1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873 | #include "NCHelperHOMME.hpp"
#include "moab/ReadUtilIface.hpp"
#include "moab/FileOptions.hpp"
#include "moab/SpectralMeshTool.hpp"
#include <cmath>
namespace moab
{
NCHelperHOMME::NCHelperHOMME( ReadNC* readNC, int fileId, const FileOptions& opts, EntityHandle fileSet )
: UcdNCHelper( readNC, fileId, opts, fileSet ), _spectralOrder( -1 ), connectId( -1 ), isConnFile( false )
{
// Calculate spectral order
std::map< std::string, ReadNC::AttData >::iterator attIt = readNC->globalAtts.find( "np" );
if( attIt != readNC->globalAtts.end() )
{
int success = NCFUNC( get_att_int )( readNC->fileId, attIt->second.attVarId, attIt->second.attName.c_str(),
&_spectralOrder );
if( 0 == success ) _spectralOrder--; // Spectral order is one less than np
}
else
{
// As can_read_file() returns true and there is no global attribute "np", it should be a
// connectivity file
isConnFile = true;
_spectralOrder = 3; // Assume np is 4
}
}
bool NCHelperHOMME::can_read_file( ReadNC* readNC, int fileId )
{
// If global attribute "np" exists then it should be the HOMME grid
if( readNC->globalAtts.find( "np" ) != readNC->globalAtts.end() )
{
// Make sure it is CAM grid
std::map< std::string, ReadNC::AttData >::iterator attIt = readNC->globalAtts.find( "source" );
if( attIt == readNC->globalAtts.end() ) return false;
unsigned int sz = attIt->second.attLen;
std::string att_data;
att_data.resize( sz + 1 );
att_data[sz] = '\000';
int success =
NCFUNC( get_att_text )( fileId, attIt->second.attVarId, attIt->second.attName.c_str(), &att_data[0] );
if( success ) return false;
if( att_data.find( "CAM" ) == std::string::npos ) return false;
return true;
}
else
{
// If dimension names "ncol" AND "ncorners" AND "ncells" exist, then it should be the HOMME
// connectivity file In this case, the mesh can still be created
std::vector< std::string >& dimNames = readNC->dimNames;
if( ( std::find( dimNames.begin(), dimNames.end(), std::string( "ncol" ) ) != dimNames.end() ) &&
( std::find( dimNames.begin(), dimNames.end(), std::string( "ncorners" ) ) != dimNames.end() ) &&
( std::find( dimNames.begin(), dimNames.end(), std::string( "ncells" ) ) != dimNames.end() ) )
return true;
}
return false;
}
ErrorCode NCHelperHOMME::init_mesh_vals()
{
std::vector< std::string >& dimNames = _readNC->dimNames;
std::vector< int >& dimLens = _readNC->dimLens;<--- Variable 'dimLens' can be declared with const
std::map< std::string, ReadNC::VarData >& varInfo = _readNC->varInfo;
ErrorCode rval;
unsigned int idx;
std::vector< std::string >::iterator vit;
// Look for time dimension
if( isConnFile )
{
// Connectivity file might not have time dimension
}
else
{
if( ( vit = std::find( dimNames.begin(), dimNames.end(), "time" ) ) != dimNames.end() )
idx = vit - dimNames.begin();
else if( ( vit = std::find( dimNames.begin(), dimNames.end(), "t" ) ) != dimNames.end() )
idx = vit - dimNames.begin();
else
{
MB_SET_ERR( MB_FAILURE, "Couldn't find 'time' or 't' dimension" );
}
tDim = idx;
nTimeSteps = dimLens[idx];
}
// Get number of vertices (labeled as number of columns)
if( ( vit = std::find( dimNames.begin(), dimNames.end(), "ncol" ) ) != dimNames.end() )
idx = vit - dimNames.begin();
else
{
MB_SET_ERR( MB_FAILURE, "Couldn't find 'ncol' dimension" );
}
vDim = idx;
nVertices = dimLens[idx];
// Set number of cells
nCells = nVertices - 2;
// Get number of levels
if( isConnFile )
{
// Connectivity file might not have level dimension
}
else
{
if( ( vit = std::find( dimNames.begin(), dimNames.end(), "lev" ) ) != dimNames.end() )
idx = vit - dimNames.begin();
else if( ( vit = std::find( dimNames.begin(), dimNames.end(), "ilev" ) ) != dimNames.end() )
idx = vit - dimNames.begin();
else
{
MB_SET_ERR( MB_FAILURE, "Couldn't find 'lev' or 'ilev' dimension" );
}
levDim = idx;
nLevels = dimLens[idx];
}
