1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104 | /**
* MOAB, a Mesh-Oriented datABase, is a software component for creating,
* storing and accessing finite element mesh data.
*
* Copyright 2004 Sandia Corporation. Under the terms of Contract
* DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government
* retains certain rights in this software.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
*/
#ifdef __MFC_VER
#pragma warning( disable : 4786 )
#endif
#ifdef WIN32 /* windows */
#define _USE_MATH_DEFINES // For M_PI
#endif
#include "moab/Skinner.hpp"
#include "moab/Range.hpp"
#include "moab/CN.hpp"
#include <vector>
#include <set>
#include <algorithm>
#include <cmath>
#include <cassert>
#include <iostream>
#include "moab/Util.hpp"
#include "Internals.hpp"
#include "MBTagConventions.hpp"
#include "moab/Core.hpp"
#include "AEntityFactory.hpp"
#include "moab/ScdInterface.hpp"
#ifdef M_PI
#define SKINNER_PI M_PI
#else
#define SKINNER_PI 3.1415926535897932384626
#endif
namespace moab
{
Skinner::~Skinner()
{
// delete the adjacency tag
}
ErrorCode Skinner::initialize()
{
// go through and mark all the target dimension entities
// that already exist as not deleteable
// also get the connectivity tags for each type
// also populate adjacency information
EntityType type;
DimensionPair target_ent_types = CN::TypeDimensionMap[mTargetDim];
void* null_ptr = NULL;
ErrorCode result = thisMB->tag_get_handle( "skinner adj", sizeof( void* ), MB_TYPE_OPAQUE, mAdjTag,
MB_TAG_DENSE | MB_TAG_CREAT, &null_ptr );MB_CHK_ERR( result );
if( mDeletableMBTag == 0 )
{
result =
thisMB->tag_get_handle( "skinner deletable", 1, MB_TYPE_BIT, mDeletableMBTag, MB_TAG_BIT | MB_TAG_CREAT );MB_CHK_ERR( result );
}
Range entities;
// go through each type at this dimension
for( type = target_ent_types.first; type <= target_ent_types.second; ++type )
{
// get the entities of this type in the MB
thisMB->get_entities_by_type( 0, type, entities );
// go through each entity of this type in the MB
// and set its deletable tag to NO
Range::iterator iter, end_iter;
end_iter = entities.end();
for( iter = entities.begin(); iter != end_iter; ++iter )
{
unsigned char bit = 0x1;
result = thisMB->tag_set_data( mDeletableMBTag, &( *iter ), 1, &bit );
assert( MB_SUCCESS == result );
// add adjacency information too
if( TYPE_FROM_HANDLE( *iter ) != MBVERTEX ) add_adjacency( *iter );
}
}
return MB_SUCCESS;
}
ErrorCode Skinner::deinitialize()
{
ErrorCode result;
if( 0 != mDeletableMBTag )
{
result = thisMB->tag_delete( mDeletableMBTag );
mDeletableMBTag = 0;MB_CHK_ERR( result );
}
// remove the adjacency tag
std::vector< std::vector< EntityHandle >* > adj_arr;
std::vector< std::vector< EntityHandle >* >::iterator i;
if( 0 != mAdjTag )
{
for( EntityType t = MBVERTEX; t != MBMAXTYPE; ++t )
{
Range entities;
result = thisMB->get_entities_by_type_and_tag( 0, t, &mAdjTag, 0, 1, entities );MB_CHK_ERR( result );
adj_arr.resize( entities.size() );
result = thisMB->tag_get_data( mAdjTag, entities, &adj_arr[0] );MB_CHK_ERR( result );
for( i = adj_arr.begin(); i != adj_arr.end(); ++i )
delete *i;
}
result = thisMB->tag_delete( mAdjTag );
mAdjTag = 0;MB_CHK_ERR( result );
}
return MB_SUCCESS;
}
ErrorCode Skinner::add_adjacency( EntityHandle entity )
{
std::vector< EntityHandle >* adj = NULL;
const EntityHandle* nodes;
int num_nodes;
ErrorCode result = thisMB->get_connectivity( entity, nodes, num_nodes, true );MB_CHK_ERR( result );
const EntityHandle* iter = std::min_element( nodes, nodes + num_nodes );
if( iter == nodes + num_nodes ) return MB_SUCCESS;
// add this entity to the node
if( thisMB->tag_get_data( mAdjTag, iter, 1, &adj ) == MB_SUCCESS && adj != NULL )
{
adj->push_back( entity );
}
// create a new vector and add it
else
{
adj = new std::vector< EntityHandle >;
adj->push_back( entity );
result = thisMB->tag_set_data( mAdjTag, iter, 1, &adj );MB_CHK_ERR( result );
}
return MB_SUCCESS;
}
void Skinner::add_adjacency( EntityHandle entity, const EntityHandle* nodes, const int num_nodes )
{
std::vector< EntityHandle >* adj = NULL;
const EntityHandle* iter = std::min_element( nodes, nodes + num_nodes );
if( iter == nodes + num_nodes ) return;
// should not be setting adjacency lists in ho-nodes
assert( TYPE_FROM_HANDLE( entity ) == MBPOLYGON ||
num_nodes == CN::VerticesPerEntity( TYPE_FROM_HANDLE( entity ) ) );
// add this entity to the node
if( thisMB->tag_get_data( mAdjTag, iter, 1, &adj ) == MB_SUCCESS && adj != NULL )
{
adj->push_back( entity );
}
// create a new vector and add it
else
{
adj = new std::vector< EntityHandle >;
adj->push_back( entity );
thisMB->tag_set_data( mAdjTag, iter, 1, &adj );
}
}
ErrorCode Skinner::find_geometric_skin( const EntityHandle meshset, Range& forward_target_entities )<--- The function 'find_geometric_skin' is never used.
{
// attempts to find whole model skin, using geom topo sets first then
// normal find_skin function
bool debug = true;<--- Assignment 'debug=true', assigned value is 1
// look for geom topo sets
Tag geom_tag;
ErrorCode result =
thisMB->tag_get_handle( GEOM_DIMENSION_TAG_NAME, 1, MB_TYPE_INTEGER, geom_tag, MB_TAG_SPARSE | MB_TAG_CREAT );
if( MB_SUCCESS != result ) return result;<--- Assuming condition is false
// get face sets (dimension = 2)
Range face_sets;
int two = 2;
const void* two_ptr = &two;
result = thisMB->get_entities_by_type_and_tag( meshset, MBENTITYSET, &geom_tag, &two_ptr, 1, face_sets );
Range::iterator it;
if( MB_SUCCESS != result )
return result;
else if( face_sets.empty() )
return MB_ENTITY_NOT_FOUND;
// ok, we have face sets; use those to determine skin
Range skin_sets;
if( debug ) std::cout << "Found " << face_sets.size() << " face sets total..." << std::endl;<--- Condition 'debug' is always true
for( it = face_sets.begin(); it != face_sets.end(); ++it )
{
int num_parents;
result = thisMB->num_parent_meshsets( *it, &num_parents );
if( MB_SUCCESS != result )
return result;
else if( num_parents == 1 )
skin_sets.insert( *it );
}
if( debug ) std::cout << "Found " << skin_sets.size() << " 1-parent face sets..." << std::endl;
if( skin_sets.empty() ) return MB_FAILURE;
// ok, we have the shell; gather up the elements, putting them all in forward for now
for( it = skin_sets.begin(); it != skin_sets.end(); ++it )
{
result = thisMB->get_entities_by_handle( *it, forward_target_entities, true );
if( MB_SUCCESS != result ) return result;
}
return result;
}
ErrorCode Skinner::find_skin( const EntityHandle meshset,
const Range& source_entities,
bool get_vertices,
Range& output_handles,
Range* output_reverse_handles,
bool create_vert_elem_adjs,
bool create_skin_elements,
bool look_for_scd )
{
if( source_entities.empty() ) return MB_SUCCESS;
if( look_for_scd )
{
ErrorCode rval = find_skin_scd( source_entities, get_vertices, output_handles, create_skin_elements );
// if it returns success, it's all scd, and we don't need to do anything more
if( MB_SUCCESS == rval ) return rval;
}
Core* this_core = dynamic_cast< Core* >( thisMB );
if( this_core && create_vert_elem_adjs && !this_core->a_entity_factory()->vert_elem_adjacencies() )
this_core->a_entity_factory()->create_vert_elem_adjacencies();
