1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420 | /** \file ReadHDF5VarLen.cpp
* \author Jason Kraftcheck
* \date 2010-09-04
*/
#include "ReadHDF5VarLen.hpp"
#include "ReadHDF5Dataset.hpp"
#include "H5Tpublic.h"
#include <cassert>
namespace moab
{
bool ReadHDF5VarLen::is_ranged( EntityHandle file_id,
Range::const_iterator& ranged_iter,
Range::const_iterator range_end )
{
if( ranged_iter == range_end ) return false;
assert( file_id <= *ranged_iter );
if( *ranged_iter != file_id ) return false;
++ranged_iter;
return true;
}
ErrorCode ReadHDF5VarLen::read_data( ReadHDF5Dataset& data_set,
const Range& offsets,
EntityHandle start_offset,
hid_t data_type,
const Range& file_ids,
const std::vector< unsigned >& vals_per_ent,
const Range& ranged_file_ids )
{
ErrorCode rval;
const size_t value_size = H5Tget_size( data_type );
const size_t buffer_size = bufferSize / value_size;
unsigned char* const data_buffer = reinterpret_cast< unsigned char* >( dataBuffer );
std::vector< unsigned char > partial; // for when we read only part of the contents of a set/entity
Range::const_iterator fileid_iter = file_ids.begin();
Range::const_iterator ranged_iter = ranged_file_ids.begin();
std::vector< unsigned >::const_iterator count_iter = vals_per_ent.begin();
size_t count, offset;<--- The scope of the variable 'offset' can be reduced. [+]The scope of the variable 'offset' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
bool ranged;
int nn = 0;
assert( file_ids.size() == vals_per_ent.size() );
try
{
data_set.set_file_ids( offsets, start_offset, buffer_size, data_type );
}
catch( ReadHDF5Dataset::Exception& )
{
return MB_FAILURE;
}
dbgOut.printf( 3, "Reading %s in %lu chunks\n", data_set.get_debug_desc(), data_set.get_read_count() );
while( !data_set.done() )
{
dbgOut.printf( 3, "Reading chunk %d of %s\n", ++nn, data_set.get_debug_desc() );
try
{
data_set.read( data_buffer, count );
}
catch( ReadHDF5Dataset::Exception& )
{
return MB_FAILURE;
}
assert( 0 == count || fileid_iter != file_ids.end() );
// Handle 'special' case where we read some, but not all
// of the data for an entity during the last iteration.
offset = 0;
if( !partial.empty() )
{ // didn't read all of previous entity
assert( fileid_iter != file_ids.end() );
assert( 0 == ( partial.size() % value_size ) );
size_t num_prev = partial.size() / value_size;
offset = *count_iter - num_prev;
if( offset > count )
{ // still don't have all
partial.insert( partial.end(), data_buffer, data_buffer + count * value_size );
continue;
}
partial.insert( partial.end(), data_buffer, data_buffer + offset * value_size );
ranged = is_ranged( *fileid_iter, ranged_iter, ranged_file_ids.end() );
assert( partial.size() == *count_iter * value_size );
rval = store_data( *fileid_iter, &partial[0], *count_iter, ranged );
if( MB_SUCCESS != rval ) return rval;
++count_iter;
++fileid_iter;
partial.clear();
}
// Process contents for all entities for which we
// have read the complete list
while( count_iter != vals_per_ent.end() && offset + *count_iter <= count )
{
assert( fileid_iter != file_ids.end() );
ranged = is_ranged( *fileid_iter, ranged_iter, ranged_file_ids.end() );
rval = store_data( *fileid_iter, data_buffer + offset * value_size, *count_iter, ranged );
if( MB_SUCCESS != rval ) return rval;
offset += *count_iter;
++count_iter;
++fileid_iter;
}
// If we did not read all of the final entity,
// store what we did read to be processed in the
// next iteration
if( offset < count )
{
assert( partial.empty() );
partial.insert( partial.end(), data_buffer + offset * value_size, data_buffer + count * value_size );
}
}
// NOTE: If the last set is empty, we will not process it here
// assert(fileid_iter == file_ids.end());
#ifndef NDEBUG
for( ; fileid_iter != file_ids.end(); ++fileid_iter )
{
assert( 0 == *count_iter );
++count_iter;
}
#endif
return MB_SUCCESS;
}
/*
ErrorCode ReadHDF5VarLen::read_offsets( ReadHDF5Dataset& data_set,
const Range& file_ids,
EntityHandle start_file_id,
unsigned num_columns,
const unsigned indices[],
EntityHandle nudge,
Range offsets_out[],
std::vector<unsigned> counts_out[],
Range* ranged_file_ids = 0 )
{
const int local_index = 1;
// sanity check
const unsigned max_cols = ranged_file_ids ? data_set.columns() - 1 : data_set.columns()
for (unsigned i = 0; i < num_columns; ++i) {
assert(indices[i] >= max_cols);
if (indices[i] >= max_cols)
return MB_FAILURE;
}
// Use hints to make sure insertion into ranges is O(1)
std::vector<Range::iterator> hints;
if (ranged_file_ids) {
hints.resize( num_colums + 1 );
hints.back() = ranged_file_ids->begin();
}
else {
hints.resize( num_columns );
}
for (unsigned i = 0; i < num_columns; ++i)
offsets_out[i].clear();
counts_out[i].clear();
counts_out[i].reserve( file_ids.size() );
hints[i] = offsets_out[i].begin();
}
// If we only need one column from a multi-column data set,
// then read only that column.