// Store lon values in xVertVals
std::map< std::string, ReadNC::VarData >::iterator vmit;
if( ( vmit = varInfo.find( "lon" ) ) != varInfo.end() && ( *vmit ).second.varDims.size() == 1 )
{
rval = read_coordinate( "lon", 0, nVertices - 1, xVertVals );MB_CHK_SET_ERR( rval, "Trouble reading 'lon' variable" );
}
else
{
MB_SET_ERR( MB_FAILURE, "Couldn't find 'lon' variable" );
}
// Store lat values in yVertVals
if( ( vmit = varInfo.find( "lat" ) ) != varInfo.end() && ( *vmit ).second.varDims.size() == 1 )
{
rval = read_coordinate( "lat", 0, nVertices - 1, yVertVals );MB_CHK_SET_ERR( rval, "Trouble reading 'lat' variable" );
}
else
{
MB_SET_ERR( MB_FAILURE, "Couldn't find 'lat' variable" );
}
// Store lev values in levVals
if( isConnFile )
{
// Connectivity file might not have level variable
}
else
{
if( ( vmit = varInfo.find( "lev" ) ) != varInfo.end() && ( *vmit ).second.varDims.size() == 1 )
{
rval = read_coordinate( "lev", 0, nLevels - 1, levVals );MB_CHK_SET_ERR( rval, "Trouble reading 'lev' variable" );
// Decide whether down is positive
char posval[10] = { 0 };
int success = NCFUNC( get_att_text )( _fileId, ( *vmit ).second.varId, "positive", posval );
if( 0 == success && !strcmp( posval, "down" ) )
{
for( std::vector< double >::iterator dvit = levVals.begin(); dvit != levVals.end(); ++dvit )
( *dvit ) *= -1.0;
}
}
else
{
MB_SET_ERR( MB_FAILURE, "Couldn't find 'lev' variable" );
}
}
// Store time coordinate values in tVals
if( isConnFile )
{
// Connectivity file might not have time variable
}
else
{
if( ( vmit = varInfo.find( "time" ) ) != varInfo.end() && ( *vmit ).second.varDims.size() == 1 )
{
rval = read_coordinate( "time", 0, nTimeSteps - 1, tVals );MB_CHK_SET_ERR( rval, "Trouble reading 'time' variable" );
}
else if( ( vmit = varInfo.find( "t" ) ) != varInfo.end() && ( *vmit ).second.varDims.size() == 1 )
{
rval = read_coordinate( "t", 0, nTimeSteps - 1, tVals );MB_CHK_SET_ERR( rval, "Trouble reading 't' variable" );
}
else
{
// If expected time variable does not exist, set dummy values to tVals
for( int t = 0; t < nTimeSteps; t++ )
tVals.push_back( (double)t );
}
}
// For each variable, determine the entity location type and number of levels
std::map< std::string, ReadNC::VarData >::iterator mit;
for( mit = varInfo.begin(); mit != varInfo.end(); ++mit )
{
ReadNC::VarData& vd = ( *mit ).second;
// Default entLoc is ENTLOCSET
if( std::find( vd.varDims.begin(), vd.varDims.end(), tDim ) != vd.varDims.end() )
{
if( std::find( vd.varDims.begin(), vd.varDims.end(), vDim ) != vd.varDims.end() )
vd.entLoc = ReadNC::ENTLOCVERT;
}
// Default numLev is 0
if( std::find( vd.varDims.begin(), vd.varDims.end(), levDim ) != vd.varDims.end() ) vd.numLev = nLevels;
}
// Hack: create dummy variables for dimensions (like ncol) with no corresponding coordinate
// variables
rval = create_dummy_variables();MB_CHK_SET_ERR( rval, "Failed to create dummy variables" );
return MB_SUCCESS;
}
// When noMesh option is used on this read, the old ReadNC class instance for last read can get out
// of scope (and deleted). The old instance initialized localGidVerts properly when the mesh was
// created, but it is now lost. The new instance (will not create the mesh with noMesh option) has
// to restore it based on the existing mesh from last read
ErrorCode NCHelperHOMME::check_existing_mesh()
{
Interface*& mbImpl = _readNC->mbImpl;
Tag& mGlobalIdTag = _readNC->mGlobalIdTag;<--- The scope of the variable 'mGlobalIdTag' can be reduced. [+]The scope of the variable 'mGlobalIdTag' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
bool& noMesh = _readNC->noMesh;<--- Variable 'noMesh' can be declared with const
if( noMesh && localGidVerts.empty() )
{
// We need to populate localGidVerts range with the gids of vertices from current file set
// localGidVerts is important in reading the variable data into the nodes