return find_skin_vertices( meshset, source_entities, get_vertices ? &output_handles : 0,
get_vertices ? 0 : &output_handles, output_reverse_handles, create_skin_elements );
}
ErrorCode Skinner::find_skin_scd( const Range& source_entities,
bool get_vertices,
Range& output_handles,
bool create_skin_elements )
{
// get the scd interface and check if it's been initialized
ScdInterface* scdi = NULL;
ErrorCode rval = thisMB->query_interface( scdi );<--- rval is initialized
if( !scdi ) return MB_FAILURE;
// ok, there's scd mesh; see if the entities passed in are all in a scd box
// a box needs to be wholly included in entities for this to work
std::vector< ScdBox* > boxes, myboxes;
Range myrange;
rval = scdi->find_boxes( boxes );<--- rval is overwritten
if( MB_SUCCESS != rval ) return rval;
for( std::vector< ScdBox* >::iterator bit = boxes.begin(); bit != boxes.end(); ++bit )
{
Range belems( ( *bit )->start_element(), ( *bit )->start_element() + ( *bit )->num_elements() - 1 );
if( source_entities.contains( belems ) )
{
myboxes.push_back( *bit );
myrange.merge( belems );
}
}
if( myboxes.empty() || myrange.size() != source_entities.size() ) return MB_FAILURE;
// ok, we're all structured; get the skin for each box
for( std::vector< ScdBox* >::iterator bit = boxes.begin(); bit != boxes.end(); ++bit )
{
rval = skin_box( *bit, get_vertices, output_handles, create_skin_elements );
if( MB_SUCCESS != rval ) return rval;
}
return MB_SUCCESS;
}
ErrorCode Skinner::skin_box( ScdBox* box, bool get_vertices, Range& output_handles, bool create_skin_elements )
{
HomCoord bmin = box->box_min(), bmax = box->box_max();
// don't support 1d boxes
if( bmin.j() == bmax.j() && bmin.k() == bmax.k() ) return MB_FAILURE;
int dim = ( bmin.k() == bmax.k() ? 1 : 2 );
ErrorCode rval;
EntityHandle ent;
// i=min
for( int k = bmin.k(); k < bmax.k(); k++ )
{
for( int j = bmin.j(); j < bmax.j(); j++ )
{
ent = 0;
rval = box->get_adj_edge_or_face( dim, bmin.i(), j, k, 0, ent, create_skin_elements );
if( MB_SUCCESS != rval ) return rval;
if( ent ) output_handles.insert( ent );
}
}
// i=max
for( int k = bmin.k(); k < bmax.k(); k++ )
{
for( int j = bmin.j(); j < bmax.j(); j++ )
{
ent = 0;
rval = box->get_adj_edge_or_face( dim, bmax.i(), j, k, 0, ent, create_skin_elements );
if( MB_SUCCESS != rval ) return rval;
if( ent ) output_handles.insert( ent );
}
}
// j=min
for( int k = bmin.k(); k < bmax.k(); k++ )
{
for( int i = bmin.i(); i < bmax.i(); i++ )
{
ent = 0;
rval = box->get_adj_edge_or_face( dim, i, bmin.j(), k, 1, ent, create_skin_elements );
if( MB_SUCCESS != rval ) return rval;
if( ent ) output_handles.insert( ent );
}
}
// j=max
for( int k = bmin.k(); k < bmax.k(); k++ )
{
for( int i = bmin.i(); i < bmax.i(); i++ )
{
ent = 0;
rval = box->get_adj_edge_or_face( dim, i, bmax.j(), k, 1, ent, create_skin_elements );
if( MB_SUCCESS != rval ) return rval;
if( ent ) output_handles.insert( ent );
}
}
// k=min
for( int j = bmin.j(); j < bmax.j(); j++ )
{
for( int i = bmin.i(); i < bmax.i(); i++ )
{
ent = 0;
rval = box->get_adj_edge_or_face( dim, i, j, bmin.k(), 2, ent, create_skin_elements );
if( MB_SUCCESS != rval ) return rval;
if( ent ) output_handles.insert( ent );
}
}
// k=max
for( int j = bmin.j(); j < bmax.j(); j++ )
{
for( int i = bmin.i(); i < bmax.i(); i++ )
{
ent = 0;
rval = box->get_adj_edge_or_face( dim, i, j, bmax.k(), 2, ent, create_skin_elements );
if( MB_SUCCESS != rval ) return rval;
if( ent ) output_handles.insert( ent );
}
}
if( get_vertices )
{
Range verts;
rval = thisMB->get_adjacencies( output_handles, 0, true, verts, Interface::UNION );
if( MB_SUCCESS != rval ) return rval;
output_handles.merge( verts );
}
return MB_SUCCESS;
}
ErrorCode Skinner::find_skin_noadj(const Range &source_entities,<--- The function 'find_skin_noadj' is never used.
Range &forward_target_entities,
Range &reverse_target_entities/*,
bool create_vert_elem_adjs*/)
{
if( source_entities.empty() ) return MB_FAILURE;
// get our working dimensions
EntityType type = thisMB->type_from_handle( *( source_entities.begin() ) );
const int source_dim = CN::Dimension( type );
mTargetDim = source_dim - 1;
// make sure we can handle the working dimensions
if( mTargetDim < 0 || source_dim > 3 ) return MB_FAILURE;
initialize();
Range::const_iterator iter, end_iter;
end_iter = source_entities.end();
const EntityHandle* conn;
EntityHandle match;
direction direct;
ErrorCode result;
// assume we'll never have more than 32 vertices on a facet (checked
// with assert later)
EntityHandle sub_conn[32];
std::vector< EntityHandle > tmp_conn_vec;
int num_nodes, num_sub_nodes, num_sides;
int sub_indices[32]; // Also, assume that no polygon has more than 32 nodes
// we could increase that, but we will not display it right in visit moab h5m , anyway
EntityType sub_type;
// for each source entity
for( iter = source_entities.begin(); iter != end_iter; ++iter )
{
// get the connectivity of this entity
int actual_num_nodes_polygon = 0;
result = thisMB->get_connectivity( *iter, conn, num_nodes, false, &tmp_conn_vec );
if( MB_SUCCESS != result ) return result;
type = thisMB->type_from_handle( *iter );
Range::iterator seek_iter;
// treat separately polygons (also, polyhedra will need special handling)
if( MBPOLYGON == type )
{
// treat padded polygons, if existing; count backwards, see how many of the last nodes
// are repeated assume connectivity is fine, otherwise we could be in trouble
actual_num_nodes_polygon = num_nodes;
while( actual_num_nodes_polygon >= 3 &&
conn[actual_num_nodes_polygon - 1] == conn[actual_num_nodes_polygon - 2] )
actual_num_nodes_polygon--;
num_sides = actual_num_nodes_polygon;
sub_type = MBEDGE;
num_sub_nodes = 2;
}
else // get connectivity of each n-1 dimension entity
num_sides = CN::NumSubEntities( type, mTargetDim );
for( int i = 0; i < num_sides; i++ )
{
if( MBPOLYGON == type )
{
sub_conn[0] = conn[i];
sub_conn[1] = conn[i + 1];
if( i + 1 == actual_num_nodes_polygon ) sub_conn[1] = conn[0];
}
else
{
CN::SubEntityNodeIndices( type, num_nodes, mTargetDim, i, sub_type, num_sub_nodes, sub_indices );
assert( (size_t)num_sub_nodes <= sizeof( sub_indices ) / sizeof( sub_indices[0] ) );
for( int j = 0; j < num_sub_nodes; j++ )
sub_conn[j] = conn[sub_indices[j]];
}
// see if we can match this connectivity with
// an existing entity
find_match( sub_type, sub_conn, num_sub_nodes, match, direct );
// if there is no match, create a new entity
if( match == 0 )
{
EntityHandle tmphndl = 0;
int indices[MAX_SUB_ENTITY_VERTICES];<--- The scope of the variable 'indices' can be reduced. [+]The scope of the variable 'indices' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
EntityType new_type;
int num_new_nodes;
if( MBPOLYGON == type )
{
new_type = MBEDGE;
num_new_nodes = 2;
}
else
{
CN::SubEntityNodeIndices( type, num_nodes, mTargetDim, i, new_type, num_new_nodes, indices );
for( int j = 0; j < num_new_nodes; j++ )
sub_conn[j] = conn[indices[j]];
}
result = thisMB->create_element( new_type, sub_conn, num_new_nodes, tmphndl );
assert( MB_SUCCESS == result );
add_adjacency( tmphndl, sub_conn, CN::VerticesPerEntity( new_type ) );
forward_target_entities.insert( tmphndl );
}
// if there is a match, delete the matching entity
// if we can.