if (num_columns == 1 && data_set.columns() > 1 && !ranged_file_ids) {
data_set.set_column( indices[0] );
indices = &local_index;
}
else if (ranged_file_ids && data_set.columns() > 1 && 0 == num_columns) {
data_set.set_column( data_set.columns() - 1 );
}
// NOTE: do not move this above the previous block.
// The previous block changes the results of data_set.columns()!
const size_t table_columns = data_set.columns();
// Calculate which rows we need to read from the offsets table
Range rows;
Range::iterator hint = rows.begin();
Range::const_pair_iterator pair = file_ids.const_pair_begin();
// special case if reading first entity in dataset, because
// there is no previous end value.
if (pair != file_ids.const_pair_end() && pair->first == start_file_id)
hint = rows.insert( nudge, pair->second - start_file_id + nudge );
while (pair != file_ids.const_pair_end()) {
hint = rows.insert( hint,
pair->first + nudge - 1 - start_file_id,
pair->second + nudge - start_file_id );
++pair;
}
// set up read of offsets dataset
hsize_t buffer_size = bufferSize / (sizeof(hssize_t) * data_set.columns());
hssize_t* buffer = reinterpret_cast<hssize_t*>(dataBuffer);
data_set.set_file_ids( rows, nudge, buffer_size, H5T_NATIVE_HSSIZE );
std::vector<hssize_t> prev_end;
// If we're reading the first row of the table, then the
// previous end is implicitly -1.
if (!file_ids.empty() && file_ids.front() == start_file_id)
prev_end.resize(num_columns,-1);
// read offset table
size_t count, offset;
Range::const_iterator fiter = file_ids.begin();
while (!data_set.done()) {
try {
data_set.read( buffer, count );
}
catch (ReadHDF5Dataset::Exception e) {
return MB_FAILURE;
}
if (!count) // might have been NULL read for collective IO
continue;
// If the previous end values were read in the previous iteration,
// then they're stored in prev_end.
size_t offset = 0;
if (!prev_end.empty()) {
for (unsigned i = 0; i < num_columns; ++i) {
counts_out[i].push_back( buffer[indices[i]] - prev_end[i] );
hints[i] = offsets_out[i].insert( hints[i],
prev_end[i] + 1 + nudge,
buffer[indices[i]] + nudge );
}
if (ranged_file_ids && (buffer[table_columns-1] & mhdf_SET_RANGE_BIT))
hints.back() = ranged_file_ids->insert( hints.back(), *fiter );
++fiter;
offset = 1;
prev_end.clear();
}
while (offset < count) {
assert(fiter != file_ids.end());
// whenever we get to a gap between blocks we need to
// advance one step because we read an extra end id
// preceding teah block
if (fiter == fiter.start_of_block()) {
if (offset == count-1)
break;
++offset;
}
for (unsigned i = 0; i < num_columns; ++i) {
size_t s = buffer[(offset-1)*table_columns+indices[i]] + 1;
size_t e = buffer[ offset *table_columns+indices[i]];
counts_out.push_back( e - s + 1 );
hints[i] = offsets_out.insert( hints[i], s, e );
}
if (ranged_file_ids && (buffer[offset*table_columns+table_columns-1] & mhdf_SET_RANGE_BIT))
hints.back() = ranged_file_ids->insert( hints.back(), *fiter );
++fiter;
++offset;
}
// If we did not end on the boundary between two blocks,
// then we need to save the end indices for the final entry
// for use in the next iteration. Similarly, if we ended
// with extra values that were read with the express intention
// of getting the previous end values for a block, we need to
// save them. This case only arises if we hit the break in
// the above loop.
