename,
TempestMeshType type )
{
if( ctx == Remapper::SourceMesh )
{
m_source_type = type;
return load_tempest_mesh_private( inputFilename, &m_source );
}
else if( ctx == Remapper::TargetMesh )
{
m_target_type = type;
return load_tempest_mesh_private( inputFilename, &m_target );
}
else if( ctx != Remapper::DEFAULT )
{
m_overlap_type = type;
return load_tempest_mesh_private( inputFilename, &m_overlap );
}
else
{
MB_CHK_SET_ERR( MB_FAILURE, "Invalid IntersectionContext context provided" );
}
}
ErrorCode TempestRemapper::load_tempest_mesh_private( std::string inputFilename, Mesh** tempest_mesh )
{
const bool outputEnabled = ( TempestRemapper::verbose && is_root );
if( outputEnabled ) std::cout << "\nLoading TempestRemap Mesh object from file = " << inputFilename << " ...\n";
{
NcError error( NcError::silent_nonfatal );
try
{
// Load input mesh
if( outputEnabled ) std::cout << "Loading mesh ...\n";
Mesh* mesh = new Mesh( inputFilename );
mesh->RemoveZeroEdges();
if( outputEnabled ) std::cout << "----------------\n";
// Validate mesh
if( meshValidate )
{
if( outputEnabled ) std::cout << "Validating mesh ...\n";
mesh->Validate();
if( outputEnabled ) std::cout << "-------------------\n";
}
// Construct the edge map on the mesh
if( constructEdgeMap )
{
if( outputEnabled ) std::cout << "Constructing edge map on mesh ...\n";
mesh->ConstructEdgeMap( false );
if( outputEnabled ) std::cout << "---------------------------------\n";
}
if( tempest_mesh ) *tempest_mesh = mesh;
}
catch( Exception& e )
{
std::cout << "TempestRemap ERROR: " << e.ToString() << "\n";
return MB_FAILURE;
}
catch( ... )
{
return MB_FAILURE;
}
}
return MB_SUCCESS;
}
///////////////////////////////////////////////////////////////////////////////////
ErrorCode TempestRemapper::ConvertTempestMesh( Remapper::IntersectionContext ctx )
{
const bool outputEnabled = ( TempestRemapper::verbose && is_root );
if( ctx == Remapper::SourceMesh )
{
if( outputEnabled ) std::cout << "Converting (source) TempestRemap Mesh object to MOAB representation ...\n";
return convert_tempest_mesh_private( m_source_type, m_source, m_source_set, m_source_entities,
&m_source_vertices );
}
else if( ctx == Remapper::TargetMesh )
{
if( outputEnabled ) std::cout << "Converting (target) TempestRemap Mesh object to MOAB representation ...\n";
return convert_tempest_mesh_private( m_target_type, m_target, m_target_set, m_target_entities,
&m_target_vertices );
}
else if( ctx != Remapper::DEFAULT )
{
if( outputEnabled ) std::cout << "Converting (overlap) TempestRemap Mesh object to MOAB representation ...\n";
return convert_tempest_mesh_private( m_overlap_type, m_overlap, m_overlap_set, m_overlap_entities, NULL );
}
else
{
MB_CHK_SET_ERR( MB_FAILURE, "Invalid IntersectionContext context provided" );
}
}
ErrorCode TempestRemapper::convert_tempest_mesh_private( TempestMeshType meshType,
Mesh* mesh,
EntityHandle& mesh_set,
Range& entities,
Range* vertices )
{
ErrorCode rval;
const bool outputEnabled = ( TempestRemapper::verbose && is_root );
const NodeVector& nodes = mesh->nodes;
const FaceVector& faces = mesh->faces;
moab::DebugOutput dbgprint( std::cout, this->rank, 0 );
dbgprint.set_prefix( "[TempestToMOAB]: " );
ReadUtilIface* iface;
rval = m_interface->query_interface( iface );MB_CHK_SET_ERR( rval, "Can't get reader interface" );
Tag gidTag = m_interface->globalId_tag();
// Set the data for the vertices
std::vector< double* > arrays;
std::vector< int > gidsv( nodes.size() );
EntityHandle startv;
rval = iface->get_node_coords( 3, nodes.size(), 0, startv, arrays );MB_CHK_SET_ERR( rval, "Can't get node coords" );
for( unsigned iverts = 0; iverts < nodes.size(); ++iverts )
{
const Node& node = nodes[iverts];
arrays[0][iverts] = node.x;
arrays[1][iverts] = node.y;
arrays[2][iverts] = node.z;
gidsv[iverts] = iverts + 1;
}
Range mbverts( startv, startv + nodes.size() - 1 );
rval = m_interface->add_entities( mesh_set, mbverts );MB_CHK_SET_ERR( rval, "Can't add entities" );
rval = m_interface->tag_set_data( gidTag, mbverts, &gidsv[0] );MB_CHK_SET_ERR( rval, "Can't set global_id tag" );
gidsv.clear();
entities.clear();
Tag srcParentTag, tgtParentTag;
std::vector< int > srcParent, tgtParent;
bool storeParentInfo = ( mesh->vecSourceFaceIx.size() > 0 );
if( storeParentInfo )
{
int defaultInt = -1;
rval = m_interface->tag_get_handle( "TargetParent", 1, MB_TYPE_INTEGER, tgtParentTag,
MB_TAG_DENSE | MB_TAG_CREAT, &defaultInt );MB_CHK_SET_ERR( rval, "can't create positive tag" );
rval = m_interface->tag_get_handle( "SourceParent", 1, MB_TYPE_INTEGER, srcParentTag,
MB_TAG_DENSE | MB_TAG_CREAT, &defaultInt );MB_CHK_SET_ERR( rval, "can't create negative tag" );
}
// Let us first perform a full pass assuming arbitrary polygons. This is especially true for
// overlap meshes.
// 1. We do a first pass over faces, decipher edge size and group into categories based on
// element type
// 2. Next we loop over type, and add blocks of elements into MOAB
// 3. For each block within the loop, also update the connectivity of elements.
{
if( outputEnabled )
dbgprint.printf( 0, "..Mesh size: Nodes [%zu] Elements [%zu].\n", nodes.size(), faces.size() );
const int NMAXPOLYEDGES = 15;
std::vector< unsigned > nPolys( NMAXPOLYEDGES, 0 );
std::vector< std::vector< int > > typeNSeqs( NMAXPOLYEDGES );
for( unsigned ifaces = 0; ifaces < faces.size(); ++ifaces )
{
const int iType = faces[ifaces].edges.size();
nPolys[iType]++;
typeNSeqs[iType].push_back( ifaces );
}
int iBlock = 0;
for( unsigned iType = 0; iType < NMAXPOLYEDGES; ++iType )
{
if( !nPolys[iType] ) continue; // Nothing to do
const unsigned num_v_per_elem = iType;
EntityHandle starte; // Connectivity
EntityHandle* conn;
// Allocate the connectivity array, depending on the element type
switch( num_v_per_elem )
{
case 3:
if( outputEnabled )
dbgprint.printf( 0, "....Block %d: Triangular Elements [%u].\n", iBlock++, nPolys[iType] );
rval = iface->get_element_connect( nPolys[iType], num_v_per_elem, MBTRI, 0, starte, conn );MB_CHK_SET_ERR( rval, "Can't get element connectivity" );
break;
case 4:
if( outputEnabled )
dbgprint.printf( 0, "....Block %d: Quadrilateral Elements [%u].\n", iBlock++, nPolys[iType] );
rval = iface->get_element_connect( nPolys[iType], num_v_per_elem, MBQUAD, 0, starte, conn );MB_CHK_SET_ERR( rval, "Can't get element connectivity" );
break;
default:
if( outputEnabled )
dbgprint.printf( 0, "....Block %d: Polygonal [%u] Elements [%u].\n", iBlock++, iType,
nPolys[iType] );
rval = iface->get_element_connect( nPolys[iType], num_v_per_elem, MBPOLYGON, 0, starte, conn );MB_CHK_SET_ERR( rval, "Can't get element connectivity" );
break;
}
Range mbcells( starte, starte + nPolys[iType] - 1 );
m_interface->add_entities( mesh_set, mbcells );
if( storeParentInfo )
{
srcParent.resize( mbcells.size(), -1 );
tgtParent.resize( mbcells.size(), -1 );
}
std::vector< int > gids( typeNSeqs[iType].size() );
for( unsigned ifaces = 0, offset = 0; ifaces < typeNSeqs[iType].size(); ++ifaces )
{
const int fIndex = typeNSeqs[iType][ifaces];
const Face& face = faces[fIndex];
// conn[offset++] = startv + face.edges[0].node[0];
for( unsigned iedges = 0; iedges < face.edges.size(); ++iedges )
{
conn[offset++] = startv + face.edges[iedges].node[0];
}
if( storeParentInfo )
{
srcParent[ifaces] = mesh->vecSourceFaceIx[fIndex] + 1;
tgtParent[ifaces] = mesh->vecTargetFaceIx[fIndex] + 1;
}
gids[ifaces] = typeNSeqs[iType][ifaces] + 1;
}
rval = m_interface->tag_set_data( gidTag, mbcells, &gids[0] );MB_CHK_SET_ERR( rval, "Can't set global_id tag" );
if( meshType == OVERLAP_FILES )
{
// Now let us update the adjacency data, because some elements are new
rval = iface->update_adjacencies( starte, nPolys[iType], num_v_per_elem, conn );MB_CHK_SET_ERR( rval, "Can't update adjacencies" );
// Generate all adj entities dimension 1 and 2 (edges and faces/ tri or qua)
Range edges;
rval = m_interface->get_adjacencies( mbcells, 1, true, edges, Interface::UNION );MB_CHK_SET_ERR( rval, "Can't get edges" );
}
if( storeParentInfo )
{
rval = m_interface->tag_set_data( srcParentTag, mbcells, &srcParent[0] );MB_CHK_SET_ERR( rval, "Can't set tag data" );
rval = m_interface->tag_set_data( tgtParentTag, mbcells, &tgtParent[0] );MB_CHK_SET_ERR( rval, "Can't set tag data" );
}
entities.merge( mbcells );
}
}
if( vertices ) *vertices = mbverts;
return MB_SUCCESS;
}
///////////////////////////////////////////////////////////////////////////////////
ErrorCode TempestRemapper::ConvertMeshToTempest( Remapper::IntersectionContext ctx )
{
ErrorCode rval;
const bool outputEnabled = ( TempestRemapper::verbose && is_root );
moab::DebugOutput dbgprint( std::cout, this->rank, 0 );
dbgprint.set_prefix( "[MOABToTempest]: " );
if( ctx == Remapper::SourceMesh )
{
if( !m_source ) m_source = new Mesh();
if( outputEnabled ) dbgprint.printf( 0, "Converting (source) MOAB to TempestRemap Mesh representation ...\n" );
rval = convert_mesh_to_tempest_private( m_source, m_source_set, m_source_entities, &m_source_vertices );MB_CHK_SET_ERR( rval, "Can't convert source mesh to Tempest" );
if( m_source_entities.size() == 0 && m_source_vertices.size() != 0 )
{
this->point_cloud_source = true;
}
}
else if( ctx == Remapper::TargetMesh )
{
if( !m_target ) m_target = new Mesh();
if( outputEnabled ) dbgprint.printf( 0, "Converting (target) MOAB to TempestRemap Mesh representation ...\n" );
rval = convert_mesh_to_tempest_private( m_target, m_target_set, m_target_entities, &m_target_vertices );MB_CHK_SET_ERR( rval, "Can't convert target mesh to Tempest" );
if( m_target_entities.size() == 0 && m_target_vertices.size() != 0 ) this->point_cloud_target = true;
}
else if( ctx == Remapper::OverlapMesh ) // Overlap mesh
{
if( !m_overlap ) m_overlap = new Mesh();
if( outputEnabled ) dbgprint.printf( 0, "Converting (overlap) MOAB to TempestRemap Mesh representation ...\n" );
rval = convert_overlap_mesh_sorted_by_source();MB_CHK_SET_ERR( rval, "Can't convert overlap mesh to Tempest" );
}
else
{
MB_CHK_SET_ERR( MB_FAILURE, "Invalid IntersectionContext context provided" );
}
return rval;
}
ErrorCode TempestRemapper::convert_mesh_to_tempest_private( Mesh* mesh,
EntityHandle mesh_set,
moab::Range& elems,
moab::Range* pverts )
{
ErrorCode rval;
Range verts;
NodeVector& nodes = mesh->nodes;
FaceVector& faces = mesh->faces;
elems.clear();
rval = m_interface->get_entities_by_dimension( mesh_set, 2, elems );MB_CHK_ERR( rval );
// resize the number of elements in Tempest mesh
faces.resize( elems.size() );
// let us now get the vertices from all the elements
rval = m_interface->get_connectivity( elems, verts );MB_CHK_ERR( rval );
if( verts.size() == 0 )
{
rval = m_interface->get_entities_by_dimension( mesh_set, 0, verts );MB_CHK_ERR( rval );
}
// assert(verts.size() > 0); // If not, this may be an invalid mesh ! possible for unbalanced
// loads
std::map< EntityHandle, int > indxMap;
bool useRange = true;
if( verts.compactness() > 0.01 )
{
int j = 0;
for( Range::iterator it = verts.begin(); it != verts.end(); it++ )<--- Prefer prefix ++/-- operators for non-primitive types. [+]Prefix ++/-- operators should be preferred for non-primitive types. Pre-increment/decrement can be more efficient than post-increment/decrement. Post-increment/decrement usually involves keeping a copy of the previous value around and adds a little extra code.