else
{
if( ( seek_iter = forward_target_entities.find( match ) ) != forward_target_entities.end() )
{
forward_target_entities.erase( seek_iter );
remove_adjacency( match );
if( /*!use_adjs &&*/ entity_deletable( match ) )
{
result = thisMB->delete_entities( &match, 1 );
assert( MB_SUCCESS == result );
}
}
else if( ( seek_iter = reverse_target_entities.find( match ) ) != reverse_target_entities.end() )
{
reverse_target_entities.erase( seek_iter );
remove_adjacency( match );
if( /*!use_adjs &&*/ entity_deletable( match ) )
{
result = thisMB->delete_entities( &match, 1 );
assert( MB_SUCCESS == result );
}
}
else
{
if( direct == FORWARD )
{
forward_target_entities.insert( match );
}
else
{
reverse_target_entities.insert( match );
}
}
}
}
}
deinitialize();
return MB_SUCCESS;
}
void Skinner::find_match( EntityType type,
const EntityHandle* conn,
const int num_nodes,
EntityHandle& match,
Skinner::direction& direct )
{
match = 0;
if( type == MBVERTEX )
{
match = *conn;
direct = FORWARD;
return;
}
const EntityHandle* iter = std::min_element( conn, conn + num_nodes );
std::vector< EntityHandle >* adj = NULL;
ErrorCode result = thisMB->tag_get_data( mAdjTag, iter, 1, &adj );
if( result == MB_FAILURE || adj == NULL )
{
return;
}
std::vector< EntityHandle >::iterator jter, end_jter;
end_jter = adj->end();
const EntityHandle* tmp;
int num_verts;
for( jter = adj->begin(); jter != end_jter; ++jter )
{
EntityType tmp_type;
tmp_type = thisMB->type_from_handle( *jter );
if( type != tmp_type ) continue;
result = thisMB->get_connectivity( *jter, tmp, num_verts, false );
assert( MB_SUCCESS == result && num_verts >= CN::VerticesPerEntity( type ) );
// FIXME: connectivity_match appears to work only for linear elements,
// so ignore higher-order nodes.
if( connectivity_match( conn, tmp, CN::VerticesPerEntity( type ), direct ) )
{
match = *jter;
break;
}
}
}
bool Skinner::connectivity_match( const EntityHandle* conn1,
const EntityHandle* conn2,
const int num_verts,
Skinner::direction& direct )
{
const EntityHandle* iter = std::find( conn2, conn2 + num_verts, conn1[0] );
if( iter == conn2 + num_verts ) return false;
bool they_match = true;
int i;
unsigned int j = iter - conn2;
// first compare forward
for( i = 1; i < num_verts; ++i )
{
if( conn1[i] != conn2[( j + i ) % num_verts] )
{
they_match = false;
break;
}
}
if( they_match == true )
{
// need to check for reversed edges here
direct = ( num_verts == 2 && j ) ? REVERSE : FORWARD;
return true;
}
they_match = true;
// then compare reverse
j += num_verts;
for( i = 1; i < num_verts; )
{
if( conn1[i] != conn2[( j - i ) % num_verts] )
{
they_match = false;
break;
}
++i;
}
if( they_match )
{
direct = REVERSE;
}
return they_match;
}
ErrorCode Skinner::remove_adjacency( EntityHandle entity )
{
std::vector< EntityHandle > nodes, *adj = NULL;
ErrorCode result = thisMB->get_connectivity( &entity, 1, nodes );MB_CHK_ERR( result );
std::vector< EntityHandle >::iterator iter = std::min_element( nodes.begin(), nodes.end() );
if( iter == nodes.end() ) return MB_FAILURE;
// remove this entity from the node
if( thisMB->tag_get_data( mAdjTag, &( *iter ), 1, &adj ) == MB_SUCCESS && adj != NULL )
{
iter = std::find( adj->begin(), adj->end(), entity );
if( iter != adj->end() ) adj->erase( iter );
}
return result;
}
bool Skinner::entity_deletable( EntityHandle entity )
{
unsigned char deletable = 0;
ErrorCode result = thisMB->tag_get_data( mDeletableMBTag, &entity, 1, &deletable );
assert( MB_SUCCESS == result );
if( MB_SUCCESS == result && deletable == 1 ) return false;
return true;
}
ErrorCode Skinner::classify_2d_boundary( const Range& boundary,
const Range& bar_elements,
EntityHandle boundary_edges,
EntityHandle inferred_edges,
EntityHandle non_manifold_edges,
EntityHandle other_edges,
int& number_boundary_nodes )
{
Range bedges, iedges, nmedges, oedges;
ErrorCode result =
classify_2d_boundary( boundary, bar_elements, bedges, iedges, nmedges, oedges, number_boundary_nodes );MB_CHK_ERR( result );
// now set the input meshsets to the output ranges
result = thisMB->clear_meshset( &boundary_edges, 1 );MB_CHK_ERR( result );
result = thisMB->add_entities( boundary_edges, bedges );MB_CHK_ERR( result );
result = thisMB->clear_meshset( &inferred_edges, 1 );MB_CHK_ERR( result );
result = thisMB->add_entities( inferred_edges, iedges );MB_CHK_ERR( result );
result = thisMB->clear_meshset( &non_manifold_edges, 1 );MB_CHK_ERR( result );
result = thisMB->add_entities( non_manifold_edges, nmedges );MB_CHK_ERR( result );
result = thisMB->clear_meshset( &other_edges, 1 );MB_CHK_ERR( result );
result = thisMB->add_entities( other_edges, oedges );MB_CHK_ERR( result );
return MB_SUCCESS;
}
ErrorCode Skinner::classify_2d_boundary( const Range& boundary,
const Range& bar_elements,
Range& boundary_edges,
Range& inferred_edges,
Range& non_manifold_edges,
Range& other_edges,
int& number_boundary_nodes )
{
// clear out the edge lists
boundary_edges.clear();
inferred_edges.clear();
non_manifold_edges.clear();
other_edges.clear();
number_boundary_nodes = 0;
// make sure we have something to work with
if( boundary.empty() )
{
return MB_FAILURE;
}
// get our working dimensions
EntityType type = thisMB->type_from_handle( *( boundary.begin() ) );
const int source_dim = CN::Dimension( type );
// make sure we can handle the working dimensions
if( source_dim != 2 )
{
return MB_FAILURE;
}
mTargetDim = source_dim - 1;
// initialize
initialize();
// additional initialization for this routine
// define a tag for MBEDGE which counts the occurrences of the edge below
// default should be 0 for existing edges, if any
Tag count_tag;
int default_count = 0;
ErrorCode result =
thisMB->tag_get_handle( 0, 1, MB_TYPE_INTEGER, count_tag, MB_TAG_DENSE | MB_TAG_CREAT, &default_count );MB_CHK_ERR( result );
Range::const_iterator iter, end_iter;
end_iter = boundary.end();
std::vector< EntityHandle > conn;
EntityHandle sub_conn[2];
EntityHandle match;
Range edge_list;
Range boundary_nodes;
Skinner::direction direct;
EntityType sub_type;
int num_edge, num_sub_ent_vert;<--- The scope of the variable 'num_edge' can be reduced. [+]The scope of the variable 'num_edge' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
const short* edge_verts;
// now, process each entity in the boundary
for( iter = boundary.begin(); iter != end_iter; ++iter )
{
// get the connectivity of this entity
conn.clear();
result = thisMB->get_connectivity( &( *iter ), 1, conn, false );
assert( MB_SUCCESS == result );
// add node handles to boundary_node range
std::copy( conn.begin(), conn.begin() + CN::VerticesPerEntity( type ), range_inserter( boundary_nodes ) );
type = thisMB->type_from_handle( *iter );
// get connectivity of each n-1 dimension entity (edge in this case)
const struct CN::ConnMap* conn_map = &( CN::mConnectivityMap[type][0] );
num_edge = CN::NumSubEntities( type, 1 );
for( int i = 0; i < num_edge; i++ )
{
edge_verts = CN::SubEntityVertexIndices( type, 1, i, sub_type, num_sub_ent_vert );
assert( sub_type == MBEDGE && num_sub_ent_vert == 2 );
sub_conn[0] = conn[edge_verts[0]];
sub_conn[1] = conn[edge_verts[1]];
int num_sub_nodes = conn_map->num_corners_per_sub_element[i];
// see if we can match this connectivity with
// an existing entity
find_match( MBEDGE, sub_conn, num_sub_nodes, match, direct );
// if there is no match, create a new entity
if( match == 0 )
{
EntityHandle tmphndl = 0;
int indices[MAX_SUB_ENTITY_VERTICES];
EntityType new_type;
int num_new_nodes;
CN::SubEntityNodeIndices( type, conn.size(), 1, i, new_type, num_new_nodes, indices );
for( int j = 0; j < num_new_nodes; j++ )
sub_conn[j] = conn[indices[j]];
result = thisMB->create_element( new_type, sub_conn, num_new_nodes, tmphndl );
assert( MB_SUCCESS == result );
add_adjacency( tmphndl, sub_conn, num_sub_nodes );
// target_entities.insert(tmphndl);
edge_list.insert( tmphndl );
int count;
result = thisMB->tag_get_data( count_tag, &tmphndl, 1, &count );
assert( MB_SUCCESS == result );
count++;
result = thisMB->tag_set_data( count_tag, &tmphndl, 1, &count );