// Also, for our purposes, localGidVerts is truly the GLOBAL_ID tag data, not other
// file_id tags that could get passed around in other scenarios for parallel reading
// Get all vertices from current file set (it is the input set in no_mesh scenario)
Range local_verts;
ErrorCode rval = mbImpl->get_entities_by_dimension( _fileSet, 0, local_verts );MB_CHK_SET_ERR( rval, "Trouble getting local vertices in current file set" );
if( !local_verts.empty() )
{
std::vector< int > gids( local_verts.size() );
// !IMPORTANT : this has to be the GLOBAL_ID tag
rval = mbImpl->tag_get_data( mGlobalIdTag, local_verts, &gids[0] );MB_CHK_SET_ERR( rval, "Trouble getting local gid values of vertices" );
// Restore localGidVerts
std::copy( gids.rbegin(), gids.rend(), range_inserter( localGidVerts ) );
nLocalVertices = localGidVerts.size();
}
}
return MB_SUCCESS;
}
ErrorCode NCHelperHOMME::create_mesh( Range& faces )
{
Interface*& mbImpl = _readNC->mbImpl;
std::string& fileName = _readNC->fileName;
Tag& mGlobalIdTag = _readNC->mGlobalIdTag;
const Tag*& mpFileIdTag = _readNC->mpFileIdTag;
DebugOutput& dbgOut = _readNC->dbgOut;<--- The scope of the variable 'dbgOut' can be reduced. [+]The scope of the variable 'dbgOut' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
bool& spectralMesh = _readNC->spectralMesh;<--- Variable 'spectralMesh' can be declared with const
int& gatherSetRank = _readNC->gatherSetRank;<--- Variable 'gatherSetRank' can be declared with const
int& trivialPartitionShift = _readNC->trivialPartitionShift;<--- Variable 'trivialPartitionShift' can be declared with const
int rank = 0;
int procs = 1;
#ifdef MOAB_HAVE_MPI
bool& isParallel = _readNC->isParallel;
if( isParallel )
{
ParallelComm*& myPcomm = _readNC->myPcomm;
rank = myPcomm->proc_config().proc_rank();
procs = myPcomm->proc_config().proc_size();
}
#endif
ErrorCode rval;
int success = 0;
// Need to get/read connectivity data before creating elements
std::string conn_fname;
if( isConnFile )
{
// Connectivity file has already been read
connectId = _readNC->fileId;
}
else
{
// Try to open the connectivity file through CONN option, if used
rval = _opts.get_str_option( "CONN", conn_fname );
if( MB_SUCCESS != rval )
{
// Default convention for reading HOMME is a file HommeMapping.nc in same dir as data
// file
conn_fname = std::string( fileName );
size_t idx = conn_fname.find_last_of( "/" );
if( idx != std::string::npos )
conn_fname = conn_fname.substr( 0, idx ).append( "/HommeMapping.nc" );
else
conn_fname = "HommeMapping.nc";
}
#ifdef MOAB_HAVE_PNETCDF
#ifdef MOAB_HAVE_MPI
if( isParallel )
{
ParallelComm*& myPcomm = _readNC->myPcomm;
success =
NCFUNC( open )( myPcomm->proc_config().proc_comm(), conn_fname.c_str(), 0, MPI_INFO_NULL, &connectId );
}
else
success = NCFUNC( open )( MPI_COMM_SELF, conn_fname.c_str(), 0, MPI_INFO_NULL, &connectId );
#endif
#else
success = NCFUNC( open )( conn_fname.c_str(), 0, &connectId );
#endif
if( success ) MB_SET_ERR( MB_FAILURE, "Failed on open" );
}
std::vector< std::string > conn_names;
std::vector< int > conn_vals;
rval = _readNC->get_dimensions( connectId, conn_names, conn_vals );MB_CHK_SET_ERR( rval, "Failed to get dimensions for connectivity" );
// Read connectivity into temporary variable
int num_fine_quads = 0;
int num_coarse_quads = 0;
int start_idx = 0;
std::vector< std::string >::iterator vit;
int idx = 0;
if( ( vit = std::find( conn_names.begin(), conn_names.end(), "ncells" ) ) != conn_names.end() )
idx = vit - conn_names.begin();
else if( ( vit = std::find( conn_names.begin(), conn_names.end(), "ncenters" ) ) != conn_names.end() )
idx = vit - conn_names.begin();
else
{
MB_SET_ERR( MB_FAILURE, "Failed to get number of quads" );
}
int num_quads = conn_vals[idx];
if( !isConnFile && num_quads != nCells )
{
dbgOut.tprintf( 1,
"Warning: number of quads from %s and cells from %s are inconsistent; "