indxMap[*it] = j++;
useRange = false;
}
for( unsigned iface = 0; iface < elems.size(); ++iface )
{
Face& face = faces[iface];
EntityHandle ehandle = elems[iface];
// get the connectivity for each edge
const EntityHandle* connectface;
int nnodesf;
rval = m_interface->get_connectivity( ehandle, connectface, nnodesf );MB_CHK_ERR( rval );
face.edges.resize( nnodesf );
for( int iverts = 0; iverts < nnodesf; ++iverts )
{
int indx = ( useRange ? verts.index( connectface[iverts] ) : indxMap[connectface[iverts]] );
assert( indx >= 0 );
face.SetNode( iverts, indx );
}
}
unsigned nnodes = verts.size();
nodes.resize( nnodes );
// Set the data for the vertices
std::vector< double > coordx( nnodes ), coordy( nnodes ), coordz( nnodes );
rval = m_interface->get_coords( verts, &coordx[0], &coordy[0], &coordz[0] );MB_CHK_ERR( rval );
for( unsigned inode = 0; inode < nnodes; ++inode )
{
Node& node = nodes[inode];
node.x = coordx[inode];
node.y = coordy[inode];
node.z = coordz[inode];
}
coordx.clear();
coordy.clear();
coordz.clear();
mesh->RemoveZeroEdges();
mesh->RemoveCoincidentNodes();
// Generate reverse node array and edge map
if( constructEdgeMap ) mesh->ConstructEdgeMap( false );
// mesh->ConstructReverseNodeArray();
// mesh->Validate();
if( pverts )
{
pverts->clear();
*pverts = verts;
}
verts.clear();
return MB_SUCCESS;
}
///////////////////////////////////////////////////////////////////////////////////
bool IntPairComparator( const std::pair< int, int >& a, const std::pair< int, int >& b )
{
if( a.first == b.first )
return a.second < b.second;
else
return a.first < b.first;
}
moab::ErrorCode moab::TempestRemapper::GetOverlapAugmentedEntities( moab::Range& sharedGhostEntities )
{
sharedGhostEntities.clear();
#ifdef MOAB_HAVE_MPI
moab::ErrorCode rval;
// Remove entities in the intersection mesh that are part of the ghosted overlap
if( is_parallel && size > 1 )
{
moab::Range allents;
rval = m_interface->get_entities_by_dimension( m_overlap_set, 2, allents );MB_CHK_SET_ERR( rval, "Getting entities dim 2 failed" );
moab::Range sharedents;
moab::Tag ghostTag;
std::vector< int > ghFlags( allents.size() );
rval = m_interface->tag_get_handle( "ORIG_PROC", ghostTag );MB_CHK_ERR( rval );
rval = m_interface->tag_get_data( ghostTag, allents, &ghFlags[0] );MB_CHK_ERR( rval );
for( unsigned i = 0; i < allents.size(); ++i )
if( ghFlags[i] >= 0 ) // it means it is a ghost overlap element
sharedents.insert( allents[i] ); // this should not participate in smat!
allents = subtract( allents, sharedents );
// Get connectivity from all ghosted elements and filter out
// the vertices that are not owned
moab::Range ownedverts, sharedverts;
rval = m_interface->get_connectivity( allents, ownedverts );MB_CHK_SET_ERR( rval, "Deleting entities dim 0 failed" );
rval = m_interface->get_connectivity( sharedents, sharedverts );MB_CHK_SET_ERR( rval, "Deleting entities dim 0 failed" );
sharedverts = subtract( sharedverts, ownedverts );
// rval = m_interface->remove_entities(m_overlap_set, sharedents);MB_CHK_SET_ERR(rval,
// "Deleting entities dim 2 failed"); rval = m_interface->remove_entities(m_overlap_set,
// sharedverts);MB_CHK_SET_ERR(rval, "Deleting entities dim 0 failed");
sharedGhostEntities.merge( sharedents );
// sharedGhostEntities.merge(sharedverts);
}
#endif
return moab::MB_SUCCESS;
}
ErrorCode TempestRemapper::convert_overlap_mesh_sorted_by_source()
{
ErrorCode rval;
m_overlap_entities.clear();
rval = m_interface->get_entities_by_dimension( m_overlap_set, 2, m_overlap_entities );MB_CHK_ERR( rval );
// Allocate for the overlap mesh
if( !m_overlap ) m_overlap = new Mesh();
size_t n_overlap_entitites = m_overlap_entities.size();
std::vector< std::pair< int, int > > sorted_overlap_order( n_overlap_entitites );
{
Tag srcParentTag, tgtParentTag;
rval = m_interface->tag_get_handle( "SourceParent", srcParentTag );MB_CHK_ERR( rval );
rval = m_interface->tag_get_handle( "TargetParent", tgtParentTag );MB_CHK_ERR( rval );
// Overlap mesh: resize the source and target connection arrays
m_overlap->vecTargetFaceIx.resize( n_overlap_entitites );
m_overlap->vecSourceFaceIx.resize( n_overlap_entitites );
// Overlap mesh: resize the source and target connection arrays
std::vector< int > rbids_src( n_overlap_entitites ), rbids_tgt( n_overlap_entitites );
rval = m_interface->tag_get_data( srcParentTag, m_overlap_entities, &rbids_src[0] );MB_CHK_ERR( rval );
rval = m_interface->tag_get_data( tgtParentTag, m_overlap_entities, &rbids_tgt[0] );MB_CHK_ERR( rval );
for( size_t ix = 0; ix < n_overlap_entitites; ++ix )
{
sorted_overlap_order[ix].first =
( gid_to_lid_covsrc.size() ? gid_to_lid_covsrc[rbids_src[ix]] : rbids_src[ix] );
sorted_overlap_order[ix].second = ix;
}
std::sort( sorted_overlap_order.begin(), sorted_overlap_order.end(), IntPairComparator );
// sorted_overlap_order[ie].second , ie=0,nOverlap-1 is the order such that overlap elems
// are ordered by source parent
std::vector< int > ghFlags;
if( is_parallel && size > 1 )
{
Tag ghostTag;
ghFlags.resize( n_overlap_entitites );
rval = m_interface->tag_get_handle( "ORIG_PROC", ghostTag );MB_CHK_ERR( rval );
rval = m_interface->tag_get_data( ghostTag, m_overlap_entities, &ghFlags[0] );MB_CHK_ERR( rval );
}
for( unsigned ie = 0; ie < n_overlap_entitites; ++ie )
{
int ix = sorted_overlap_order[ie].second; // original index of the element
m_overlap->vecSourceFaceIx[ie] =
( gid_to_lid_covsrc.size() ? gid_to_lid_covsrc[rbids_src[ix]] : rbids_src[ix] - 1 );
if( is_parallel && size > 1 && ghFlags[ix] >= 0 ) // it means it is a ghost overlap element
m_overlap->vecTargetFaceIx[ie] = -1; // this should not participate in smat!