assert( MB_SUCCESS == result );
}
else
{
// We found a match, we must increment the count on the match
int count;
result = thisMB->tag_get_data( count_tag, &match, 1, &count );
assert( MB_SUCCESS == result );
count++;
result = thisMB->tag_set_data( count_tag, &match, 1, &count );
assert( MB_SUCCESS == result );
// if the entity is not deletable, it was pre-existing in
// the database. We therefore may need to add it to the
// edge_list. Since it will not hurt the range, we add
// whether it was added before or not
if( !entity_deletable( match ) )
{
edge_list.insert( match );
}
}
}
}
// Any bar elements in the model should be classified separately
// If the element is in the skin edge_list, then it should be put in
// the non-manifold edge list. Edges not in the edge_list are stand-alone
// bars, and we make them simply boundary elements
if( !bar_elements.empty() )
{
Range::iterator bar_iter;
for( iter = bar_elements.begin(); iter != bar_elements.end(); ++iter )
{
EntityHandle handle = *iter;
bar_iter = edge_list.find( handle );
if( bar_iter != edge_list.end() )
{
// it is in the list, erase it and put in non-manifold list
edge_list.erase( bar_iter );
non_manifold_edges.insert( handle );
}
else
{
// not in the edge list, make it a boundary edge
boundary_edges.insert( handle );
}
}
}
// now all edges should be classified. Go through the edge_list,
// and put all in the appropriate lists
Range::iterator edge_iter, edge_end_iter;
edge_end_iter = edge_list.end();
int count;
for( edge_iter = edge_list.begin(); edge_iter != edge_end_iter; ++edge_iter )
{
// check the count_tag
result = thisMB->tag_get_data( count_tag, &( *edge_iter ), 1, &count );
assert( MB_SUCCESS == result );
if( count == 1 )
{
boundary_edges.insert( *edge_iter );
}
else if( count == 2 )
{
other_edges.insert( *edge_iter );
}
else
{
non_manifold_edges.insert( *edge_iter );
}
}
// find the inferred edges from the other_edge_list
double min_angle_degrees = 20.0;
find_inferred_edges( const_cast< Range& >( boundary ), other_edges, inferred_edges, min_angle_degrees );
// we now want to remove the inferred_edges from the other_edges
Range temp_range;
std::set_difference( other_edges.begin(), other_edges.end(), inferred_edges.begin(), inferred_edges.end(),
range_inserter( temp_range ), std::less< EntityHandle >() );
other_edges = temp_range;
// get rid of count tag and deinitialize
result = thisMB->tag_delete( count_tag );
assert( MB_SUCCESS == result );
deinitialize();
// set the node count
number_boundary_nodes = boundary_nodes.size();
return MB_SUCCESS;
}
void Skinner::find_inferred_edges( Range& skin_boundary,
Range& candidate_edges,<--- Parameter 'candidate_edges' can be declared with const
Range& inferred_edges,
double reference_angle_degrees )
{
// mark all the entities in the skin boundary
Tag mark_tag;
ErrorCode result = thisMB->tag_get_handle( 0, 1, MB_TYPE_BIT, mark_tag, MB_TAG_CREAT );
assert( MB_SUCCESS == result );
unsigned char bit = true;
result = thisMB->tag_clear_data( mark_tag, skin_boundary, &bit );
assert( MB_SUCCESS == result );
// find the cosine of the reference angle
double reference_cosine = cos( reference_angle_degrees * SKINNER_PI / 180.0 );
// check all candidate edges for an angle greater than the minimum
Range::iterator iter, end_iter = candidate_edges.end();
std::vector< EntityHandle > adjacencies;
std::vector< EntityHandle >::iterator adj_iter;
EntityHandle face[2];
for( iter = candidate_edges.begin(); iter != end_iter; ++iter )
{
// get the 2D elements connected to this edge
adjacencies.clear();
result = thisMB->get_adjacencies( &( *iter ), 1, 2, false, adjacencies );
if( MB_SUCCESS != result ) continue;
// there should be exactly two, that is why the edge is classified as nonBoundary
// and manifold
int faces_found = 0;
for( adj_iter = adjacencies.begin(); adj_iter != adjacencies.end() && faces_found < 2; ++adj_iter )
{
// we need to find two of these which are in the skin
unsigned char is_marked = 0;
result = thisMB->tag_get_data( mark_tag, &( *adj_iter ), 1, &is_marked );
assert( MB_SUCCESS == result );
if( is_marked )
{
face[faces_found] = *adj_iter;
faces_found++;
}
}
// assert(faces_found == 2 || faces_found == 0);
if( 2 != faces_found ) continue;
// see if the two entities have a sufficient angle
if( has_larger_angle( face[0], face[1], reference_cosine ) )
{
inferred_edges.insert( *iter );
}
}
result = thisMB->tag_delete( mark_tag );
assert( MB_SUCCESS == result );
}
bool Skinner::has_larger_angle( EntityHandle& entity1, EntityHandle& entity2, double reference_angle_cosine )<--- Parameter 'entity1' can be declared with const<--- Parameter 'entity2' can be declared with const
{
// compare normals to get angle. We assume that the surface quads
// which we test here will be approximately planar
double norm[2][3];
Util::normal( thisMB, entity1, norm[0][0], norm[0][1], norm[0][2] );
Util::normal( thisMB, entity2, norm[1][0], norm[1][1], norm[1][2] );
double cosine = norm[0][0] * norm[1][0] + norm[0][1] * norm[1][1] + norm[0][2] * norm[1][2];
if( cosine < reference_angle_cosine )
{
return true;
}
return false;
}
// get skin entities of prescribed dimension
ErrorCode Skinner::find_skin( const EntityHandle this_set,
const Range& entities,
int dim,
Range& skin_entities,
bool create_vert_elem_adjs,
bool create_skin_elements )
{
Range tmp_skin;
ErrorCode result =
find_skin( this_set, entities, ( dim == 0 ), tmp_skin, 0, create_vert_elem_adjs, create_skin_elements );
if( MB_SUCCESS != result || tmp_skin.empty() ) return result;
if( tmp_skin.all_of_dimension( dim ) )
{
if( skin_entities.empty() )
skin_entities.swap( tmp_skin );
else
skin_entities.merge( tmp_skin );
}
else
{
result = thisMB->get_adjacencies( tmp_skin, dim, create_skin_elements, skin_entities, Interface::UNION );MB_CHK_ERR( result );
if( this_set ) result = thisMB->add_entities( this_set, skin_entities );
}
return result;
}
ErrorCode Skinner::find_skin_vertices( const EntityHandle this_set,
const Range& entities,
Range* skin_verts,
Range* skin_elems,
Range* skin_rev_elems,
bool create_skin_elems,
bool corners_only )
{
ErrorCode rval;
if( entities.empty() ) return MB_SUCCESS;
const int dim = CN::Dimension( TYPE_FROM_HANDLE( entities.front() ) );
if( dim < 1 || dim > 3 || !entities.all_of_dimension( dim ) ) return MB_TYPE_OUT_OF_RANGE;
// are we skinning all entities
size_t count = entities.size();
int num_total;
rval = thisMB->get_number_entities_by_dimension( this_set, dim, num_total );
if( MB_SUCCESS != rval ) return rval;
bool all = ( count == (size_t)num_total );
// Create a bit tag for fast intersection with input entities range.
// If we're skinning all the entities in the mesh, we really don't
// need the tag. To save memory, just create it with a default value
// of one and don't set it. That way MOAB will return 1 for all
// entities.
Tag tag;
char bit = all ? 1 : 0;
rval = thisMB->tag_get_handle( NULL, 1, MB_TYPE_BIT, tag, MB_TAG_CREAT, &bit );
if( MB_SUCCESS != rval ) return rval;
// tag all entities in input range
if( !all )
{
std::vector< unsigned char > vect( count, 1 );
rval = thisMB->tag_set_data( tag, entities, &vect[0] );
if( MB_SUCCESS != rval )
{
thisMB->tag_delete( tag );
return rval;
}
}
switch( dim )
{
case 1:
if( skin_verts )
rval = find_skin_vertices_1D( tag, entities, *skin_verts );
else if( skin_elems )
rval = find_skin_vertices_1D( tag, entities, *skin_elems );
else
rval = MB_SUCCESS;
break;
case 2:
rval = find_skin_vertices_2D( this_set, tag, entities, skin_verts, skin_elems, skin_rev_elems,
create_skin_elems, corners_only );
break;
case 3:
rval = find_skin_vertices_3D( this_set, tag, entities, skin_verts, skin_elems, skin_rev_elems,
create_skin_elems, corners_only );
break;
default:
rval = MB_TYPE_OUT_OF_RANGE;
break;
}
thisMB->tag_delete( tag );
return rval;
}
ErrorCode Skinner::find_skin_vertices_1D( Tag tag, const Range& edges, Range& skin_verts )
{
// This rather simple algorithm is provided for completeness
// (not sure how often one really wants the 'skin' of a chain
// or tangle of edges.)