"num_quads = %d, nCells = %d.\n",
conn_fname.c_str(), fileName.c_str(), num_quads, nCells );
}
// Get the connectivity into tmp_conn2 and permute into tmp_conn
int cornerVarId;
success = NCFUNC( inq_varid )( connectId, "element_corners", &cornerVarId );
if( success ) MB_SET_ERR( MB_FAILURE, "Failed to get variable id of 'element_corners'" );
NCDF_SIZE tmp_starts[2] = { 0, 0 };
NCDF_SIZE tmp_counts[2] = { 4, static_cast< NCDF_SIZE >( num_quads ) };
std::vector< int > tmp_conn( 4 * num_quads ), tmp_conn2( 4 * num_quads );
success = NCFUNCAG( _vara_int )( connectId, cornerVarId, tmp_starts, tmp_counts, &tmp_conn2[0] );
if( success ) MB_SET_ERR( MB_FAILURE, "Failed to get temporary connectivity" );
if( isConnFile )
{
// This data/connectivity file will be closed later in ReadNC::load_file()
}
else
{
success = NCFUNC( close )( connectId );
if( success ) MB_SET_ERR( MB_FAILURE, "Failed on close" );
}
// Permute the connectivity
for( int i = 0; i < num_quads; i++ )
{
tmp_conn[4 * i] = tmp_conn2[i];
tmp_conn[4 * i + 1] = tmp_conn2[i + 1 * num_quads];
tmp_conn[4 * i + 2] = tmp_conn2[i + 2 * num_quads];
tmp_conn[4 * i + 3] = tmp_conn2[i + 3 * num_quads];
}
// Need to know whether we'll be creating gather mesh later, to make sure
// we allocate enough space in one shot
bool create_gathers = false;
if( rank == gatherSetRank ) create_gathers = true;
// Shift rank to obtain a rotated trivial partition
int shifted_rank = rank;
if( procs >= 2 && trivialPartitionShift > 0 ) shifted_rank = ( rank + trivialPartitionShift ) % procs;
// Compute the number of local quads, accounting for coarse or fine representation
// spectral_unit is the # fine quads per coarse quad, or spectralOrder^2
int spectral_unit = ( spectralMesh ? _spectralOrder * _spectralOrder : 1 );
// num_coarse_quads is the number of quads instantiated in MOAB; if !spectralMesh,
// num_coarse_quads = num_fine_quads
num_coarse_quads = int( std::floor( 1.0 * num_quads / ( spectral_unit * procs ) ) );
// start_idx is the starting index in the HommeMapping connectivity list for this proc, before
// converting to coarse quad representation
start_idx = 4 * shifted_rank * num_coarse_quads * spectral_unit;
// iextra = # coarse quads extra after equal split over procs
int iextra = num_quads % ( procs * spectral_unit );
if( shifted_rank < iextra ) num_coarse_quads++;
start_idx += 4 * spectral_unit * std::min( shifted_rank, iextra );
// num_fine_quads is the number of quads in the connectivity list in HommeMapping file assigned
// to this proc
num_fine_quads = spectral_unit * num_coarse_quads;
// Now create num_coarse_quads
EntityHandle* conn_arr;
EntityHandle start_vertex;
Range tmp_range;
// Read connectivity into that space
EntityHandle* sv_ptr = NULL;
EntityHandle start_quad;
SpectralMeshTool smt( mbImpl, _spectralOrder );
if( !spectralMesh )
{
rval = _readNC->readMeshIface->get_element_connect( num_coarse_quads, 4, MBQUAD, 0, start_quad, conn_arr,
// Might have to create gather mesh later
( create_gathers ? num_coarse_quads + num_quads
: num_coarse_quads ) );MB_CHK_SET_ERR( rval, "Failed to create local quads" );
tmp_range.insert( start_quad, start_quad + num_coarse_quads - 1 );
int* tmp_conn_end = ( &tmp_conn[start_idx + 4 * num_fine_quads - 1] ) + 1;
std::copy( &tmp_conn[start_idx], tmp_conn_end, conn_arr );
std::copy( conn_arr, conn_arr + 4 * num_fine_quads, range_inserter( localGidVerts ) );
}
else
{
rval = smt.create_spectral_elems( &tmp_conn[0], num_fine_quads, 2, tmp_range, start_idx, &localGidVerts );MB_CHK_SET_ERR( rval, "Failed to create spectral elements" );
int count, v_per_e;
rval = mbImpl->connect_iterate( tmp_range.begin(), tmp_range.end(), conn_arr, v_per_e, count );MB_CHK_SET_ERR( rval, "Failed to get connectivity of spectral elements" );
rval = mbImpl->tag_iterate( smt.spectral_vertices_tag( true ), tmp_range.begin(), tmp_range.end(), count,