else
m_overlap->vecTargetFaceIx[ie] =
( gid_to_lid_tgt.size() ? gid_to_lid_tgt[rbids_tgt[ix]] : rbids_tgt[ix] - 1 );
}
}
FaceVector& faces = m_overlap->faces;
faces.resize( n_overlap_entitites );
Range verts;
// let us now get the vertices from all the elements
rval = m_interface->get_connectivity( m_overlap_entities, verts );MB_CHK_ERR( rval );
// std::cout << "Vertices size = " << verts.size() << " , psize = " << verts.psize() << ",
// compactness = " << verts.compactness() << std::endl;
std::map< EntityHandle, int > indxMap;
bool useRange = true;
if( verts.compactness() > 0.01 )
{
int j = 0;
for( Range::iterator it = verts.begin(); it != verts.end(); ++it )
indxMap[*it] = j++;
useRange = false;
}
for( unsigned ifac = 0; ifac < m_overlap_entities.size(); ++ifac )
{
const unsigned iface = sorted_overlap_order[ifac].second;
Face& face = faces[ifac];
EntityHandle ehandle = m_overlap_entities[iface];
// get the connectivity for each edge
const EntityHandle* connectface;
int nnodesf;
rval = m_interface->get_connectivity( ehandle, connectface, nnodesf );MB_CHK_ERR( rval );
face.edges.resize( nnodesf );
for( int iverts = 0; iverts < nnodesf; ++iverts )
{
int indx = ( useRange ? verts.index( connectface[iverts] ) : indxMap[connectface[iverts]] );
assert( indx >= 0 );
face.SetNode( iverts, indx );
}
}
unsigned nnodes = verts.size();
NodeVector& nodes = m_overlap->nodes;
nodes.resize( nnodes );
// Set the data for the vertices
std::vector< double > coordx( nnodes ), coordy( nnodes ), coordz( nnodes );
rval = m_interface->get_coords( verts, &coordx[0], &coordy[0], &coordz[0] );MB_CHK_ERR( rval );
for( unsigned inode = 0; inode < nnodes; ++inode )
{
Node& node = nodes[inode];
node.x = coordx[inode];
node.y = coordy[inode];
node.z = coordz[inode];
}
coordx.clear();
coordy.clear();
coordz.clear();
verts.clear();
m_overlap->RemoveZeroEdges();
m_overlap->RemoveCoincidentNodes( false );
// Generate reverse node array and edge map
// if ( constructEdgeMap ) m_overlap->ConstructEdgeMap(false);
// m_overlap->ConstructReverseNodeArray();
// m_overlap->Validate();
return MB_SUCCESS;
}
// Should be ordered as Source, Target, Overlap
ErrorCode TempestRemapper::ComputeGlobalLocalMaps()
{
ErrorCode rval;
if( 0 == m_covering_source )
{
m_covering_source = new Mesh();
rval = convert_mesh_to_tempest_private( m_covering_source, m_covering_source_set, m_covering_source_entities,
&m_covering_source_vertices );MB_CHK_SET_ERR( rval, "Can't convert source Tempest mesh" );
// std::cout << "ComputeGlobalLocalMaps: " << rank << ", " << " covering entities = [" <<
// m_covering_source_vertices.size() << ", " << m_covering_source_entities.size() << "]\n";
}
gid_to_lid_src.clear();
lid_to_gid_src.clear();
gid_to_lid_covsrc.clear();
lid_to_gid_covsrc.clear();
gid_to_lid_tgt.clear();
lid_to_gid_tgt.clear();
{
Tag gidtag = m_interface->globalId_tag();
std::vector< int > gids;
if( point_cloud_source )
{
gids.resize( m_covering_source_vertices.size(), -1 );
rval = m_interface->tag_get_data( gidtag, m_covering_source_vertices, &gids[0] );MB_CHK_ERR( rval );
}
else
{
gids.resize( m_covering_source_entities.size(), -1 );
rval = m_interface->tag_get_data( gidtag, m_covering_source_entities, &gids[0] );MB_CHK_ERR( rval );
}
for( unsigned ie = 0; ie < gids.size(); ++ie )
{
gid_to_lid_covsrc[gids[ie]] = ie;
lid_to_gid_covsrc[ie] = gids[ie];
}
if( point_cloud_source )
{
gids.resize( m_source_vertices.size(), -1 );
rval = m_interface->tag_get_data( gidtag, m_source_vertices, &gids[0] );MB_CHK_ERR( rval );
}
else
{
gids.resize( m_source_entities.size(), -1 );
rval = m_interface->tag_get_data( gidtag, m_source_entities, &gids[0] );MB_CHK_ERR( rval );
}
for( unsigned ie = 0; ie < gids.size(); ++ie )
{
gid_to_lid_src[gids[ie]] = ie;
lid_to_gid_src[ie] = gids[ie];
}
if( point_cloud_target )
{
gids.resize( m_target_vertices.size(), -1 );
rval = m_interface->tag_get_data( gidtag, m_target_vertices, &gids[0] );MB_CHK_ERR( rval );
}
else
{
gids.resize( m_target_entities.size(), -1 );
rval = m_interface->tag_get_data( gidtag, m_target_entities, &gids[0] );MB_CHK_ERR( rval );
}
for( unsigned ie = 0; ie < gids.size(); ++ie )
{
gid_to_lid_tgt[gids[ie]] = ie;
lid_to_gid_tgt[ie] = gids[ie];
}
}
return MB_SUCCESS;
}
///////////////////////////////////////////////////////////////////////////////////
moab::ErrorCode moab::TempestRemapper::WriteTempestIntersectionMesh( std::string strOutputFileName,
const bool fAllParallel,
const bool fInputConcave,
const bool fOutputConcave )
{
// Let us alos write out the TempestRemap equivalent so that we can do some verification checks
if( fAllParallel )
{
if( is_root && size == 1 )
{
this->m_source->CalculateFaceAreas( fInputConcave );
this->m_target->CalculateFaceAreas( fOutputConcave );
this->m_overlap->Write( strOutputFileName.c_str(), NcFile::Netcdf4 );
}
else
{
// Perform reduction and write from root processor
// if ( is_root )
// std::cout << "--- PARALLEL IMPLEMENTATION is NOT AVAILABLE yet ---\n";
this->m_source->CalculateFaceAreas( fInputConcave );
this->m_covering_source->CalculateFaceAreas( fInputConcave );
this->m_target->CalculateFaceAreas( fOutputConcave );
this->m_overlap->Write( strOutputFileName.c_str(), NcFile::Netcdf4 );
}
}
else
{
this->m_source->CalculateFaceAreas( fInputConcave );
this->m_target->CalculateFaceAreas( fOutputConcave );
this->m_overlap->Write( strOutputFileName.c_str(), NcFile::Netcdf4 );
}
return moab::MB_SUCCESS;
}
void TempestRemapper::SetMeshSet( Remapper::IntersectionContext ctx /* Remapper::CoveringMesh*/,
moab::EntityHandle mset,
moab::Range& entities )
{
if( ctx == Remapper::SourceMesh ) // should not be used
{
m_source_entities = entities;
m_source_set = mset;
}
else if( ctx == Remapper::TargetMesh )
{
m_target_entities = entities;
m_target_set = mset;
}
else if( ctx == Remapper::CoveringMesh )
{
m_covering_source_entities = entities;
m_covering_source_set = mset;
}
else
{
// some error
}
return;
}
///////////////////////////////////////////////////////////////////////////////////
#ifndef MOAB_HAVE_MPI
ErrorCode TempestRemapper::assign_vertex_element_IDs( Tag idtag,
EntityHandle this_set,
const int dimension,
const int start_id )
{
assert( idtag );
ErrorCode rval;
Range entities;
rval = m_interface->get_entities_by_dimension( this_set, dimension, entities );MB_CHK_SET_ERR( rval, "Failed to get entities" );
if( entities.size() == 0 ) return moab::MB_SUCCESS;
int idoffset = start_id;
std::vector< int > gid( entities.size() );
for( unsigned i = 0; i < entities.size(); ++i )
gid[i] = idoffset++;
rval = m_interface->tag_set_data( idtag, entities, &gid[0] );MB_CHK_ERR( rval );
return moab::MB_SUCCESS;
}
#endif
///////////////////////////////////////////////////////////////////////////////
// Create a custom comparator for Nodes
bool operator<( Node const& lhs, Node const& rhs )
{
return std::pow( lhs.x - rhs.x, 2.0 ) + std::pow( lhs.y - rhs.y, 2.0 ) + std::pow( lhs.z - rhs.z, 2.0 );
}
ErrorCode TempestRemapper::GenerateCSMeshMetadata( const int ntot_elements,
moab::Range& ents,
moab::Range* secondary_ents,
const std::string& dofTagName,
int nP )
{
Mesh csMesh;
int err;
moab::ErrorCode rval;
const int res = std::sqrt( ntot_elements / 6 );
// create a temporary CS mesh
// NOTE: This will not work for RRM grids. Need to run HOMME for that case anyway
err = GenerateCSMesh( csMesh, res, "", "NetCDF4" );
if( err )
{
MB_CHK_SET_ERR( MB_FAILURE, "Failed to generate CS mesh through TempestRemap" );
;
}
rval = this->GenerateMeshMetadata( csMesh, ntot_elements, ents, secondary_ents, dofTagName, nP );MB_CHK_SET_ERR( rval, "Failed in call to GenerateMeshMetadata" );
return moab::MB_SUCCESS;
}
ErrorCode TempestRemapper::GenerateMeshMetadata( Mesh& csMesh,
const int ntot_elements,
moab::Range& ents,
moab::Range* secondary_ents,
const std::string dofTagName,
int nP )
{
moab::ErrorCode rval;
Tag dofTag;
bool created = false;
rval = m_interface->tag_get_handle( dofTagName.c_str(), nP * nP, MB_TYPE_INTEGER, dofTag,
MB_TAG_DENSE | MB_TAG_CREAT, 0, &created );MB_CHK_SET_ERR( rval, "Failed creating DoF tag" );
// Number of Faces
int nElements = static_cast< int >( csMesh.faces.size() );
assert( nElements == ntot_elements );
// Initialize data structures
DataArray3D< int > dataGLLnodes;
dataGLLnodes.Allocate( nP, nP, nElements );
std::map< Node, int > mapNodes;
std::map< Node, moab::EntityHandle > mapLocalMBNodes;
// GLL Quadrature nodes
DataArray1D< double > dG;
DataArray1D< double > dW;
GaussLobattoQuadrature::GetPoints( nP, 0.0, 1.0, dG, dW );
moab::Range entities( ents );
if( secondary_ents ) entities.insert( secondary_ents->begin(), secondary_ents->end() );
double elcoords[3];
for( unsigned iel = 0; iel < entities.size(); ++iel )
{
EntityHandle eh = entities[iel];
rval = m_interface->get_coords( &eh, 1, elcoords );
Node elCentroid( elcoords[0], elcoords[1], elcoords[2] );
mapLocalMBNodes.insert( std::pair< Node, moab::EntityHandle >( elCentroid, eh ) );
}
// Build a Kd-tree for local mesh (nearest neighbor searches)