//
// A vertex is on the skin of the edges if it is contained in exactly
// one of the edges *in the input range*.
//
// This function expects the caller to have tagged all edges in the
// input range with a value of one for the passed bit tag, and all
// other edges with a value of zero. This allows us to do a faster
// intersection with the input range and the edges adjacent to a vertex.
ErrorCode rval;
Range::iterator hint = skin_verts.begin();
// All input entities must be edges.
if( !edges.all_of_dimension( 1 ) ) return MB_TYPE_OUT_OF_RANGE;
// get all the vertices
Range verts;
rval = thisMB->get_connectivity( edges, verts, true );
if( MB_SUCCESS != rval ) return rval;
// Test how many edges each input vertex is adjacent to.
std::vector< char > tag_vals;
std::vector< EntityHandle > adj;
int n;
for( Range::const_iterator it = verts.begin(); it != verts.end(); ++it )
{
// get edges adjacent to vertex
adj.clear();
rval = thisMB->get_adjacencies( &*it, 1, 1, false, adj );
if( MB_SUCCESS != rval ) return rval;
if( adj.empty() ) continue;
// Intersect adjacent edges with the input list of edges
tag_vals.resize( adj.size() );
rval = thisMB->tag_get_data( tag, &adj[0], adj.size(), &tag_vals[0] );
if( MB_SUCCESS != rval ) return rval;
#ifdef MOAB_OLD_STD_COUNT
n = 0;
std::count( tag_vals.begin(), tag_vals.end(), '\001' );
#else
n = std::count( tag_vals.begin(), tag_vals.end(), '\001' );
#endif
// If adjacent to only one input edge, then vertex is on skin
if( n == 1 )
{
hint = skin_verts.insert( hint, *it );
}
}
return MB_SUCCESS;
}
// A Container for storing a list of element sides adjacent
// to a vertex. The template parameter is the number of
// corners for the side.
template < unsigned CORNERS >
class AdjSides
{
public:
/**
* This struct is used to for a reduced representation of element
* "sides" adjacent to a give vertex. As such, it
* a) does not store the initial vertex that all sides are adjacent to
* b) orders the remaining vertices in a specific way for fast comparison.
*
* For edge elements, only the opposite vertex is stored.
* For triangle elements, only the other two vertices are stored,
* and they are stored with the smaller of those two handles first.
* For quad elements, only the other three vertices are stored.
* They are stored such that the vertex opposite the implicit (not
* stored) vertex is always in slot 1. The other two vertices
* (in slots 0 and 2) are ordered such that the handle of the one in
* slot 0 is smaller than the handle in slot 2.
*
* For each side, the adj_elem field is used to store the element that
* it is a side of as long as the element is considered to be on the skin.
* The adj_elem field is cleared (set to zero) to indicate that this
* side is no longer considered to be on the skin (and is the side of
* more than one element.)
*/
struct Side
{
EntityHandle handles[CORNERS - 1]; //!< side vertices, except for implicit one
EntityHandle adj_elem; //!< element that this is a side of, or zero
bool skin() const
{
return 0 != adj_elem;
}
/** construct from connectivity of side
*\param array The connectivity of the element side.
*\param idx The index of the implicit vertex (contained
* in all sides in the list.)
*\param adj The element that this is a side of.
*/
Side( const EntityHandle* array, int idx, EntityHandle adj, unsigned short ) : adj_elem( adj )
{
switch( CORNERS )
{
case 3:
handles[1] = array[( idx + 2 ) % CORNERS];
// fall through
case 2:
if( 3 == CORNERS ) handles[1] = array[( idx + 2 ) % CORNERS];
if( 2 <= CORNERS ) handles[0] = array[( idx + 1 ) % CORNERS];
break;
default:
assert( false );
break;
}
if( CORNERS == 3 && handles[1] > handles[0] ) std::swap( handles[0], handles[1] );
}
/** construct from connectivity of parent element
*\param array The connectivity of the parent element
*\param idx The index of the implicit vertex (contained
* in all sides in the list.) This is an index
* into 'indices', not 'array'.
*\param adj The element that this is a side of.
*\param indices The indices into 'array' at which the vertices
* representing the side occur.
*/
Side( const EntityHandle* array, int idx, EntityHandle adj, unsigned short, const short* indices )
: adj_elem( adj )
{
switch( CORNERS )
{
case 3:
handles[1] = array[indices[( idx + 2 ) % CORNERS]];
// fall through
case 2:
if( 3 == CORNERS ) handles[1] = array[indices[( idx + 2 ) % CORNERS]];
if( 2 <= CORNERS ) handles[0] = array[indices[( idx + 1 ) % CORNERS]];
break;
default:
assert( false );
break;
}
if( CORNERS == 3 && handles[1] > handles[0] ) std::swap( handles[0], handles[1] );
}
// Compare two side instances. Relies in the ordering of
// vertex handles as described above.
bool operator==( const Side& other ) const
{
switch( CORNERS )
{
case 3:
return handles[0] == other.handles[0] && handles[1] == other.handles[1];
case 2:
return handles[0] == other.handles[0];
default:
assert( false );
return false;
}
}
};
private:
std::vector< Side > data; //!< List of sides
size_t skin_count; //!< Cached count of sides that are skin
public:
typedef typename std::vector< Side >::iterator iterator;
typedef typename std::vector< Side >::const_iterator const_iterator;
const_iterator begin() const
{
return data.begin();
}
const_iterator end() const
{
return data.end();
}
void clear()
{
data.clear();
skin_count = 0;
}
bool empty() const
{
return data.empty();
}
AdjSides() : skin_count( 0 ) {}
size_t num_skin() const
{
return skin_count;
}
/** \brief insert side, specifying side connectivity
*
* Either insert a new side, or if the side is already in the
* list, mark it as not on the skin.
*
*\param handles The connectivity of the element side.
*\param skip_idx The index of the implicit vertex (contained
* in all sides in the list.)
*\param adj_elem The element that this is a side of.
*\param elem_side Which side of adj_elem are we storing
* (CN side number.)
*/
void insert( const EntityHandle* handles, int skip_idx, EntityHandle adj_elem, unsigned short elem_side )
{
Side side( handles, skip_idx, adj_elem, elem_side );
iterator p = std::find( data.begin(), data.end(), side );
if( p == data.end() )
{
data.push_back( side );
++skin_count; // not in list yet, so skin side (so far)
}
else if( p->adj_elem )
{
p->adj_elem = 0; // mark as not on skin
--skin_count; // decrement cached count of skin elements
}
}
/** \brief insert side, specifying list of indices into parent element
* connectivity.
*
* Either insert a new side, or if the side is already in the
* list, mark it as not on the skin.
*
*\param handles The connectivity of the parent element
*\param skip_idx The index of the implicit vertex (contained
* in all sides in the list.) This is an index
* into 'indices', not 'handles'.
*\param adj_elem The element that this is a side of (parent handle).
*\param indices The indices into 'handles' at which the vertices
* representing the side occur.
*\param elem_side Which side of adj_elem are we storing
* (CN side number.)
*/
void insert( const EntityHandle* handles,
int skip_idx,
EntityHandle adj_elem,
unsigned short elem_side,
const short* indices )
{
Side side( handles, skip_idx, adj_elem, elem_side, indices );
iterator p = std::find( data.begin(), data.end(), side );
if( p == data.end() )
{
data.push_back( side );
++skin_count; // not in list yet, so skin side (so far)
}
else if( p->adj_elem )
{
p->adj_elem = 0; // mark as not on skin
--skin_count; // decrement cached count of skin elements
}
}
/**\brief Search list for a given side, and if found, mark as not skin.
*
*\param other Connectivity of side
*\param skip_index Index in 'other' at which implicit vertex occurs.
*\param elem_out If return value is true, the element that the side is a
* side of. If return value is false, not set.
*\return true if found and marked not-skin, false if not found.
*
* Given the connectivity of some existing element, check if it occurs
* in the list. If it does, clear the "is skin" state of the side so
* that we know that we don't need to later create the side element.