(void*&)sv_ptr );MB_CHK_SET_ERR( rval, "Failed to get fine connectivity of spectral elements" );
}
// Create vertices
nLocalVertices = localGidVerts.size();
std::vector< double* > arrays;
rval = _readNC->readMeshIface->get_node_coords( 3, nLocalVertices, 0, start_vertex, arrays,
// Might have to create gather mesh later
( create_gathers ? nLocalVertices + nVertices : nLocalVertices ) );MB_CHK_SET_ERR( rval, "Failed to create local vertices" );
// Set vertex coordinates
Range::iterator rit;
double* xptr = arrays[0];
double* yptr = arrays[1];
double* zptr = arrays[2];
int i;
for( i = 0, rit = localGidVerts.begin(); i < nLocalVertices; i++, ++rit )
{
assert( *rit < xVertVals.size() + 1 );
xptr[i] = xVertVals[( *rit ) - 1]; // lon
yptr[i] = yVertVals[( *rit ) - 1]; // lat
}
// Convert lon/lat/rad to x/y/z
const double pideg = acos( -1.0 ) / 180.0;
double rad = ( isConnFile ) ? 8000.0 : 8000.0 + levVals[0];
for( i = 0; i < nLocalVertices; i++ )
{
double cosphi = cos( pideg * yptr[i] );
double zmult = sin( pideg * yptr[i] );
double xmult = cosphi * cos( xptr[i] * pideg );
double ymult = cosphi * sin( xptr[i] * pideg );
xptr[i] = rad * xmult;
yptr[i] = rad * ymult;
zptr[i] = rad * zmult;
}
// Get ptr to gid memory for vertices
Range vert_range( start_vertex, start_vertex + nLocalVertices - 1 );
void* data;
int count;
rval = mbImpl->tag_iterate( mGlobalIdTag, vert_range.begin(), vert_range.end(), count, data );MB_CHK_SET_ERR( rval, "Failed to iterate global id tag on local vertices" );
assert( count == nLocalVertices );
int* gid_data = (int*)data;
std::copy( localGidVerts.begin(), localGidVerts.end(), gid_data );
// Duplicate global id data, which will be used to resolve sharing
if( mpFileIdTag )
{
rval = mbImpl->tag_iterate( *mpFileIdTag, vert_range.begin(), vert_range.end(), count, data );MB_CHK_SET_ERR( rval, "Failed to iterate file id tag on local vertices" );
assert( count == nLocalVertices );
int bytes_per_tag = 4;
rval = mbImpl->tag_get_bytes( *mpFileIdTag, bytes_per_tag );MB_CHK_SET_ERR( rval, "Can't get number of bytes for file id tag" );
if( 4 == bytes_per_tag )
{
gid_data = (int*)data;
std::copy( localGidVerts.begin(), localGidVerts.end(), gid_data );
}
else if( 8 == bytes_per_tag )
{ // Should be a handle tag on 64 bit machine?
long* handle_tag_data = (long*)data;
std::copy( localGidVerts.begin(), localGidVerts.end(), handle_tag_data );
}
}
// Create map from file ids to vertex handles, used later to set connectivity
std::map< EntityHandle, EntityHandle > vert_handles;
for( rit = localGidVerts.begin(), i = 0; rit != localGidVerts.end(); ++rit, i++ )
vert_handles[*rit] = start_vertex + i;
// Compute proper handles in connectivity using offset
for( int q = 0; q < 4 * num_coarse_quads; q++ )
{
conn_arr[q] = vert_handles[conn_arr[q]];
assert( conn_arr[q] );
}
if( spectralMesh )
{
int verts_per_quad = ( _spectralOrder + 1 ) * ( _spectralOrder + 1 );
for( int q = 0; q < verts_per_quad * num_coarse_quads; q++ )
{
sv_ptr[q] = vert_handles[sv_ptr[q]];
assert( sv_ptr[q] );
}
}
// Add new vertices and quads to current file set
faces.merge( tmp_range );
tmp_range.insert( start_vertex, start_vertex + nLocalVertices - 1 );
rval = mbImpl->add_entities( _fileSet, tmp_range );MB_CHK_SET_ERR( rval, "Failed to add new vertices and quads to current file set" );
// Mark the set with the spectral order
Tag sporder;
rval = mbImpl->tag_get_handle( "SPECTRAL_ORDER", 1, MB_TYPE_INTEGER, sporder, MB_TAG_SPARSE | MB_TAG_CREAT );MB_CHK_SET_ERR( rval, "Trouble creating SPECTRAL_ORDER tag" );
rval = mbImpl->tag_set_data( sporder, &_fileSet, 1, &_spectralOrder );MB_CHK_SET_ERR( rval, "Trouble setting data to SPECTRAL_ORDER tag" );
if( create_gathers )
{
EntityHandle gather_set;
rval = _readNC->readMeshIface->create_gather_set( gather_set );MB_CHK_SET_ERR( rval, "Failed to create gather set" );