// Loop over all elements in CS-Mesh
// Then find if current centroid is in an element
// If yes - then let us compute the DoF numbering and set to tag data
// If no - then compute DoF numbering BUT DO NOT SET to tag data
// continue
int* dofIDs = new int[nP * nP];
// Write metadata
for( int k = 0; k < nElements; k++ )
{
const Face& face = csMesh.faces[k];
const NodeVector& nodes = csMesh.nodes;
if( face.edges.size() != 4 )
{
_EXCEPTIONT( "Mesh must only contain quadrilateral elements" );
}
Node centroid;
centroid.x = centroid.y = centroid.z = 0.0;
for( unsigned l = 0; l < face.edges.size(); ++l )
{
centroid.x += nodes[face[l]].x;
centroid.y += nodes[face[l]].y;
centroid.z += nodes[face[l]].z;
}
const double factor = 1.0 / face.edges.size();
centroid.x *= factor;
centroid.y *= factor;
centroid.z *= factor;
bool locElem = false;
EntityHandle current_eh;
if( mapLocalMBNodes.find( centroid ) != mapLocalMBNodes.end() )
{
locElem = true;
current_eh = mapLocalMBNodes[centroid];
}
for( int j = 0; j < nP; j++ )
{
for( int i = 0; i < nP; i++ )
{
// Get local map vectors
Node nodeGLL;
Node dDx1G;
Node dDx2G;
// ApplyLocalMap(
// face,
// nodevec,
// dG[i],
// dG[j],
// nodeGLL,
// dDx1G,
// dDx2G);
const double& dAlpha = dG[i];
const double& dBeta = dG[j];
// Calculate nodal locations on the plane
double dXc = nodes[face[0]].x * ( 1.0 - dAlpha ) * ( 1.0 - dBeta ) +
nodes[face[1]].x * dAlpha * ( 1.0 - dBeta ) + nodes[face[2]].x * dAlpha * dBeta +
nodes[face[3]].x * ( 1.0 - dAlpha ) * dBeta;
double dYc = nodes[face[0]].y * ( 1.0 - dAlpha ) * ( 1.0 - dBeta ) +
nodes[face[1]].y * dAlpha * ( 1.0 - dBeta ) + nodes[face[2]].y * dAlpha * dBeta +
nodes[face[3]].y * ( 1.0 - dAlpha ) * dBeta;
double dZc = nodes[face[0]].z * ( 1.0 - dAlpha ) * ( 1.0 - dBeta ) +
nodes[face[1]].z * dAlpha * ( 1.0 - dBeta ) + nodes[face[2]].z * dAlpha * dBeta +
nodes[face[3]].z * ( 1.0 - dAlpha ) * dBeta;
double dR = sqrt( dXc * dXc + dYc * dYc + dZc * dZc );
// Mapped node location
nodeGLL.x = dXc / dR;
nodeGLL.y = dYc / dR;
nodeGLL.z = dZc / dR;
// Determine if this is a unique Node
std::map< Node, int >::const_iterator iter = mapNodes.find( nodeGLL );
if( iter == mapNodes.end() )
{
// Insert new unique node into map
int ixNode = static_cast< int >( mapNodes.size() );
mapNodes.insert( std::pair< Node, int >( nodeGLL, ixNode ) );
dataGLLnodes[j][i][k] = ixNode + 1;
}
else
{
dataGLLnodes[j][i][k] = iter->second + 1;
}
dofIDs[j * nP + i] = dataGLLnodes[j][i][k];
}
}
if( locElem )
{
rval = m_interface->tag_set_data( dofTag, ¤t_eh, 1, dofIDs );MB_CHK_SET_ERR( rval, "Failed to tag_set_data for DoFs" );
}
}
// clear memory
delete[] dofIDs;
mapLocalMBNodes.clear();
mapNodes.clear();
return moab::MB_SUCCESS;
}
///////////////////////////////////////////////////////////////////////////////////
ErrorCode TempestRemapper::ConstructCoveringSet( double tolerance,
double radius_src,
double radius_tgt,
double boxeps,
bool regional_mesh )
{
ErrorCode rval;
rrmgrids = regional_mesh;
moab::Range local_verts;
// Initialize intersection context
mbintx = new moab::Intx2MeshOnSphere( m_interface );
mbintx->set_error_tolerance( tolerance );
mbintx->set_radius_source_mesh( radius_src );
mbintx->set_radius_destination_mesh( radius_tgt );
mbintx->set_box_error( boxeps );
#ifdef MOAB_HAVE_MPI
mbintx->set_parallel_comm( m_pcomm );
#endif
// compute the maxiumum edges in elements comprising source and target mesh
rval = mbintx->FindMaxEdges( m_source_set, m_target_set );MB_CHK_ERR( rval );
this->max_source_edges = mbintx->max_edges_1;
this->max_target_edges = mbintx->max_edges_2;
// Note: lots of communication possible, if mesh is distributed very differently
#ifdef MOAB_HAVE_MPI
if( is_parallel )
{
rval = mbintx->build_processor_euler_boxes( m_target_set, local_verts );MB_CHK_ERR( rval );
rval = m_interface->create_meshset( moab::MESHSET_SET, m_covering_source_set );MB_CHK_SET_ERR( rval, "Can't create new set" );
rval = mbintx->construct_covering_set( m_source_set, m_covering_source_set );MB_CHK_ERR( rval );
// if (rank == 1)
// {
// moab::Range ents;
// m_interface->get_entities_by_dimension(m_covering_source_set, 2, ents);
// m_interface->remove_entities(m_covering_source_set, ents);
// }
}
else
{
#endif
if( rrmgrids )
{
rval = m_interface->create_meshset( moab::MESHSET_SET, m_covering_source_set );MB_CHK_SET_ERR( rval, "Can't create new set" );
double tolerance = 1e-6, btolerance = 1e-3;
moab::AdaptiveKDTree tree( m_interface );
moab::Range targetVerts;
rval = m_interface->get_connectivity( m_target_entities, targetVerts, true );MB_CHK_ERR( rval );
rval = tree.build_tree( m_source_entities, &m_source_set );MB_CHK_ERR( rval );
for( unsigned ie = 0; ie < targetVerts.size(); ++ie )
{
EntityHandle el = targetVerts[ie], leaf;
double point[3];
// Get the element centroid to be queried
rval = m_interface->get_coords( &el, 1, point );MB_CHK_ERR( rval );
// Search for the closest source element in the master mesh corresponding
// to the target element centroid in the slave mesh
rval = tree.point_search( point, leaf, tolerance, btolerance );MB_CHK_ERR( rval );
if( leaf == 0 )
{
leaf = m_source_set; // no hint
}
std::vector< moab::EntityHandle > leaf_elems;
// We only care about the dimension that the user specified.
// MOAB partitions are ordered by elements anyway.
rval = m_interface->get_entities_by_dimension( leaf, 2, leaf_elems );MB_CHK_ERR( rval );
if( !leaf_elems.size() )
{
// std::cout << ie << ": " << " No leaf elements found." << std::endl;
continue;
}
// Now get the master element centroids so that we can compute
// the minimum distance to the target point
std::vector< double > centroids( leaf_elems.size() * 3 );
rval = m_interface->get_coords( &leaf_elems[0], leaf_elems.size(), ¢roids[0] );MB_CHK_ERR( rval );
double dist = 1e5;
int pinelem = -1;
for( size_t il = 0; il < leaf_elems.size(); ++il )
{
const double* centroid = ¢roids[il * 3];
const double locdist = std::pow( point[0] - centroid[0], 2 ) +
std::pow( point[1] - centroid[1], 2 ) +
std::pow( point[2] - centroid[2], 2 );
if( locdist < dist )
{
dist = locdist;
pinelem = il;
m_covering_source_entities.insert( leaf_elems[il] );
}
}
if( pinelem < 0 )
{
std::cout << ie
<< ": [Error] - Could not find a minimum distance within the leaf "
"nodes. Dist = "
<< dist << std::endl;
}
}
// rval = tree.reset_tree();MB_CHK_ERR(rval);
std::cout << "[INFO] - Total covering source entities = " << m_covering_source_entities.size() << std::endl;
rval = m_interface->add_entities( m_covering_source_set, m_covering_source_entities );MB_CHK_ERR( rval );
}
else
{
m_covering_source_set = m_source_set;
m_covering_source = m_source;
m_covering_source_entities = m_source_entities; // this is a tempest mesh object; careful about
// incrementing the reference?
m_covering_source_vertices = m_source_vertices; // this is a tempest mesh object; careful about
// incrementing the reference?
}
#ifdef MOAB_HAVE_MPI
}
#endif
return rval;
}
ErrorCode TempestRemapper::ComputeOverlapMesh( bool kdtree_search, bool use_tempest )
{
ErrorCode rval;
const bool outputEnabled = ( this->rank == 0 );
moab::DebugOutput dbgprint( std::cout, this->rank, 0 );
dbgprint.set_prefix( "[ComputeOverlapMesh]: " );
// const double radius = 1.0 /*2.0*acos(-1.0)*/;
// const double boxeps = 0.1;
// Create the intersection on the sphere object and set up necessary parameters
// First, split based on whether to use Tempest or MOAB
// If Tempest
// 1) Check for valid Mesh and pointers to objects for source/target
// 2) Invoke GenerateOverlapWithMeshes routine from Tempest library
// If MOAB
// 1) Check for valid source and target meshsets (and entities)
// 2) Build processor bounding boxes and construct a covering set
// 3) Perform intersection between the source (covering) and target entities
if( use_tempest )
{
// Now let us construct the overlap mesh, by calling TempestRemap interface directly
// For the overlap method, choose between: "fuzzy", "exact" or "mixed"
assert( m_source != NULL );
assert( m_target != NULL );
if( m_overlap != NULL ) delete m_overlap;
m_overlap = new Mesh();
bool concaveMeshA = false, concaveMeshB = false;
int err = GenerateOverlapWithMeshes( *m_covering_source, *m_target, *m_overlap, "" /*outFilename*/, "Netcdf4",
"exact", concaveMeshA, concaveMeshB, false );
if( err )
{
MB_CHK_SET_ERR( MB_FAILURE, "TempestRemap: Can't compute the intersection of meshes on the sphere" );
}
}
else
{
Tag gidtag = m_interface->globalId_tag();<--- Shadowed declaration
moab::EntityHandle subrange[2];
int gid[2];
if( m_source_entities.size() > 1 )
{ // Let us do some sanity checking to fix ID if they have are setup incorrectly
subrange[0] = m_source_entities[0];
subrange[1] = m_source_entities[1];
rval = m_interface->tag_get_data( gidtag, subrange, 2, gid );MB_CHK_ERR( rval );
// Check if we need to impose Global ID numbering for vertices and elements. This may be
// needed if we load the meshes from exodus or some other formats that may not have a
// numbering forced.