*/
bool find_and_unmark( const EntityHandle* other, int skip_index, EntityHandle& elem_out )
{
Side s( other, skip_index, 0, 0 );
iterator p = std::find( data.begin(), data.end(), s );
if( p == data.end() || !p->adj_elem )
return false;
else
{
elem_out = p->adj_elem;
p->adj_elem = 0; // clear "is skin" state for side
--skin_count; // decrement cached count of skin sides
return true;
}
}
};
/** construct from connectivity of side
*\param array The connectivity of the element side.
*\param idx The index of the implicit vertex (contained
* in all sides in the list.)
*\param adj The element that this is a side of.
*/
template <>
AdjSides< 4 >::Side::Side( const EntityHandle* array, int idx, EntityHandle adj, unsigned short ) : adj_elem( adj )
{
const unsigned int CORNERS = 4;
handles[2] = array[( idx + 3 ) % CORNERS];
handles[1] = array[( idx + 2 ) % CORNERS];
handles[0] = array[( idx + 1 ) % CORNERS];
if( handles[2] > handles[0] ) std::swap( handles[0], handles[2] );
}
/** construct from connectivity of parent element
*\param array The connectivity of the parent element
*\param idx The index of the implicit vertex (contained
* in all sides in the list.) This is an index
* into 'indices', not 'array'.
*\param adj The element that this is a side of.
*\param indices The indices into 'array' at which the vertices
* representing the side occur.
*/
template <>
AdjSides< 4 >::Side::Side( const EntityHandle* array, int idx, EntityHandle adj, unsigned short, const short* indices )
: adj_elem( adj )
{
const unsigned int CORNERS = 4;
handles[2] = array[indices[( idx + 3 ) % CORNERS]];
handles[1] = array[indices[( idx + 2 ) % CORNERS]];
handles[0] = array[indices[( idx + 1 ) % CORNERS]];
if( handles[2] > handles[0] ) std::swap( handles[0], handles[2] );
}
// Compare two side instances. Relies in the ordering of
// vertex handles as described above.
template <>
bool AdjSides< 4 >::Side::operator==( const Side& other ) const
{
return handles[0] == other.handles[0] && handles[1] == other.handles[1] && handles[2] == other.handles[2];
}
// Utility function used by find_skin_vertices_2D and
// find_skin_vertices_3D to create elements representing
// the skin side of a higher-dimension element if one
// does not already exist.
//
// Some arguments may seem redundant, but they are used
// to create the correct order of element when the input
// element contains higher-order nodes.
//
// This function always creates elements that have a "forward"
// orientation with respect to the parent element (have
// nodes ordered the same as CN returns for the "side").
//
// elem - The higher-dimension element for which to create
// a lower-dim element representing the side.
// side_type - The EntityType of the desired side.
// side_conn - The connectivity of the new side.
ErrorCode Skinner::create_side( const EntityHandle this_set,
EntityHandle elem,
EntityType side_type,
const EntityHandle* side_conn,
EntityHandle& side_elem )
{
const int max_side = 9;
const EntityHandle* conn;
int len, side_len, side, sense, offset, indices[max_side];
ErrorCode rval;
EntityType type = TYPE_FROM_HANDLE( elem ), tmp_type;
const int ncorner = CN::VerticesPerEntity( side_type );
const int d = CN::Dimension( side_type );
std::vector< EntityHandle > storage;
// Get the connectivity of the parent element
rval = thisMB->get_connectivity( elem, conn, len, false, &storage );
if( MB_SUCCESS != rval ) return rval;
// treat separately MBPOLYGON; we want to create the edge in the
// forward sense always ; so figure out the sense first, then get out
if( MBPOLYGON == type && 1 == d && MBEDGE == side_type )
{
// first find the first vertex in the conn list
int i = 0;
for( i = 0; i < len; i++ )
{
if( conn[i] == side_conn[0] ) break;
}
if( len == i ) return MB_FAILURE; // not found, big error
// now, what if the polygon is padded?
// the previous index is fine always. but the next one could be trouble :(
int prevIndex = ( i + len - 1 ) % len;
int nextIndex = ( i + 1 ) % len;
// if the next index actually point to the same node, as current, it means it is padded
if( conn[nextIndex] == conn[i] )
{
// it really means we are at the end of proper nodes, the last nodes are repeated, so it
// should be the first node
nextIndex = 0; // this is the first node!
}
EntityHandle conn2[2] = { side_conn[0], side_conn[1] };
if( conn[prevIndex] == side_conn[1] )
{
// reverse, so the edge will be forward
conn2[0] = side_conn[1];
conn2[1] = side_conn[0];
}
else if( conn[nextIndex] != side_conn[1] )
return MB_FAILURE; // it is not adjacent to the polygon
rval = thisMB->create_element( MBEDGE, conn2, 2, side_elem );MB_CHK_ERR( rval );
if( this_set )
{
rval = thisMB->add_entities( this_set, &side_elem, 1 );MB_CHK_ERR( rval );
}
return MB_SUCCESS;
}
// Find which side we are creating and get indices of all nodes
// (including higher-order, if any.)
CN::SideNumber( type, conn, side_conn, ncorner, d, side, sense, offset );
CN::SubEntityNodeIndices( type, len, d, side, tmp_type, side_len, indices );
assert( side_len <= max_side );
assert( side_type == tmp_type );
// NOTE: re-create conn array even when no higher-order nodes
// because we want it to always be forward with respect
// to the side ordering.
EntityHandle side_conn_full[max_side];
for( int i = 0; i < side_len; ++i )
side_conn_full[i] = conn[indices[i]];
rval = thisMB->create_element( side_type, side_conn_full, side_len, side_elem );MB_CHK_ERR( rval );
if( this_set )
{
rval = thisMB->add_entities( this_set, &side_elem, 1 );MB_CHK_ERR( rval );
}
return MB_SUCCESS;
;
}
// Test if an edge is reversed with respect CN's ordering
// for the "side" of a face.
bool Skinner::edge_reversed( EntityHandle face, const EntityHandle* edge_ends )
{
const EntityHandle* conn;
int len, idx;
ErrorCode rval = thisMB->get_connectivity( face, conn, len, true );
if( MB_SUCCESS != rval )
{
assert( false );
return false;
}
idx = std::find( conn, conn + len, edge_ends[0] ) - conn;
if( idx == len )
{
assert( false );
return false;
}
return ( edge_ends[1] == conn[( idx + len - 1 ) % len] );
}
// Test if a 2D element representing the side or face of a
// volume element is reversed with respect to the CN node
// ordering for the corresponding region element side.
bool Skinner::face_reversed( EntityHandle region, const EntityHandle* face_corners, EntityType face_type )
{
const EntityHandle* conn;
int len, side, sense, offset;
ErrorCode rval = thisMB->get_connectivity( region, conn, len, true );
if( MB_SUCCESS != rval )
{
assert( false );
return false;
}
short r = CN::SideNumber( TYPE_FROM_HANDLE( region ), conn, face_corners, CN::VerticesPerEntity( face_type ),
CN::Dimension( face_type ), side, sense, offset );
assert( 0 == r );
return ( !r && sense == -1 );
}
ErrorCode Skinner::find_skin_vertices_2D( const EntityHandle this_set,
Tag tag,
const Range& faces,
Range* skin_verts,
Range* skin_edges,
Range* reversed_edges,
bool create_edges,
bool corners_only )
{
// This function iterates over all the vertices contained in the
// input face list. For each such vertex, it then iterates over
// all of the sides of the face elements adjacent to the vertex.
// If an adjacent side is the side of only one of the input
// faces, then that side is on the skin.
//
// This algorithm will visit each skin vertex exactly once. It
// will visit each skin side once for each vertex in the side.
//
// This function expects the caller to have created the passed bit
// tag and set it to one only for the faces in the passed range. This
// tag is used to do a fast intersection of the faces adjacent to a
// vertex with the faces in the input range (discard any for which the
// tag is not set to one.)