// Create vertices
arrays.clear();
// Don't need to specify allocation number here, because we know enough verts were created
// before
rval = _readNC->readMeshIface->get_node_coords( 3, nVertices, 0, start_vertex, arrays );MB_CHK_SET_ERR( rval, "Failed to create gather set vertices" );
xptr = arrays[0];
yptr = arrays[1];
zptr = arrays[2];
for( i = 0; i < nVertices; i++ )
{
double cosphi = cos( pideg * yVertVals[i] );
double zmult = sin( pideg * yVertVals[i] );
double xmult = cosphi * cos( xVertVals[i] * pideg );
double ymult = cosphi * sin( xVertVals[i] * pideg );
xptr[i] = rad * xmult;
yptr[i] = rad * ymult;
zptr[i] = rad * zmult;
}
// Get ptr to gid memory for vertices
Range gather_set_verts_range( start_vertex, start_vertex + nVertices - 1 );
rval = mbImpl->tag_iterate( mGlobalIdTag, gather_set_verts_range.begin(), gather_set_verts_range.end(), count,
data );MB_CHK_SET_ERR( rval, "Failed to iterate global id tag on gather set vertices" );
assert( count == nVertices );
gid_data = (int*)data;
for( int j = 1; j <= nVertices; j++ )
gid_data[j - 1] = j;
// Set the file id tag too, it should be bigger something not interfering with global id
if( mpFileIdTag )
{
rval = mbImpl->tag_iterate( *mpFileIdTag, gather_set_verts_range.begin(), gather_set_verts_range.end(),
count, data );MB_CHK_SET_ERR( rval, "Failed to iterate file id tag on gather set vertices" );
assert( count == nVertices );
int bytes_per_tag = 4;
rval = mbImpl->tag_get_bytes( *mpFileIdTag, bytes_per_tag );MB_CHK_SET_ERR( rval, "Can't get number of bytes for file id tag" );
if( 4 == bytes_per_tag )
{
gid_data = (int*)data;
for( int j = 1; j <= nVertices; j++ )
gid_data[j - 1] = nVertices + j; // Bigger than global id tag
}
else if( 8 == bytes_per_tag )
{ // Should be a handle tag on 64 bit machine?
long* handle_tag_data = (long*)data;
for( int j = 1; j <= nVertices; j++ )
handle_tag_data[j - 1] = nVertices + j; // Bigger than global id tag
}
}
rval = mbImpl->add_entities( gather_set, gather_set_verts_range );MB_CHK_SET_ERR( rval, "Failed to add vertices to the gather set" );
// Create quads
Range gather_set_quads_range;
// Don't need to specify allocation number here, because we know enough quads were created
// before
rval = _readNC->readMeshIface->get_element_connect( num_quads, 4, MBQUAD, 0, start_quad, conn_arr );MB_CHK_SET_ERR( rval, "Failed to create gather set quads" );
gather_set_quads_range.insert( start_quad, start_quad + num_quads - 1 );
int* tmp_conn_end = ( &tmp_conn[4 * num_quads - 1] ) + 1;
std::copy( &tmp_conn[0], tmp_conn_end, conn_arr );
for( i = 0; i != 4 * num_quads; i++ )
conn_arr[i] += start_vertex - 1; // Connectivity array is shifted by where the gather verts start
rval = mbImpl->add_entities( gather_set, gather_set_quads_range );MB_CHK_SET_ERR( rval, "Failed to add quads to the gather set" );
}
return MB_SUCCESS;
}
ErrorCode NCHelperHOMME::read_ucd_variables_to_nonset_allocate( std::vector< ReadNC::VarData >& vdatas,
std::vector< int >& tstep_nums )
{
Interface*& mbImpl = _readNC->mbImpl;
std::vector< int >& dimLens = _readNC->dimLens;<--- Variable 'dimLens' can be declared with const
DebugOutput& dbgOut = _readNC->dbgOut;
Range* range = NULL;
// Get vertices
Range verts;
ErrorCode rval = mbImpl->get_entities_by_dimension( _fileSet, 0, verts );MB_CHK_SET_ERR( rval, "Trouble getting vertices in current file set" );
assert( "Should only have a single vertex subrange, since they were read in one shot" && verts.psize() == 1 );
for( unsigned int i = 0; i < vdatas.size(); i++ )
{
// Support non-set variables with 3 dimensions like (time, lev, ncol)
assert( 3 == vdatas[i].varDims.size() );
// For a non-set variable, time should be the first dimension
assert( tDim == vdatas[i].varDims[0] );
// Set up readStarts and readCounts
vdatas[i].readStarts.resize( 3 );
vdatas[i].readCounts.resize( 3 );