if (fiter != fiter.start_of_block() || offset < count) {
assert(prev_end.empty());
if (offset == count) {
--offset;
assert(fiter != fiter.start_of_block());
}
else {
assert(offset+1 == count);
assert(fiter == fiter.start_of_block());
}
for (unsigned i = 0; i < num_columns; ++i)
prev_end.push_back(buffer[offset*table_columns+indices[i]]);
}
}
assert(prev_end.empty());
assert(fiter == file_ids.end());
return MB_SUCCESS;
}
*/
ErrorCode ReadHDF5VarLen::read_offsets( ReadHDF5Dataset& data_set,
const Range& file_ids,
EntityHandle start_file_id,
EntityHandle nudge,
Range& offsets_out,
std::vector< unsigned >& counts_out )
{
// Use hints to make sure insertion into ranges is O(1)
offsets_out.clear();
counts_out.clear();
counts_out.reserve( file_ids.size() );
Range::iterator hint;
// Calculate which rows we need to read from the offsets table
Range rows;
hint = rows.begin();
Range::const_pair_iterator pair = file_ids.const_pair_begin();
// special case if reading first entity in dataset, because
// there is no previous end value.
if( pair != file_ids.const_pair_end() && pair->first == start_file_id )
{
hint = rows.insert( nudge, pair->second - start_file_id + nudge );
++pair;
}
while( pair != file_ids.const_pair_end() )
{
hint = rows.insert( hint, pair->first - start_file_id + nudge - 1, pair->second - start_file_id + nudge );
++pair;
}
// set up read of offsets dataset
hsize_t buffer_size = bufferSize / sizeof( hssize_t );
hssize_t* buffer = reinterpret_cast< hssize_t* >( dataBuffer );
data_set.set_file_ids( rows, nudge, buffer_size, H5T_NATIVE_HSSIZE );
hssize_t prev_end;
bool have_prev_end = false;
// If we're reading the first row of the table, then the
// previous end is implicitly -1.
if( !file_ids.empty() && file_ids.front() == start_file_id )
{
prev_end = -1;
have_prev_end = true;
}
dbgOut.printf( 3, "Reading %s in %lu chunks\n", data_set.get_debug_desc(), data_set.get_read_count() );
// read offset table
size_t count, offset;
Range::const_iterator fiter = file_ids.begin();
hint = offsets_out.begin();
int nn = 0;
while( !data_set.done() )
{
dbgOut.printf( 3, "Reading chunk %d of %s\n", ++nn, data_set.get_debug_desc() );
try
{
data_set.read( buffer, count );
}
catch( ReadHDF5Dataset::Exception& )
{
return MB_FAILURE;
}
if( !count ) // might have been NULL read for collective IO
continue;
// If the previous end values were read in the previous iteration,
// then they're stored in prev_end.
offset = 0;
if( have_prev_end )
{
counts_out.push_back( buffer[0] - prev_end );
hint = offsets_out.insert( hint, prev_end + 1 + nudge, buffer[0] + nudge );
++fiter;
offset = 1;
have_prev_end = false;
}
while( offset < count )
{
assert( fiter != file_ids.end() );
// whenever we get to a gap between blocks we need to
// advance one step because we read an extra end id
// preceding teah block
if( fiter == fiter.start_of_block() )
{
if( offset == count - 1 ) break;
++offset;
}
size_t s = buffer[offset - 1] + 1;
size_t e = buffer[offset];
counts_out.push_back( e - s + 1 );
hint = offsets_out.insert( hint, s + nudge, e + nudge );
++fiter;
++offset;
}
// If we did not end on the boundary between two blocks,
// then we need to save the end indices for the final entry
// for use in the next iteration. Similarly, if we ended
// with extra values that were read with the express intention
// of getting the previous end values for a block, we need to
// save them. This case only arises if we hit the break in
// the above loop.
if( fiter != fiter.start_of_block() || offset < count )
{
assert( !have_prev_end );
if( offset == count )
{
--offset;
assert( fiter != fiter.start_of_block() );
}
else
{
assert( offset + 1 == count );
assert( fiter == fiter.start_of_block() );
}
have_prev_end = true;
prev_end = buffer[offset];
}
}
assert( !have_prev_end );
assert( fiter == file_ids.end() );
return MB_SUCCESS;
}
} // namespace moab
|