ErrorCode rval;
std::vector< EntityHandle >::iterator i, j;
Range::iterator hint;
if( skin_verts ) hint = skin_verts->begin();
std::vector< EntityHandle > storage;
const EntityHandle* conn;
int len;
bool find_edges = skin_edges || create_edges;
bool printed_nonconformal_ho_warning = false;
EntityHandle face;
if( !faces.all_of_dimension( 2 ) ) return MB_TYPE_OUT_OF_RANGE;
// get all the vertices
Range verts;
rval = thisMB->get_connectivity( faces, verts, true );
if( MB_SUCCESS != rval ) return rval;
std::vector< char > tag_vals;
std::vector< EntityHandle > adj;
AdjSides< 2 > adj_edges;
for( Range::const_iterator it = verts.begin(); it != verts.end(); ++it )
{
bool higher_order = false;
// get all adjacent faces
adj.clear();
rval = thisMB->get_adjacencies( &*it, 1, 2, false, adj );
if( MB_SUCCESS != rval ) return rval;
if( adj.empty() ) continue;
// remove those not in the input list (intersect with input list)
i = j = adj.begin();<--- i is assigned
tag_vals.resize( adj.size() );
rval = thisMB->tag_get_data( tag, &adj[0], adj.size(), &tag_vals[0] );
if( MB_SUCCESS != rval ) return rval;
// remove non-tagged entries
i = j = adj.begin();<--- i is overwritten
for( ; i != adj.end(); ++i )
if( tag_vals[i - adj.begin()] ) *( j++ ) = *i;
adj.erase( j, adj.end() );
// For each adjacent face, check the edges adjacent to the current vertex
adj_edges.clear(); // other vertex for adjacent edges
for( i = adj.begin(); i != adj.end(); ++i )
{
rval = thisMB->get_connectivity( *i, conn, len, false, &storage );
if( MB_SUCCESS != rval ) return rval;
// For a single face element adjacent to this vertex, there
// will be exactly two sides (edges) adjacent to the vertex.
// Find the other vertex for each of the two edges.
EntityHandle prev, next; // vertices of two adjacent edge-sides
const int idx = std::find( conn, conn + len, *it ) - conn;
assert( idx != len );
if( TYPE_FROM_HANDLE( *i ) == MBTRI && len > 3 )
{
len = 3;
higher_order = true;
if( idx > 2 )
{ // skip higher-order nodes for now
if( !printed_nonconformal_ho_warning )
{
printed_nonconformal_ho_warning = true;
std::cerr << "Non-conformal higher-order mesh detected in skinner: "
<< "vertex " << ID_FROM_HANDLE( *it ) << " is a corner in "
<< "some elements and a higher-order node in others" << std::endl;
}
continue;
}
}
else if( TYPE_FROM_HANDLE( *i ) == MBQUAD && len > 4 )
{
len = 4;
higher_order = true;
if( idx > 3 )
{ // skip higher-order nodes for now
if( !printed_nonconformal_ho_warning )
{
printed_nonconformal_ho_warning = true;
std::cerr << "Non-conformal higher-order mesh detected in skinner: "
<< "vertex " << ID_FROM_HANDLE( *it ) << " is a corner in "
<< "some elements and a higher-order node in others" << std::endl;
}
continue;
}
}
// so it must be a MBPOLYGON
const int prev_idx = ( idx + len - 1 ) % len; // this should be fine, always, even for padded case
prev = conn[prev_idx];
next = conn[( idx + 1 ) % len];
if( next == conn[idx] ) // it must be the padded case, so roll to the beginning
next = conn[0];
// Insert sides (edges) in our list of candidate skin sides
adj_edges.insert( &prev, 1, *i, prev_idx );
adj_edges.insert( &next, 1, *i, idx );
}
// If vertex is not on skin, advance to next vertex.
// adj_edges handled checking for duplicates on insertion.
// If every candidate skin edge occurred more than once (was
// not in fact on the skin), then we're done with this vertex.
if( 0 == adj_edges.num_skin() ) continue;
// If user requested Range of *vertices* on the skin...
if( skin_verts )
{
// Put skin vertex in output list
hint = skin_verts->insert( hint, *it );
// Add mid edge nodes to vertex list
if( !corners_only && higher_order )
{
for( AdjSides< 2 >::const_iterator p = adj_edges.begin(); p != adj_edges.end(); ++p )
{
if( p->skin() )
{
face = p->adj_elem;
EntityType type = TYPE_FROM_HANDLE( face );
rval = thisMB->get_connectivity( face, conn, len, false );
if( MB_SUCCESS != rval ) return rval;
if( !CN::HasMidEdgeNodes( type, len ) ) continue;
EntityHandle ec[2] = { *it, p->handles[0] };
int side, sense, offset;
CN::SideNumber( type, conn, ec, 2, 1, side, sense, offset );
offset = CN::HONodeIndex( type, len, 1, side );
assert( offset >= 0 && offset < len );
skin_verts->insert( conn[offset] );
}
}
}
}
// If user requested Range of *edges* on the skin...
if( find_edges )
{
// Search list of existing adjacent edges for any that are on the skin
adj.clear();
rval = thisMB->get_adjacencies( &*it, 1, 1, false, adj );
if( MB_SUCCESS != rval ) return rval;
for( i = adj.begin(); i != adj.end(); ++i )
{
rval = thisMB->get_connectivity( *i, conn, len, true );
if( MB_SUCCESS != rval ) return rval;
// bool equality expression within find_and_unmark call
// will be evaluate to the index of *it in the conn array.
//
// Note that the order of the terms in the if statement is important.
// We want to unmark any existing skin edges even if we aren't
// returning them. Otherwise we'll end up creating duplicates
// if create_edges is true and skin_edges is not.
if( adj_edges.find_and_unmark( conn, ( conn[1] == *it ), face ) && skin_edges )
{
if( reversed_edges && edge_reversed( face, conn ) )
reversed_edges->insert( *i );
else
skin_edges->insert( *i );
}
}
}
// If the user requested that we create new edges for sides
// on the skin for which there is no existing edge, and there
// are still skin sides for which no corresponding edge was found...
if( create_edges && adj_edges.num_skin() )
{
// Create any skin edges that don't exist
for( AdjSides< 2 >::const_iterator p = adj_edges.begin(); p != adj_edges.end(); ++p )
{
if( p->skin() )
{
EntityHandle edge, ec[] = { *it, p->handles[0] };
rval = create_side( this_set, p->adj_elem, MBEDGE, ec, edge );
if( MB_SUCCESS != rval ) return rval;
if( skin_edges ) skin_edges->insert( edge );
}
}
}
} // end for each vertex
return MB_SUCCESS;
}
ErrorCode Skinner::find_skin_vertices_3D( const EntityHandle this_set,
Tag tag,
const Range& entities,
Range* skin_verts,
Range* skin_faces,
Range* reversed_faces,
bool create_faces,
bool corners_only )
{
// This function iterates over all the vertices contained in the
// input vol elem list. For each such vertex, it then iterates over
// all of the sides of the vol elements adjacent to the vertex.
// If an adjacent side is the side of only one of the input
// elements, then that side is on the skin.
//
// This algorithm will visit each skin vertex exactly once. It
// will visit each skin side once for each vertex in the side.
//
// This function expects the caller to have created the passed bit
// tag and set it to one only for the elements in the passed range. This
// tag is used to do a fast intersection of the elements adjacent to a
// vertex with the elements in the input range (discard any for which the
// tag is not set to one.)
//
// For each vertex, iterate over each adjacent element. Construct
// lists of the sides of each adjacent element that contain the vertex.
//
// A list of three-vertex sides is kept for all triangular faces,
// included three-vertex faces of type MBPOLYGON. Putting polygons
// in the same list ensures that we find polyhedron and non-polyhedron
// elements that are adjacent.
//
// A list of four-vertex sides is kept for all quadrilateral faces,
// including four-vertex faces of type MBPOLYGON.
//
// Sides with more than four vertices must have an explicit MBPOLYGON
// element representing them because MBPOLYHEDRON connectivity is a
// list of faces rather than vertices. So the third list (vertices>=5),
// need contain only the handle of the face rather than the vertex handles.
ErrorCode rval;
std::vector< EntityHandle >::iterator i, j;
Range::iterator hint;
if( skin_verts ) hint = skin_verts->begin();
std::vector< EntityHandle > storage, storage2; // temp storage for conn lists
const EntityHandle *conn, *conn2;
int len, len2;
bool find_faces = skin_faces || create_faces;
int clen, side, sense, offset, indices[9];
EntityType face_type;
EntityHandle elem;
bool printed_nonconformal_ho_warning = false;
if( !entities.all_of_dimension( 3 ) ) return MB_TYPE_OUT_OF_RANGE;
// get all the vertices
Range verts;
rval = thisMB->get_connectivity( entities, verts, true );
if( MB_SUCCESS != rval ) return rval;
// if there are polyhedra in the input list, need to make another
// call to get vertices from faces
if( !verts.all_of_dimension( 0 ) )
{
Range::iterator it = verts.upper_bound( MBVERTEX );
Range pfaces;
pfaces.merge( it, verts.end() );
verts.erase( it, verts.end() );
rval = thisMB->get_connectivity( pfaces, verts, true );
if( MB_SUCCESS != rval ) return rval;
assert( verts.all_of_dimension( 0 ) );
}
AdjSides< 4 > adj_quads; // 4-node sides adjacent to a vertex
AdjSides< 3 > adj_tris; // 3-node sides adjacent to a vertex
AdjSides< 2 > adj_poly; // n-node sides (n>5) adjacent to vertex
// (must have an explicit polygon, so store
// polygon handle rather than vertices.)