// First: time
vdatas[i].readStarts[0] = 0; // This value is timestep dependent, will be set later
vdatas[i].readCounts[0] = 1;
// Next: lev
vdatas[i].readStarts[1] = 0;
vdatas[i].readCounts[1] = vdatas[i].numLev;
// Finally: ncol
switch( vdatas[i].entLoc )
{
case ReadNC::ENTLOCVERT:
// Vertices
// Start from the first localGidVerts
// Actually, this will be reset later on in a loop
vdatas[i].readStarts[2] = localGidVerts[0] - 1;
vdatas[i].readCounts[2] = nLocalVertices;
range = &verts;
break;
default:
MB_SET_ERR( MB_FAILURE, "Unexpected entity location type for variable " << vdatas[i].varName );
}
// Get variable size
vdatas[i].sz = 1;
for( std::size_t idx = 0; idx != 3; idx++ )
vdatas[i].sz *= vdatas[i].readCounts[idx];
for( unsigned int t = 0; t < tstep_nums.size(); t++ )
{
dbgOut.tprintf( 2, "Reading variable %s, time step %d\n", vdatas[i].varName.c_str(), tstep_nums[t] );
if( tstep_nums[t] >= dimLens[tDim] )
{
MB_SET_ERR( MB_INDEX_OUT_OF_RANGE, "Wrong value for timestep number " << tstep_nums[t] );
}
// Get the tag to read into
if( !vdatas[i].varTags[t] )
{
rval = get_tag_to_nonset( vdatas[i], tstep_nums[t], vdatas[i].varTags[t], vdatas[i].numLev );MB_CHK_SET_ERR( rval, "Trouble getting tag for variable " << vdatas[i].varName );
}
// Get ptr to tag space
void* data;
int count;
rval = mbImpl->tag_iterate( vdatas[i].varTags[t], range->begin(), range->end(), count, data );MB_CHK_SET_ERR( rval, "Failed to iterate tag for variable " << vdatas[i].varName );
assert( (unsigned)count == range->size() );
vdatas[i].varDatas[t] = data;
}
}
return rval;
}
#ifdef MOAB_HAVE_PNETCDF
ErrorCode NCHelperHOMME::read_ucd_variables_to_nonset_async( std::vector< ReadNC::VarData >& vdatas,
std::vector< int >& tstep_nums )
{
DebugOutput& dbgOut = _readNC->dbgOut;
ErrorCode rval = read_ucd_variables_to_nonset_allocate( vdatas, tstep_nums );MB_CHK_SET_ERR( rval, "Trouble allocating space to read non-set variables" );
// Finally, read into that space
int success;
for( unsigned int i = 0; i < vdatas.size(); i++ )
{
std::size_t sz = vdatas[i].sz;
// A typical supported variable: float T(time, lev, ncol)
// For tag values, need transpose (lev, ncol) to (ncol, lev)
size_t ni = vdatas[i].readCounts[2]; // ncol
size_t nj = 1; // Here we should just set nj to 1
size_t nk = vdatas[i].readCounts[1]; // lev
for( unsigned int t = 0; t < tstep_nums.size(); t++ )
{
// We will synchronize all these reads with the other processors,
// so the wait will be inside this double loop; is it too much?
size_t nb_reads = localGidVerts.psize();
std::vector< int > requests( nb_reads ), statuss( nb_reads );
size_t idxReq = 0;
// Tag data for this timestep
void* data = vdatas[i].varDatas[t];
// Set readStart for each timestep along time dimension
vdatas[i].readStarts[0] = tstep_nums[t];
switch( vdatas[i].varDataType )
{
case NC_FLOAT:
case NC_DOUBLE: {
// Read float as double
std::vector< double > tmpdoubledata( sz );
// In the case of ucd mesh, and on multiple proc,
// we need to read as many times as subranges we have in the
// localGidVerts range;
// basically, we have to give a different point
// for data to start, for every subrange :(
size_t indexInDoubleArray = 0;
size_t ic = 0;
for( Range::pair_iterator pair_iter = localGidVerts.pair_begin();
pair_iter != localGidVerts.pair_end(); ++pair_iter, ic++ )
{
EntityHandle starth = pair_iter->first;
EntityHandle endh = pair_iter->second; // Inclusive
vdatas[i].readStarts[2] = (NCDF_SIZE)( starth - 1 );
vdatas[i].readCounts[2] = (NCDF_SIZE)( endh - starth + 1 );
// Do a partial read, in each subrange
// Wait outside this loop
success =
NCFUNCREQG( _vara_double )( _fileId, vdatas[i].varId, &( vdatas[i].readStarts[0] ),
&( vdatas[i].readCounts[0] ),
&( tmpdoubledata[indexInDoubleArray] ), &requests[idxReq++] );
if( success )
MB_SET_ERR( MB_FAILURE,
