1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261 | /* *****************************************************************
MESQUITE -- The Mesh Quality Improvement Toolkit
Copyright 2007 Sandia National Laboratories. Developed at the
University of Wisconsin--Madison under SNL contract number
624796. The U.S. Government and the University of Wisconsin
retain certain rights to this software.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
(lgpl.txt) along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
(2008) [email protected]
***************************************************************** */
/** \file SymMatrix3D.hpp
* \brief Symetric 3x3 Matrix
* \author Jason Kraftcheck
*/
#ifndef MSQ_SYM_MATRIX_3D_HPP
#define MSQ_SYM_MATRIX_3D_HPP
#include "Mesquite.hpp"
#include "Vector3D.hpp"
namespace MBMesquite
{
class MESQUITE_EXPORT SymMatrix3D
{
private:
double d_[6];
public:
enum Term
{
T00 = 0,
T01 = 1,
T02 = 2,
T10 = T01,
T11 = 3,
T12 = 4,
T20 = T02,
T21 = T12,
T22 = 5
};
inline static Term term( unsigned r, unsigned c )
{
return (Term)( r <= c ? 3 * r - r * ( r + 1 ) / 2 + c : 3 * c - c * ( c + 1 ) / 2 + r );
}
SymMatrix3D() {}
SymMatrix3D( double diagonal_value )<--- Class 'SymMatrix3D' has a constructor with 1 argument that is not explicit. [+]Class 'SymMatrix3D' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'SymMatrix3D' has a constructor with 1 argument that is not explicit. [+]Class 'SymMatrix3D' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
{
d_[T00] = d_[T11] = d_[T22] = diagonal_value;
d_[T01] = d_[T02] = d_[T12] = 0.0;
}
SymMatrix3D( double t00, double t01, double t02, double t11, double t12, double t22 )
{
d_[T00] = t00;
d_[T01] = t01;
d_[T02] = t02;
d_[T11] = t11;
d_[T12] = t12;
d_[T22] = t22;
}
/**\brief Outer product */
SymMatrix3D( const Vector3D& u )<--- Class 'SymMatrix3D' has a constructor with 1 argument that is not explicit. [+]Class 'SymMatrix3D' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'SymMatrix3D' has a constructor with 1 argument that is not explicit. [+]Class 'SymMatrix3D' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
{
d_[T00] = u[0] * u[0];
d_[T01] = u[0] * u[1];
d_[T02] = u[0] * u[2];
d_[T11] = u[1] * u[1];
d_[T12] = u[1] * u[2];
d_[T22] = u[2] * u[2];
}
double& operator[]( unsigned t )
{
return d_[t];
}
double operator[]( unsigned t ) const
{
return d_[t];
}
double& operator()( unsigned short r, unsigned short c )
{
return d_[term( r, c )];
}
double operator()( unsigned short r, unsigned short c ) const
{
return d_[term( r, c )];
}
inline SymMatrix3D& operator+=( const SymMatrix3D& other );
inline SymMatrix3D& operator-=( const SymMatrix3D& other );
inline SymMatrix3D& operator*=( double scalar );
inline SymMatrix3D& operator/=( double scalar );
};
inline SymMatrix3D operator-( const SymMatrix3D& m )
{
return SymMatrix3D( -m[SymMatrix3D::T00], -m[SymMatrix3D::T01], -m[SymMatrix3D::T02], -m[SymMatrix3D::T11],
-m[SymMatrix3D::T12], -m[SymMatrix3D::T22] );
}
inline SymMatrix3D& SymMatrix3D::operator+=( const SymMatrix3D& other )