if( gid[0] + gid[1] == 0 ) // this implies first two elements have GID = 0
{
#ifdef MOAB_HAVE_MPI
rval = m_pcomm->assign_global_ids( m_source_set, 2, 1, false, true, false );MB_CHK_ERR( rval );
#else
rval = this->assign_vertex_element_IDs( gidtag, m_source_set, 2, 1 );MB_CHK_ERR( rval );
#endif
}
}
if( m_target_entities.size() > 1 )
{
subrange[0] = m_target_entities[0];
subrange[1] = m_target_entities[1];
rval = m_interface->tag_get_data( gidtag, subrange, 2, gid );MB_CHK_ERR( rval );
// Check if we need to impose Global ID numbering for vertices and elements. This may be
// needed if we load the meshes from exodus or some other formats that may not have a
// numbering forced.
if( gid[0] + gid[1] == 0 ) // this implies first two elements have GID = 0
{
#ifdef MOAB_HAVE_MPI
rval = m_pcomm->assign_global_ids( m_target_set, 2, 1, false, true, false );MB_CHK_ERR( rval );
#else
rval = this->assign_vertex_element_IDs( gidtag, m_target_set, 2, 1 );MB_CHK_ERR( rval );
#endif
}
}
// Now perform the actual parallel intersection between the source and the target meshes
if( kdtree_search )
{
if( outputEnabled ) dbgprint.printf( 0, "Computing intersection mesh with the Kd-tree search algorithm" );
rval = mbintx->intersect_meshes_kdtree( m_covering_source_set, m_target_set, m_overlap_set );MB_CHK_SET_ERR( rval, "Can't compute the intersection of meshes on the sphere with brute-force" );
}
else
{
if( outputEnabled )
dbgprint.printf( 0, "Computing intersection mesh with the advancing-front propagation algorithm" );
rval = mbintx->intersect_meshes( m_covering_source_set, m_target_set, m_overlap_set );MB_CHK_SET_ERR( rval, "Can't compute the intersection of meshes on the sphere" );
}
#ifdef MOAB_HAVE_MPI
if( is_parallel || rrmgrids )
{
#ifdef VERBOSE
std::stringstream ffc, fft, ffo;
ffc << "cover_" << rank << ".h5m";
fft << "target_" << rank << ".h5m";
ffo << "intx_" << rank << ".h5m";
rval = m_interface->write_mesh( ffc.str().c_str(), &m_covering_source_set, 1 );MB_CHK_ERR( rval );
rval = m_interface->write_mesh( fft.str().c_str(), &m_target_set, 1 );MB_CHK_ERR( rval );
rval = m_interface->write_mesh( ffo.str().c_str(), &m_overlap_set, 1 );MB_CHK_ERR( rval );
#endif
// because we do not want to work with elements in coverage set that do not participate
// in intersection, remove them from the coverage set we will not delete them yet, just
// remove from the set !
if( !point_cloud_target )
{
Range covEnts;
rval = m_interface->get_entities_by_dimension( m_covering_source_set, 2, covEnts );MB_CHK_ERR( rval );
Tag gidtag = m_interface->globalId_tag();<--- Shadow variable
std::map< int, int > loc_gid_to_lid_covsrc;
std::vector< int > gids( covEnts.size(), -1 );
rval = m_interface->tag_get_data( gidtag, covEnts, &gids[0] );MB_CHK_ERR( rval );
for( unsigned ie = 0; ie < gids.size(); ++ie )
{
loc_gid_to_lid_covsrc[gids[ie]] = ie;
}
Range intxCov;
Range intxCells;
Tag srcParentTag;
rval = m_interface->tag_get_handle( "SourceParent", srcParentTag );MB_CHK_ERR( rval );
rval = m_interface->get_entities_by_dimension( m_overlap_set, 2, intxCells );MB_CHK_ERR( rval );
for( Range::iterator it = intxCells.begin(); it != intxCells.end(); it++ )<--- Prefer prefix ++/-- operators for non-primitive types. [+]Prefix ++/-- operators should be preferred for non-primitive types. Pre-increment/decrement can be more efficient than post-increment/decrement. Post-increment/decrement usually involves keeping a copy of the previous value around and adds a little extra code.
{
EntityHandle intxCell = *it;
int blueParent = -1;
rval = m_interface->tag_get_data( srcParentTag, &intxCell, 1, &blueParent );MB_CHK_ERR( rval );
// if (is_root) std::cout << "Found intersecting element: " << blueParent << ",
// " << gid_to_lid_covsrc[blueParent] << "\n";
assert( blueParent >= 0 );
intxCov.insert( covEnts[loc_gid_to_lid_covsrc[blueParent]] );
}
Range notNeededCovCells = moab::subtract( covEnts, intxCov );
// remove now from coverage set the cells that are not needed
rval = m_interface->remove_entities( m_covering_source_set, notNeededCovCells );MB_CHK_ERR( rval );
covEnts = moab::subtract( covEnts, notNeededCovCells );
#ifdef VERBOSE
std::cout << " total participating elements in the covering set: " << intxCov.size() << "\n";
std::cout << " remove from coverage set elements that are not intersected: " << notNeededCovCells.size()
<< "\n";
#endif
if( size > 1 )
{
// some source elements cover multiple target partitions; the conservation logic
// requires to know all overlap elements for a source element; they need to be
// communicated from the other target partitions
//
// so first we have to identify source (coverage) elements that cover multiple
// target partitions
// we will then mark the source, we will need to migrate the overlap elements
// that cover this to the original source for the source element; then
// distribute the overlap elements to all processors that have the coverage mesh
// used
rval = augment_overlap_set();MB_CHK_ERR( rval );
}
}
// m_covering_source = new Mesh();
// rval = convert_mesh_to_tempest_private ( m_covering_source, m_covering_source_set,
// m_covering_source_entities, &m_covering_source_vertices ); MB_CHK_SET_ERR ( rval,
// "Can't convert source Tempest mesh" );
}
#endif
// Fix any inconsistencies in the overlap mesh
{
IntxAreaUtils areaAdaptor;
rval = IntxUtils::fix_degenerate_quads( m_interface, m_overlap_set );MB_CHK_ERR( rval );
rval = areaAdaptor.positive_orientation( m_interface, m_overlap_set, 1.0 /*radius*/ );MB_CHK_ERR( rval );
}
// Now let us re-convert the MOAB mesh back to Tempest representation
rval = this->ComputeGlobalLocalMaps();MB_CHK_ERR( rval );
rval = this->convert_overlap_mesh_sorted_by_source();MB_CHK_ERR( rval );
// free the memory
delete mbintx;
}
return MB_SUCCESS;
}
#ifdef MOAB_HAVE_MPI
// this function is called only in parallel
///////////////////////////////////////////////////////////////////////////////////
ErrorCode TempestRemapper::augment_overlap_set()
{
/*
* overall strategy:
*
* 1) collect all boundary target cells on the current task, affected by the partition boundary;
* note: not only partition boundary, we need all boundary (all coastal lines) and partition
* boundary targetBoundaryIds is the set of target boundary cell IDs
*
* 2) collect all source cells that are intersecting boundary cells (call them
* affectedSourceCellsIds)
*
* 3) collect overlap, that is accumulate all overlap cells that have source target in
* affectedSourceCellsIds
*/
// first, get all edges on the partition boundary, on the target mesh, then all the target
// elements that border the partition boundary
ErrorCode rval;
Skinner skinner( m_interface );
Range targetCells, boundaryEdges;
rval = m_interface->get_entities_by_dimension( m_target_set, 2, targetCells );MB_CHK_ERR( rval );
/// find all boundary edges
rval = skinner.find_skin( 0, targetCells, false, boundaryEdges );MB_CHK_ERR( rval );
// filter boundary edges that are on partition boundary, not on boundary
// find all cells adjacent to these boundary edges, from target set
Range boundaryCells; // these will be filtered from target_set
rval = m_interface->get_adjacencies( boundaryEdges, 2, false, boundaryCells, Interface::UNION );MB_CHK_ERR( rval );
boundaryCells = intersect( boundaryCells, targetCells );
#ifdef VERBOSE
EntityHandle tmpSet;
rval = m_interface->create_meshset( MESHSET_SET, tmpSet );MB_CHK_SET_ERR( rval, "Can't create temporary set" );
// add the boundary set and edges, and save it to a file
rval = m_interface->add_entities( tmpSet, boundaryCells );MB_CHK_SET_ERR( rval, "Can't add entities" );
rval = m_interface->add_entities( tmpSet, boundaryEdges );MB_CHK_SET_ERR( rval, "Can't add edges" );
std::stringstream ffs;
ffs << "boundaryCells_0" << rank << ".h5m";
rval = m_interface->write_mesh( ffs.str().c_str(), &tmpSet, 1 );MB_CHK_ERR( rval );
#endif
// now that we have the boundary cells, see which overlap polys have have these as parents;
// find the ids of the boundary cells;
Tag gid = m_interface->globalId_tag();
std::set< int > targetBoundaryIds;
for( Range::iterator it = boundaryCells.begin(); it != boundaryCells.end(); it++ )<--- Prefer prefix ++/-- operators for non-primitive types. [+]Prefix ++/-- operators should be preferred for non-primitive types. Pre-increment/decrement can be more efficient than post-increment/decrement. Post-increment/decrement usually involves keeping a copy of the previous value around and adds a little extra code.
{
int tid;
EntityHandle targetCell = *it;
rval = m_interface->tag_get_data( gid, &targetCell, 1, &tid );MB_CHK_SET_ERR( rval, "Can't get global id tag on target cell" );
if( tid < 0 ) std::cout << " incorrect id for a target cell\n";
targetBoundaryIds.insert( tid );
}
Range overlapCells;
rval = m_interface->get_entities_by_dimension( m_overlap_set, 2, overlapCells );MB_CHK_ERR( rval );
std::set< int > affectedSourceCellsIds;
Tag targetParentTag, sourceParentTag; // do not use blue/red, as it is more confusing
rval = m_interface->tag_get_handle( "TargetParent", targetParentTag );MB_CHK_ERR( rval );
rval = m_interface->tag_get_handle( "SourceParent", sourceParentTag );MB_CHK_ERR( rval );
for( Range::iterator it = overlapCells.begin(); it != overlapCells.end(); it++ )<--- Prefer prefix ++/-- operators for non-primitive types. [+]Prefix ++/-- operators should be preferred for non-primitive types. Pre-increment/decrement can be more efficient than post-increment/decrement. Post-increment/decrement usually involves keeping a copy of the previous value around and adds a little extra code.