"Failed to read double data in a loop for variable " << vdatas[i].varName );
// We need to increment the index in double array for the
// next subrange
indexInDoubleArray += ( endh - starth + 1 ) * 1 * vdatas[i].numLev;
}
assert( ic == localGidVerts.psize() );
success = ncmpi_wait_all( _fileId, requests.size(), &requests[0], &statuss[0] );
if( success ) MB_SET_ERR( MB_FAILURE, "Failed on wait_all" );
if( vdatas[i].numLev > 1 )
// Transpose (lev, ncol) to (ncol, lev)
kji_to_jik_stride( ni, nj, nk, data, &tmpdoubledata[0], localGidVerts );
else
{
for( std::size_t idx = 0; idx != tmpdoubledata.size(); idx++ )
( (double*)data )[idx] = tmpdoubledata[idx];
}
break;
}
default:
MB_SET_ERR( MB_FAILURE, "Unexpected data type for variable " << vdatas[i].varName );
}
}
}
// Debug output, if requested
if( 1 == dbgOut.get_verbosity() )
{
dbgOut.printf( 1, "Read variables: %s", vdatas.begin()->varName.c_str() );
for( unsigned int i = 1; i < vdatas.size(); i++ )
dbgOut.printf( 1, ", %s ", vdatas[i].varName.c_str() );
dbgOut.tprintf( 1, "\n" );
}
return rval;
}
#else
ErrorCode NCHelperHOMME::read_ucd_variables_to_nonset( std::vector< ReadNC::VarData >& vdatas,
std::vector< int >& tstep_nums )
{
DebugOutput& dbgOut = _readNC->dbgOut;
ErrorCode rval = read_ucd_variables_to_nonset_allocate( vdatas, tstep_nums );MB_CHK_SET_ERR( rval, "Trouble allocating space to read non-set variables" );
// Finally, read into that space
int success;
for( unsigned int i = 0; i < vdatas.size(); i++ )
{
std::size_t sz = vdatas[i].sz;
// A typical supported variable: float T(time, lev, ncol)
// For tag values, need transpose (lev, ncol) to (ncol, lev)
size_t ni = vdatas[i].readCounts[2]; // ncol
size_t nj = 1; // Here we should just set nj to 1
size_t nk = vdatas[i].readCounts[1]; // lev
for( unsigned int t = 0; t < tstep_nums.size(); t++ )
{
// Tag data for this timestep
void* data = vdatas[i].varDatas[t];
// Set readStart for each timestep along time dimension
vdatas[i].readStarts[0] = tstep_nums[t];
switch( vdatas[i].varDataType )
{
case NC_FLOAT:
case NC_DOUBLE: {
// Read float as double
std::vector< double > tmpdoubledata( sz );
// In the case of ucd mesh, and on multiple proc,
// we need to read as many times as subranges we have in the
// localGidVerts range;
// basically, we have to give a different point
// for data to start, for every subrange :(
size_t indexInDoubleArray = 0;
size_t ic = 0;
for( Range::pair_iterator pair_iter = localGidVerts.pair_begin();
pair_iter != localGidVerts.pair_end(); ++pair_iter, ic++ )
{
EntityHandle starth = pair_iter->first;
EntityHandle endh = pair_iter->second; // Inclusive
vdatas[i].readStarts[2] = (NCDF_SIZE)( starth - 1 );
vdatas[i].readCounts[2] = (NCDF_SIZE)( endh - starth + 1 );
success = NCFUNCAG( _vara_double )( _fileId, vdatas[i].varId, &( vdatas[i].readStarts[0] ),
&( vdatas[i].readCounts[0] ),
&( tmpdoubledata[indexInDoubleArray] ) );
if( success )
MB_SET_ERR( MB_FAILURE,
"Failed to read double data in a loop for variable " << vdatas[i].varName );
// We need to increment the index in double array for the
// next subrange
indexInDoubleArray += ( endh - starth + 1 ) * 1 * vdatas[i].numLev;
}
assert( ic == localGidVerts.psize() );
if( vdatas[i].numLev > 1 )
// Transpose (lev, ncol) to (ncol, lev)
kji_to_jik_stride( ni, nj, nk, data, &tmpdoubledata[0], localGidVerts );
else
{
for( std::size_t idx = 0; idx != tmpdoubledata.size(); idx++ )
( (double*)data )[idx] = tmpdoubledata[idx];
}
break;
}
default:
MB_SET_ERR( MB_FAILURE, "Unexpected data type for variable " << vdatas[i].varName );
}
}
}
// Debug output, if requested
if( 1 == dbgOut.get_verbosity() )
{
dbgOut.printf( 1, "Read variables: %s", vdatas.begin()->varName.c_str() );
for( unsigned int i = 1; i < vdatas.size(); i++ )
dbgOut.printf( 1, ", %s ", vdatas[i].varName.c_str() );
dbgOut.tprintf( 1, "\n" );
}
return rval;
}
#endif
} // namespace moab
|