std::vector< char > tag_vals;
std::vector< EntityHandle > adj;
for( Range::const_iterator it = verts.begin(); it != verts.end(); ++it )
{
bool higher_order = false;
// get all adjacent elements
adj.clear();
rval = thisMB->get_adjacencies( &*it, 1, 3, false, adj );
if( MB_SUCCESS != rval ) return rval;
if( adj.empty() ) continue;
// remove those not tagged (intersect with input range)
i = j = adj.begin();
tag_vals.resize( adj.size() );
rval = thisMB->tag_get_data( tag, &adj[0], adj.size(), &tag_vals[0] );
if( MB_SUCCESS != rval ) return rval;
for( ; i != adj.end(); ++i )
if( tag_vals[i - adj.begin()] ) *( j++ ) = *i;
adj.erase( j, adj.end() );
// Build lists of sides of 3D element adjacent to the current vertex
adj_quads.clear(); // store three other vertices for each adjacent quad face
adj_tris.clear(); // store two other vertices for each adjacent tri face
adj_poly.clear(); // store handle of each adjacent polygonal face
int idx;
for( i = adj.begin(); i != adj.end(); ++i )
{
const EntityType type = TYPE_FROM_HANDLE( *i );
// Special case for POLYHEDRA
if( type == MBPOLYHEDRON )
{
rval = thisMB->get_connectivity( *i, conn, len );
if( MB_SUCCESS != rval ) return rval;
for( int k = 0; k < len; ++k )
{
rval = thisMB->get_connectivity( conn[k], conn2, len2, true, &storage2 );
if( MB_SUCCESS != rval ) return rval;
idx = std::find( conn2, conn2 + len2, *it ) - conn2;
if( idx == len2 ) // vertex not in this face
continue;
// Treat 3- and 4-vertex faces specially, so that
// if the mesh contains both elements and polyhedra,
// we don't miss one type adjacent to the other.
switch( len2 )
{
case 3:
adj_tris.insert( conn2, idx, *i, k );
break;
case 4:
adj_quads.insert( conn2, idx, *i, k );
break;
default:
adj_poly.insert( conn + k, 1, *i, k );
break;
}
}
}
else
{
rval = thisMB->get_connectivity( *i, conn, len, false, &storage );
if( MB_SUCCESS != rval ) return rval;
idx = std::find( conn, conn + len, *it ) - conn;
assert( idx != len );
if( len > CN::VerticesPerEntity( type ) )
{
higher_order = true;
// skip higher-order nodes for now
if( idx >= CN::VerticesPerEntity( type ) )
{
if( !printed_nonconformal_ho_warning )
{
printed_nonconformal_ho_warning = true;
std::cerr << "Non-conformal higher-order mesh detected in skinner: "
<< "vertex " << ID_FROM_HANDLE( *it ) << " is a corner in "
<< "some elements and a higher-order node in others" << std::endl;
}
continue;
}
}
// For each side of the element...
const int num_faces = CN::NumSubEntities( type, 2 );
for( int f = 0; f < num_faces; ++f )
{
int num_vtx;
const short* face_indices = CN::SubEntityVertexIndices( type, 2, f, face_type, num_vtx );
const short face_idx = std::find( face_indices, face_indices + num_vtx, (short)idx ) - face_indices;
// skip sides that do not contain vertex from outer loop
if( face_idx == num_vtx ) continue; // current vertex not in this face
assert( num_vtx <= 4 ); // polyhedra handled above
switch( face_type )
{
case MBTRI:
adj_tris.insert( conn, face_idx, *i, f, face_indices );
break;
case MBQUAD:
adj_quads.insert( conn, face_idx, *i, f, face_indices );
break;
default:
return MB_TYPE_OUT_OF_RANGE;
}
}
}
} // end for (adj[3])
// If vertex is not on skin, advance to next vertex
if( 0 == ( adj_tris.num_skin() + adj_quads.num_skin() + adj_poly.num_skin() ) ) continue;
// If user requested that skin *vertices* be passed back...
if( skin_verts )
{
// Put skin vertex in output list
hint = skin_verts->insert( hint, *it );
// Add mid-edge and mid-face nodes to vertex list
if( !corners_only && higher_order )
{
for( AdjSides< 3 >::const_iterator t = adj_tris.begin(); t != adj_tris.end(); ++t )
{
if( t->skin() )
{
elem = t->adj_elem;
EntityType type = TYPE_FROM_HANDLE( elem );
rval = thisMB->get_connectivity( elem, conn, len, false );
if( MB_SUCCESS != rval ) return rval;
if( !CN::HasMidNodes( type, len ) ) continue;
EntityHandle ec[3] = { *it, t->handles[0], t->handles[1] };
CN::SideNumber( type, conn, ec, 3, 2, side, sense, offset );
CN::SubEntityNodeIndices( type, len, 2, side, face_type, clen, indices );
assert( MBTRI == face_type );
for( int k = 3; k < clen; ++k )
skin_verts->insert( conn[indices[k]] );
}
}
for( AdjSides< 4 >::const_iterator q = adj_quads.begin(); q != adj_quads.end(); ++q )
{
if( q->skin() )
{
elem = q->adj_elem;
EntityType type = TYPE_FROM_HANDLE( elem );
rval = thisMB->get_connectivity( elem, conn, len, false );
if( MB_SUCCESS != rval ) return rval;
if( !CN::HasMidNodes( type, len ) ) continue;
EntityHandle ec[4] = { *it, q->handles[0], q->handles[1], q->handles[2] };
CN::SideNumber( type, conn, ec, 4, 2, side, sense, offset );
CN::SubEntityNodeIndices( type, len, 2, side, face_type, clen, indices );
assert( MBQUAD == face_type );
for( int k = 4; k < clen; ++k )
skin_verts->insert( conn[indices[k]] );
}
}
}
}
// If user requested that we pass back the list of 2D elements
// representing the skin of the mesh...
if( find_faces )
{
// Search list of adjacent faces for any that are on the skin
adj.clear();
rval = thisMB->get_adjacencies( &*it, 1, 2, false, adj );
if( MB_SUCCESS != rval ) return rval;
for( i = adj.begin(); i != adj.end(); ++i )
{
rval = thisMB->get_connectivity( *i, conn, len, true );
if( MB_SUCCESS != rval ) return rval;
const int idx2 = std::find( conn, conn + len, *it ) - conn;
if( idx2 >= len )
{
assert( printed_nonconformal_ho_warning );
continue;
}
// Note that the order of the terms in the if statements below
// is important. We want to unmark any existing skin faces even
// if we aren't returning them. Otherwise we'll end up creating
// duplicates if create_faces is true.
if( 3 == len )
{
if( adj_tris.find_and_unmark( conn, idx2, elem ) && skin_faces )
{
if( reversed_faces && face_reversed( elem, conn, MBTRI ) )
reversed_faces->insert( *i );
else
skin_faces->insert( *i );
}
}
else if( 4 == len )
{
if( adj_quads.find_and_unmark( conn, idx2, elem ) && skin_faces )
{
if( reversed_faces && face_reversed( elem, conn, MBQUAD ) )
reversed_faces->insert( *i );
else
skin_faces->insert( *i );
}
}
else
{
if( adj_poly.find_and_unmark( &*i, 1, elem ) && skin_faces ) skin_faces->insert( *i );
}
}
}
// If user does not want use to create new faces representing
// sides for which there is currently no explicit element,
// skip the remaining code and advance the outer loop to the
// next vertex.
if( !create_faces ) continue;
// Polyhedra always have explicitly defined faces, so
// there is no way we could need to create such a face.
assert( 0 == adj_poly.num_skin() );
// Create any skin tris that don't exist
if( adj_tris.num_skin() )
{
for( AdjSides< 3 >::const_iterator t = adj_tris.begin(); t != adj_tris.end(); ++t )
{
if( t->skin() )
{
EntityHandle tri, c[3] = { *it, t->handles[0], t->handles[1] };
rval = create_side( this_set, t->adj_elem, MBTRI, c, tri );
if( MB_SUCCESS != rval ) return rval;
if( skin_faces ) skin_faces->insert( tri );
}
}
}
// Create any skin quads that don't exist
if( adj_quads.num_skin() )
{
for( AdjSides< 4 >::const_iterator q = adj_quads.begin(); q != adj_quads.end(); ++q )
{
if( q->skin() )
{
EntityHandle quad, c[4] = { *it, q->handles[0], q->handles[1], q->handles[2] };
rval = create_side( this_set, q->adj_elem, MBQUAD, c, quad );
if( MB_SUCCESS != rval ) return rval;
if( skin_faces ) skin_faces->insert( quad );
}
}
}
} // end for each vertex
return MB_SUCCESS;
}
} // namespace moab
|