{
EntityHandle intxCell = *it;
int targetParentID, sourceParentID;
rval = m_interface->tag_get_data( targetParentTag, &intxCell, 1, &targetParentID );MB_CHK_ERR( rval );
if( targetBoundaryIds.find( targetParentID ) != targetBoundaryIds.end() )
{
// this means that the source element is affected
rval = m_interface->tag_get_data( sourceParentTag, &intxCell, 1, &sourceParentID );MB_CHK_ERR( rval );
affectedSourceCellsIds.insert( sourceParentID );
}
}
// now find all source cells affected, based on their id;
// (we do not have yet the mapping gid_to_lid_covsrc)
std::map< int, EntityHandle > affectedCovCellFromID; // map from source cell id to the eh; it is needed to find out
// the original processor
// this one came from , so to know where to send the overlap elements
// use std::set<EntityHandle> instead of moab::Range for collecting cells, either on coverage or
// target or intx cells
std::set< EntityHandle > affectedCovCells; // their overlap cells will be sent to their
// original task, then distributed to all
// other processes that might need them to compute conservation
Range covCells;
rval = m_interface->get_entities_by_dimension( m_covering_source_set, 2, covCells );MB_CHK_ERR( rval );
// loop thru all cov cells, to find the ones with global ids in affectedSourceCellsIds
for( Range::iterator it = covCells.begin(); it != covCells.end(); it++ )<--- Prefer prefix ++/-- operators for non-primitive types. [+]Prefix ++/-- operators should be preferred for non-primitive types. Pre-increment/decrement can be more efficient than post-increment/decrement. Post-increment/decrement usually involves keeping a copy of the previous value around and adds a little extra code.
{
EntityHandle covCell = *it; //
int covID;
rval = m_interface->tag_get_data( gid, &covCell, 1, &covID );<--- rval is assigned
if( affectedSourceCellsIds.find( covID ) != affectedSourceCellsIds.end() )
{
// this source cell is affected;
affectedCovCellFromID[covID] = covCell;
affectedCovCells.insert( covCell );
}
}
// now loop again over all overlap cells, to see if their source parent is "affected"
// store in ranges the overlap cells that need to be sent to original task of the source cell
// from there, they will be redistributed to the tasks that need that coverage cell
Tag sendProcTag;
rval = m_interface->tag_get_handle( "sending_processor", 1, MB_TYPE_INTEGER, sendProcTag );<--- rval is overwritten<--- rval is assigned<--- rval is assigned
// basically a map from original processor task to the set of overlap cells to be sent there
std::map< int, std::set< EntityHandle > > overlapCellsForTask;
// this set will contain all intx cells that will need to be sent ( a union of above sets ,
// that are organized per task on the above map )
std::set< EntityHandle > overlapCellsToSend;
for( Range::iterator it = overlapCells.begin(); it != overlapCells.end(); it++ )<--- Prefer prefix ++/-- operators for non-primitive types. [+]Prefix ++/-- operators should be preferred for non-primitive types. Pre-increment/decrement can be more efficient than post-increment/decrement. Post-increment/decrement usually involves keeping a copy of the previous value around and adds a little extra code.
{
EntityHandle intxCell = *it;
int sourceParentID;
rval = m_interface->tag_get_data( sourceParentTag, &intxCell, 1, &sourceParentID );MB_CHK_ERR( rval );
if( affectedSourceCellsIds.find( sourceParentID ) != affectedSourceCellsIds.end() )
{
EntityHandle covCell = affectedCovCellFromID[sourceParentID];
int orgTask;
rval = m_interface->tag_get_data( sendProcTag, &covCell, 1, &orgTask );MB_CHK_ERR( rval );
overlapCellsForTask[orgTask].insert(
intxCell ); // put the overlap cell in corresponding range (set<EntityHandle>)
overlapCellsToSend.insert( intxCell ); // also put it in this range, for debugging mostly
}
}
// now prepare to send; will use crystal router, as the buffers in ParComm are prepared only
// for neighbors; coverage mesh was also migrated with crystal router, so here we go again :(
// find out the maximum number of edges of the polygons needed to be sent
// we could we conservative and use a big number, or the number from intx, if we store it then?
int maxEdges = 0;
for( std::set< EntityHandle >::iterator it = overlapCellsToSend.begin(); it != overlapCellsToSend.end(); it++ )<--- Prefer prefix ++/-- operators for non-primitive types. [+]Prefix ++/-- operators should be preferred for non-primitive types. Pre-increment/decrement can be more efficient than post-increment/decrement. Post-increment/decrement usually involves keeping a copy of the previous value around and adds a little extra code.
{
EntityHandle intxCell = *it;
int nnodes;
const EntityHandle* conn;
rval = m_interface->get_connectivity( intxCell, conn, nnodes );MB_CHK_ERR( rval );
if( maxEdges < nnodes ) maxEdges = nnodes;
}
// find the maximum among processes in intersection
int globalMaxEdges;
if( m_pcomm )
MPI_Allreduce( &maxEdges, &globalMaxEdges, 1, MPI_INT, MPI_MAX, m_pcomm->comm() );
else
globalMaxEdges = maxEdges;
#ifdef VERBOSE
if( is_root ) std::cout << "maximum number of edges for polygons to send is " << globalMaxEdges << "\n";
#endif
#ifdef VERBOSE
EntityHandle tmpSet2;
rval = m_interface->create_meshset( MESHSET_SET, tmpSet2 );MB_CHK_SET_ERR( rval, "Can't create temporary set2" );<--- rval is overwritten
// add the affected source and overlap elements
for( std::set< EntityHandle >::iterator it = overlapCellsToSend.begin(); it != overlapCellsToSend.end(); it++ )<--- Prefer prefix ++/-- operators for non-primitive types. [+]Prefix ++/-- operators should be preferred for non-primitive types. Pre-increment/decrement can be more efficient than post-increment/decrement. Post-increment/decrement usually involves keeping a copy of the previous value around and adds a little extra code.
{
EntityHandle intxCell = *it;
rval = m_interface->add_entities( tmpSet2, &intxCell, 1 );MB_CHK_SET_ERR( rval, "Can't add entities" );
}
for( std::set< EntityHandle >::iterator it = affectedCovCells.begin(); it != affectedCovCells.end(); it++ )<--- Prefer prefix ++/-- operators for non-primitive types. [+]Prefix ++/-- operators should be preferred for non-primitive types. Pre-increment/decrement can be more efficient than post-increment/decrement. Post-increment/decrement usually involves keeping a copy of the previous value around and adds a little extra code.
{
EntityHandle covCell = *it;
rval = m_interface->add_entities( tmpSet2, &covCell, 1 );MB_CHK_SET_ERR( rval, "Can't add entities" );
}
std::stringstream ffs2;
// these will contain coverage cells and intx cells on the boundary
ffs2 << "affectedCells_" << m_pcomm->rank() << ".h5m";
rval = m_interface->write_mesh( ffs2.str().c_str(), &tmpSet2, 1 );MB_CHK_ERR( rval );
#endif
// form tuple lists to send vertices and cells;
// the problem is that the lists of vertices will need to have other information, like the
// processor it comes from, and its index in that list; we may have to duplicate vertices, but
// we do not care much; we will not duplicate overlap elements, just the vertices, as they may
// come from different cells and different processes each vertex will have a local index and a
// processor task it is coming from
// look through the std::set's to be sent to other processes, and form the vertex tuples and
// cell tuples
//
std::map< int, std::set< EntityHandle > > verticesOverlapForTask;
// Range allVerticesToSend;
std::set< EntityHandle > allVerticesToSend;
std::map< EntityHandle, int > allVerticesToSendMap;
int numVerts = 0;
int numOverlapCells = 0;
for( std::map< int, std::set< EntityHandle > >::iterator it = overlapCellsForTask.begin();
it != overlapCellsForTask.end(); it++ )<--- Prefer prefix ++/-- operators for non-primitive types. [+]Prefix ++/-- operators should be preferred for non-primitive types. Pre-increment/decrement can be more efficient than post-increment/decrement. Post-increment/decrement usually involves keeping a copy of the previous value around and adds a little extra code.
{
int sendToProc = it->first;
std::set< EntityHandle >& overlapCellsToSend2 = it->second; // organize vertices in std::set per processor
// Range vertices;
std::set< EntityHandle > vertices; // collect all vertices connected to overlapCellsToSend2
for( std::set< EntityHandle >::iterator set_it = overlapCellsToSend2.begin();
set_it != overlapCellsToSend2.end(); ++set_it )
{
int nnodes_local = 0;
const EntityHandle* conn1 = NULL;
rval = m_interface->get_connectivity( *set_it, conn1, nnodes_local );MB_CHK_ERR( rval );
for( int k = 0; k < nnodes_local; k++ )
vertices.insert( conn1[k] );
}
verticesOverlapForTask[sendToProc] = vertices;
numVerts += (int)vertices.size();
numOverlapCells += (int)overlapCellsToSend2.size();
allVerticesToSend.insert( vertices.begin(), vertices.end() );
}
// build the index map, from entity handle to index in all vert set
int j = 0;<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration
for( std::set< EntityHandle >::iterator vert_it = allVerticesToSend.begin(); vert_it != allVerticesToSend.end();
vert_it++, j++ )<--- Prefer prefix ++/-- operators for non-primitive types. [+]Prefix ++/-- operators should be preferred for non-primitive types. Pre-increment/decrement can be more efficient than post-increment/decrement. Post-increment/decrement usually involves keeping a copy of the previous value around and adds a little extra code.
{
EntityHandle vert = *vert_it;
allVerticesToSendMap[vert] = j;
}
// first send vertices in a tuple list, then send overlap cells, according to requests
// overlap cells need to send info about the blue and red parent tags, too
TupleList TLv; //
TLv.initialize( 2, 0, 0, 3, numVerts ); // to proc, index in all range, DP points
TLv.enableWriteAccess();
for( std::map< int, std::set< EntityHandle > >::iterator it = verticesOverlapForTask.begin();
it != verticesOverlapForTask.end(); it++ )<--- Prefer prefix ++/-- operators for non-primitive types. [+]Prefix ++/-- operators should be preferred for non-primitive types. Pre-increment/decrement can be more efficient than post-increment/decrement. Post-increment/decrement usually involves keeping a copy of the previous value around and adds a little extra code.
{
int sendToProc = it->first;
std::set< EntityHandle >& vertices = it->second;
int i = 0;
for( std::set< EntityHandle >::iterator it2 = vertices.begin(); it2 != vertices.end(); it2++, i++ )<--- Prefer prefix ++/-- operators for non-primitive types. [+]Prefix ++/-- operators should be preferred for non-primitive types. Pre-increment/decrement can be more efficient than post-increment/decrement. Post-increment/decrement usually involves keeping a copy of the previous value around and adds a little extra code.