{
d_[0] += other.d_[0];
d_[1] += other.d_[1];
d_[2] += other.d_[2];
d_[3] += other.d_[3];
d_[4] += other.d_[4];
d_[5] += other.d_[5];
return *this;
}
inline SymMatrix3D& SymMatrix3D::operator-=( const SymMatrix3D& other )
{
d_[0] -= other.d_[0];
d_[1] -= other.d_[1];
d_[2] -= other.d_[2];
d_[3] -= other.d_[3];
d_[4] -= other.d_[4];
d_[5] -= other.d_[5];
return *this;
}
inline SymMatrix3D& SymMatrix3D::operator*=( double s )
{
d_[0] *= s;
d_[1] *= s;
d_[2] *= s;
d_[3] *= s;
d_[4] *= s;
d_[5] *= s;
return *this;
}
inline SymMatrix3D& SymMatrix3D::operator/=( double s )
{
d_[0] /= s;
d_[1] /= s;
d_[2] /= s;
d_[3] /= s;
d_[4] /= s;
d_[5] /= s;
return *this;
}
inline SymMatrix3D operator+( const SymMatrix3D& a, const SymMatrix3D& b )
{
SymMatrix3D r( a );
r += b;
return r;
}
inline SymMatrix3D operator-( const SymMatrix3D& a, const SymMatrix3D& b )
{
SymMatrix3D r( a );
r -= b;
return r;
}
inline SymMatrix3D operator*( const SymMatrix3D& a, double s )
{
SymMatrix3D r( a );
r *= s;
return r;
}
inline SymMatrix3D operator*( double s, const SymMatrix3D& a )
{
SymMatrix3D r( a );
r *= s;
return r;
}
inline SymMatrix3D operator/( const SymMatrix3D& a, double s )
{
SymMatrix3D r( a );
r /= s;
return r;
}
inline SymMatrix3D operator/( double s, const SymMatrix3D& a )
{
SymMatrix3D r( a );
r /= s;
return r;
}
inline Vector3D operator*( const Vector3D& v, const SymMatrix3D& m )
{
return Vector3D( v[0] * m[0] + v[1] * m[1] + v[2] * m[2], v[0] * m[1] + v[1] * m[3] + v[2] * m[4],
v[0] * m[2] + v[1] * m[4] + v[2] * m[5] );
}
inline Vector3D operator*( const SymMatrix3D& m, const Vector3D& v )
{
return v * m;
}
/** Calculate the outer product of a vector with itself */
inline SymMatrix3D outer( const Vector3D& v )
{
return SymMatrix3D( v[0] * v[0], v[0] * v[1], v[0] * v[2], v[1] * v[1], v[1] * v[2], v[2] * v[2] );
}
/** Given to vectors u and v, calculate the symmetric matrix
* equal to outer(u,v) + transpose(outer(u,v))
* equal to outer(v,u) + transpose(outer(v,u))
*/
inline SymMatrix3D outer_plus_transpose( const Vector3D& u, const Vector3D& v )
{
return SymMatrix3D( 2 * u[0] * v[0], u[0] * v[1] + u[1] * v[0], u[0] * v[2] + u[2] * v[0], 2 * u[1] * v[1],
u[1] * v[2] + u[2] * v[1], 2 * u[2] * v[2] );
}
inline const SymMatrix3D& transpose( const SymMatrix3D& a )
{
return a;
}
inline double det( const SymMatrix3D& a )
{
return a[0] * a[3] * a[5] + 2.0 * a[1] * a[2] * a[4] - a[0] * a[4] * a[4] - a[3] * a[2] * a[2] - a[5] * a[1] * a[1];
}
inline SymMatrix3D inverse( const SymMatrix3D& a )
{
SymMatrix3D result( a[3] * a[5] - a[4] * a[4], a[2] * a[4] - a[1] * a[5], a[1] * a[4] - a[2] * a[3],
a[0] * a[5] - a[2] * a[2], a[1] * a[2] - a[0] * a[4], a[0] * a[3] - a[1] * a[1] );
result /= det( a );
return result;
}
inline double Frobenius_2( const SymMatrix3D& a )
{
return a[0] * a[0] + 2 * a[1] * a[1] + 2 * a[2] * a[2] + a[3] * a[3] + 2 * a[4] * a[5] + a[5] * a[5];
}
inline double Frobenius( const SymMatrix3D& a )
{
return std::sqrt( Frobenius_2( a ) );
}
} // namespace MBMesquite
#endif
|