{
int n = TLv.get_n();
TLv.vi_wr[2 * n] = sendToProc; // send to processor
EntityHandle v = *it2;
int indexInAllVert = allVerticesToSendMap[v];
TLv.vi_wr[2 * n + 1] = indexInAllVert; // will be orgProc, to differentiate indices
// of vertices sent to "sentToProc"
double coords[3];
rval = m_interface->get_coords( &v, 1, coords );MB_CHK_ERR( rval );
TLv.vr_wr[3 * n] = coords[0]; // departure position, of the node local_verts[i]
TLv.vr_wr[3 * n + 1] = coords[1];
TLv.vr_wr[3 * n + 2] = coords[2];
TLv.inc_n();
}
}
TupleList TLc;
int sizeTuple = 4 + globalMaxEdges;
// total number of overlap cells to send
TLc.initialize( sizeTuple, 0, 0, 0,
numOverlapCells ); // to proc, blue parent ID, red parent ID, nvert,
// connectivity[globalMaxEdges] (global ID v), local eh)
TLc.enableWriteAccess();
for( std::map< int, std::set< EntityHandle > >::iterator it = overlapCellsForTask.begin();
it != overlapCellsForTask.end(); it++ )<--- Prefer prefix ++/-- operators for non-primitive types. [+]Prefix ++/-- operators should be preferred for non-primitive types. Pre-increment/decrement can be more efficient than post-increment/decrement. Post-increment/decrement usually involves keeping a copy of the previous value around and adds a little extra code.
{
int sendToProc = it->first;
std::set< EntityHandle >& overlapCellsToSend2 = it->second;
// send also the target and source parents for these overlap cells
for( std::set< EntityHandle >::iterator it2 = overlapCellsToSend2.begin(); it2 != overlapCellsToSend2.end();
it2++ )<--- Prefer prefix ++/-- operators for non-primitive types. [+]Prefix ++/-- operators should be preferred for non-primitive types. Pre-increment/decrement can be more efficient than post-increment/decrement. Post-increment/decrement usually involves keeping a copy of the previous value around and adds a little extra code.
{
EntityHandle intxCell = *it2;
int sourceParentID, targetParentID;
rval = m_interface->tag_get_data( targetParentTag, &intxCell, 1, &targetParentID );MB_CHK_ERR( rval );
rval = m_interface->tag_get_data( sourceParentTag, &intxCell, 1, &sourceParentID );MB_CHK_ERR( rval );
int n = TLc.get_n();
TLc.vi_wr[sizeTuple * n] = sendToProc;
TLc.vi_wr[sizeTuple * n + 1] = sourceParentID;
TLc.vi_wr[sizeTuple * n + 2] = targetParentID;
int nnodes;
const EntityHandle* conn = NULL;
rval = m_interface->get_connectivity( intxCell, conn, nnodes );MB_CHK_ERR( rval );
TLc.vi_wr[sizeTuple * n + 3] = nnodes;
for( int i = 0; i < nnodes; i++ )
{
int indexVertex = allVerticesToSendMap[conn[i]];
; // the vertex index will be now unique per original proc
if( -1 == indexVertex ) MB_CHK_SET_ERR( MB_FAILURE, "Can't find vertex in range of vertices to send" );
TLc.vi_wr[sizeTuple * n + 4 + i] = indexVertex;
}
// fill the rest with 0, just because we do not like uninitialized data
for( int i = nnodes; i < globalMaxEdges; i++ )
TLc.vi_wr[sizeTuple * n + 4 + i] = 0;
TLc.inc_n();
}
}
// send first the vertices and overlap cells to original task for coverage cells
// now we are done populating the tuples; route them to the appropriate processors
#ifdef VERBOSE
std::stringstream ff1;
ff1 << "TLc_" << rank << ".txt";
TLc.print_to_file( ff1.str().c_str() );
std::stringstream ffv;
ffv << "TLv_" << rank << ".txt";
TLv.print_to_file( ffv.str().c_str() );
#endif
( m_pcomm->proc_config().crystal_router() )->gs_transfer( 1, TLv, 0 );
( m_pcomm->proc_config().crystal_router() )->gs_transfer( 1, TLc, 0 );
#ifdef VERBOSE
TLc.print_to_file( ff1.str().c_str() ); // will append to existing file
TLv.print_to_file( ffv.str().c_str() );
#endif
// first phase of transfer complete
// now look at TLc, and sort by the source parent (index 1)
TupleList::buffer buffer;
buffer.buffer_init( sizeTuple * TLc.get_n() * 2 ); // allocate memory for sorting !! double
TLc.sort( 1, &buffer );
#ifdef VERBOSE
TLc.print_to_file( ff1.str().c_str() );
#endif
// will keep a map with vertices per processor that will need to be used in TLv2;
// so, availVertexIndicesPerProcessor[proc] is a map from vertex indices that are available from
// this processor to the index in the local TLv; the used vertices will have to be sent to the
// tasks that need them
// connectivity of a cell is given by sending proc and index in original list of vertices from
// that proc
std::map< int, std::map< int, int > > availVertexIndicesPerProcessor;
int nv = TLv.get_n();
for( int i = 0; i < nv; i++ )
{
// int proc=TLv.vi_rd[3*i]; // it is coming from this processor
int orgProc = TLv.vi_rd[2 * i]; // this is the original processor, for index vertex consideration
int indexVert = TLv.vi_rd[2 * i + 1];
availVertexIndicesPerProcessor[orgProc][indexVert] = i;
}
// now we have sorted the incoming overlap elements by the source element;
// if we have overlap elements for one source coming from 2 or more processes, we need to send
// back to the processes that do not have that overlap cell;
// form new TLc2, TLv2, that will be distributed to necessary processes
// first count source elements that are "spread" over multiple processes
// TLc is ordered now by source ID; loop over them
int n = TLc.get_n(); // total number of overlap elements received on current task;
std::map< int, int > currentProcsCount;
// form a map from proc to sets of vertex indices that will be sent using TLv2
// will form a map between a source cell ID and tasks/targets that are partially overlapped by
// these sources
std::map< int, std::set< int > > sourcesForTasks;
int sizeOfTLc2 = 0; // only increase when we will have to send data
if( n > 0 )
{
int currentSourceID = TLc.vi_rd[sizeTuple * 0 + 1]; // we have written sizeTuple*0 for "clarity"
int proc0 = TLc.vi_rd[sizeTuple * 0];
currentProcsCount[proc0] = 1; //
for( int i = 1; i < n; i++ )
{
int proc = TLc.vi_rd[sizeTuple * i];
int sourceID = TLc.vi_rd[sizeTuple * i + 1];
if( sourceID == currentSourceID )
{
if( currentProcsCount.find( proc ) == currentProcsCount.end() )
{
currentProcsCount[proc] = 1;
}
else
currentProcsCount[proc]++;
}
if( sourceID != currentSourceID || ( ( n - 1 ) == i ) ) // we study the current source if we reach the last
{
// we have found a new source id, need to reset the proc counts, and establish if we
// need to send data
if( currentProcsCount.size() > 1 )
{
#ifdef VERBOSE
std::cout << " source element " << currentSourceID << " intersects with "
<< currentProcsCount.size() << " target partitions\n";
for( std::map< int, int >::iterator it = currentProcsCount.begin(); it != currentProcsCount.end();
it++ )<--- Prefer prefix ++/-- operators for non-primitive types. [+]Prefix ++/-- operators should be preferred for non-primitive types. Pre-increment/decrement can be more efficient than post-increment/decrement. Post-increment/decrement usually involves keeping a copy of the previous value around and adds a little extra code.
{
int procID = it->first;
int numOverCells = it->second;
std::cout << " task:" << procID << " " << numOverCells << " cells\n";
}
#endif
// estimate what we need to send
for( std::map< int, int >::iterator it1 = currentProcsCount.begin(); it1 != currentProcsCount.end();
it1++ )<--- Prefer prefix ++/-- operators for non-primitive types. [+]Prefix ++/-- operators should be preferred for non-primitive types. Pre-increment/decrement can be more efficient than post-increment/decrement. Post-increment/decrement usually involves keeping a copy of the previous value around and adds a little extra code.
{
int proc1 = it1->first;
sourcesForTasks[currentSourceID].insert( proc1 );
for( std::map< int, int >::iterator it2 = currentProcsCount.begin();
it2 != currentProcsCount.end(); it2++ )<--- Prefer prefix ++/-- operators for non-primitive types. [+]Prefix ++/-- operators should be preferred for non-primitive types. Pre-increment/decrement can be more efficient than post-increment/decrement. Post-increment/decrement usually involves keeping a copy of the previous value around and adds a little extra code.
{
int proc2 = it2->first;
if( proc1 != proc2 ) sizeOfTLc2 += it2->second;
}
}
// mark vertices in TLv tuple that need to be sent
}
if( sourceID != currentSourceID ) // maybe we are not at the end, so continue on
{
currentSourceID = sourceID;
currentProcsCount.clear();
currentProcsCount[proc] = 1;
}
}
}
}
// begin a loop to send the needed cells to the processes; also mark the vertices that need to
// be sent, put them in a set
#ifdef VERBOSE
std::cout << " need to initialize TLc2 with " << sizeOfTLc2 << " cells\n ";
#endif
TupleList TLc2;
int sizeTuple2 = 5 + globalMaxEdges; // send to, original proc for intx cell, source parent id,
// target parent id,
// number of vertices, then connectivity in terms of indices in vertex lists from original proc
TLc2.initialize( sizeTuple2, 0, 0, 0, sizeOfTLc2 );
TLc2.enableWriteAccess();
// loop again through TLc, and select intx cells that have the problem sources;
std::map< int, std::set< int > > verticesToSendForProc; // will look at indices in the TLv list
// will form for each processor, the index list from TLv
for( int i = 0; i < n; i++ )
{
int sourceID = TLc.vi_rd[sizeTuple * i + 1];
if( sourcesForTasks.find( sourceID ) != sourcesForTasks.end() )
{
// it means this intx cell needs to be sent to any proc that is not "original" to it
std::set< int > procs = sourcesForTasks[sourceID]; // set of processors involved with this source
if( procs.size() < 2 ) MB_CHK_SET_ERR( MB_FAILURE, " not enough processes involved with a sourceID cell" );
int orgProc = TLc.vi_rd[sizeTuple * i]; // this intx cell was sent from this orgProc, originally
// will need to be sent to all other procs from above set; also, need to mark the vertex
// indices for that proc, and check that they are available to populate TLv2
std::map< int, int >& availableVerticesFromThisProc = availVertexIndicesPerProcessor[orgProc];
for( std::set< int >::iterator setIt = procs.begin(); setIt != procs.end(); setIt++ )<--- Prefer prefix ++/-- operators for non-primitive types. [+]Prefix ++/-- operators should be preferred for non-primitive types. Pre-increment/decrement can be more efficient than post-increment/decrement. Post-increment/decrement usually involves keeping a copy of the previous value around and adds a little extra code.
{
int procID = *setIt;
// send this cell to the other processors, not to orgProc this cell is coming from
if( procID != orgProc )
{
// send the cell to this processor;
int n2 = TLc2.get_n();
if( n2 >= sizeOfTLc2 ) MB_CHK_SET_ERR( MB_FAILURE, " memory overflow" );
//
std::set< int >& indexVerticesInTLv = verticesToSendForProc[procID];
TLc2.vi_wr[n2 * sizeTuple2] = procID; // send to
TLc2.vi_wr[n2 * sizeTuple2 + 1] = orgProc; // this cell is coming from here
TLc2.vi_wr[n2 * sizeTuple2 + 2] = sourceID; // source parent of the intx cell
TLc2.vi_wr[n2 * sizeTuple2 + 3] = TLc.vi_rd[sizeTuple * i + 2]; // target parent of the intx cell
// number of vertices of the intx cell
int nvert = TLc.vi_rd[sizeTuple * i + 3];
TLc2.vi_wr[n2 * sizeTuple2 + 4] = nvert;
// now loop through the connectivity, and make sure the vertices are available;
// mark them, to populate later the TLv2 tuple list
// just copy the vertices, including 0 ones
for( int j = 0; j < nvert; j++ )<--- Shadow variable
{
int vertexIndex = TLc.vi_rd[i * sizeTuple + 4 + j];
// is this vertex available from org proc?
if( availableVerticesFromThisProc.find( vertexIndex ) == availableVerticesFromThisProc.end() )
{
MB_CHK_SET_ERR( MB_FAILURE, " vertex index not available from processor" );
}
TLc2.vi_wr[n2 * sizeTuple2 + 5 + j] = vertexIndex;
int indexInTLv = availVertexIndicesPerProcessor[orgProc][vertexIndex];
indexVerticesInTLv.insert( indexInTLv );
}
for( int j = nvert; j < globalMaxEdges; j++ )<--- Shadow variable
{
TLc2.vi_wr[n2 * sizeTuple2 + 5 + j] = 0; // or mark them 0
}
TLc2.inc_n();
}
}
}
}
// now we have to populate TLv2, with original source proc, index of vertex, and coordinates
// from TLv use the verticesToSendForProc sets from above, and the map from index in proc to the
// index in TLv
TupleList TLv2;
int numVerts2 = 0;
// how many vertices to send?
for( std::map< int, std::set< int > >::iterator it = verticesToSendForProc.begin();
it != verticesToSendForProc.end(); it++ )<--- Prefer prefix ++/-- operators for non-primitive types. [+]Prefix ++/-- operators should be preferred for non-primitive types. Pre-increment/decrement can be more efficient than post-increment/decrement. Post-increment/decrement usually involves keeping a copy of the previous value around and adds a little extra code.
{
std::set< int >& indexInTLvSet = it->second;
numVerts2 += (int)indexInTLvSet.size();
}
TLv2.initialize( 3, 0, 0, 3,
numVerts2 ); // send to, original proc, index in original proc, and 3 coords
TLv2.enableWriteAccess();
for( std::map< int, std::set< int > >::iterator it = verticesToSendForProc.begin();
it != verticesToSendForProc.end(); it++ )<--- Prefer prefix ++/-- operators for non-primitive types. [+]Prefix ++/-- operators should be preferred for non-primitive types. Pre-increment/decrement can be more efficient than post-increment/decrement. Post-increment/decrement usually involves keeping a copy of the previous value around and adds a little extra code.
{
int sendToProc = it->first;
std::set< int >& indexInTLvSet = it->second;
// now, look at indices in TLv, to find out the original proc, and the index in that list
for( std::set< int >::iterator itSet = indexInTLvSet.begin(); itSet != indexInTLvSet.end(); itSet++ )<--- Prefer prefix ++/-- operators for non-primitive types. [+]Prefix ++/-- operators should be preferred for non-primitive types. Pre-increment/decrement can be more efficient than post-increment/decrement. Post-increment/decrement usually involves keeping a copy of the previous value around and adds a little extra code.
{
int indexInTLv = *itSet;
int orgProc = TLv.vi_rd[2 * indexInTLv];
int indexVertexInOrgProc = TLv.vi_rd[2 * indexInTLv + 1];
int nv2 = TLv2.get_n();
TLv2.vi_wr[3 * nv2] = sendToProc;
TLv2.vi_wr[3 * nv2 + 1] = orgProc;
TLv2.vi_wr[3 * nv2 + 2] = indexVertexInOrgProc;
for( int j = 0; j < 3; j++ )<--- Shadow variable
TLv2.vr_wr[3 * nv2 + j] =
TLv.vr_rd[3 * indexInTLv + j]; // departure position, of the node local_verts[i]
TLv2.inc_n();
}
}
// now, finally, transfer the vertices and the intx cells;
( m_pcomm->proc_config().crystal_router() )->gs_transfer( 1, TLv2, 0 );
( m_pcomm->proc_config().crystal_router() )->gs_transfer( 1, TLc2, 0 );
// now, look at vertices from TLv2, and create them
// we should have in TLv2 only vertices with orgProc different from current task
#ifdef VERBOSE
std::stringstream ff2;
ff2 << "TLc2_" << rank << ".txt";
TLc2.print_to_file( ff2.str().c_str() );
std::stringstream ffv2;
ffv2 << "TLv2_" << rank << ".txt";
TLv2.print_to_file( ffv2.str().c_str() );
#endif
// first create vertices, and make a map from origin processor, and index, to entity handle
// (index in TLv2 )
Tag ghostTag;
int orig_proc = -1;
rval = m_interface->tag_get_handle( "ORIG_PROC", 1, MB_TYPE_INTEGER, ghostTag, MB_TAG_DENSE | MB_TAG_CREAT,<--- rval is overwritten
&orig_proc );MB_CHK_ERR( rval );
int nvNew = TLv2.get_n();
// if number of vertices to be created is 0, it means there is no need of ghost intx cells,
// because everything matched perfectly (it can happen in manufactured cases)
if( 0 == nvNew ) return MB_SUCCESS;
// create a vertex h for each coordinate
Range newVerts;
rval = m_interface->create_vertices( &( TLv2.vr_rd[0] ), nvNew, newVerts );MB_CHK_ERR( rval );
// now create a map from index , org proc, to actual entity handle corresponding to it
std::map< int, std::map< int, EntityHandle > > vertexPerProcAndIndex;
for( int i = 0; i < nvNew; i++ )
{
int orgProc = TLv2.vi_rd[3 * i + 1];
int indexInVert = TLv2.vi_rd[3 * i + 2];
vertexPerProcAndIndex[orgProc][indexInVert] = newVerts[i];
}
// new polygons will receive a dense tag, with default value -1, with the processor task they
// originally belonged to
// now form the needed cells, in order
Range newPolygons;
int ne = TLc2.get_n();
for( int i = 0; i < ne; i++ )
{
int orgProc = TLc2.vi_rd[i * sizeTuple2 + 1]; // this cell is coming from here, originally
int sourceID = TLc2.vi_rd[i * sizeTuple2 + 2]; // source parent of the intx cell
int targetID = TLc2.vi_wr[i * sizeTuple2 + 3]; // target parent of intx cell
int nve = TLc2.vi_wr[i * sizeTuple2 + 4]; // number of vertices for the polygon
std::vector< EntityHandle > conn;
conn.resize( nve );
for( int j = 0; j < nve; j++ )<--- Shadow variable
{
int indexV = TLc2.vi_wr[i * sizeTuple2 + 5 + j];
EntityHandle vh = vertexPerProcAndIndex[orgProc][indexV];
conn[j] = vh;
}
EntityHandle polyNew;
rval = m_interface->create_element( MBPOLYGON, &conn[0], nve, polyNew );MB_CHK_ERR( rval );
newPolygons.insert( polyNew );
rval = m_interface->tag_set_data( targetParentTag, &polyNew, 1, &targetID );MB_CHK_ERR( rval );
rval = m_interface->tag_set_data( sourceParentTag, &polyNew, 1, &sourceID );MB_CHK_ERR( rval );
rval = m_interface->tag_set_data( ghostTag, &polyNew, 1, &orgProc );MB_CHK_ERR( rval );
}
#ifdef VERBOSE
EntityHandle tmpSet3;
rval = m_interface->create_meshset( MESHSET_SET, tmpSet3 );MB_CHK_SET_ERR( rval, "Can't create temporary set3" );
// add the boundary set and edges, and save it to a file
rval = m_interface->add_entities( tmpSet3, newPolygons );MB_CHK_SET_ERR( rval, "Can't add entities" );
std::stringstream ffs4;
ffs4 << "extraIntxCells" << rank << ".h5m";
rval = m_interface->write_mesh( ffs4.str().c_str(), &tmpSet3, 1 );MB_CHK_ERR( rval );
#endif
// add the new polygons to the overlap set
// these will be ghosted, so will participate in conservation only
rval = m_interface->add_entities( m_overlap_set, newPolygons );MB_CHK_ERR( rval );
return MB_SUCCESS;
}
#endif
ErrorCode TempestRemapper::GetIMasks( Remapper::IntersectionContext ctx, std::vector< int >& masks )
{
Tag maskTag;
// it should have been created already, if not, we might have a problem
int def_val = 1;
ErrorCode rval =
m_interface->tag_get_handle( "GRID_IMASK", 1, MB_TYPE_INTEGER, maskTag, MB_TAG_DENSE | MB_TAG_CREAT, &def_val );MB_CHK_SET_ERR( rval, "Trouble creating GRID_IMASK tag" );
switch( ctx )
{
case Remapper::SourceMesh: {
if( point_cloud_source )
{
masks.resize( m_source_vertices.size() );
rval = m_interface->tag_get_data( maskTag, m_source_vertices, &masks[0] );MB_CHK_SET_ERR( rval, "Trouble getting GRID_IMASK tag" );
}
else
{
masks.resize( m_source_entities.size() );
rval = m_interface->tag_get_data( maskTag, m_source_entities, &masks[0] );MB_CHK_SET_ERR( rval, "Trouble getting GRID_IMASK tag" );
}
return MB_SUCCESS;
}
case Remapper::TargetMesh: {
if( point_cloud_target )
{
masks.resize( m_target_vertices.size() );
rval = m_interface->tag_get_data( maskTag, m_target_vertices, &masks[0] );MB_CHK_SET_ERR( rval, "Trouble getting GRID_IMASK tag" );
}
else
{
masks.resize( m_target_entities.size() );
rval = m_interface->tag_get_data( maskTag, m_target_entities, &masks[0] );MB_CHK_SET_ERR( rval, "Trouble getting GRID_IMASK tag" );
}
return MB_SUCCESS;
}
case Remapper::CoveringMesh:
case Remapper::OverlapMesh:
default:
return MB_SUCCESS;
}
}
} // namespace moab
|