1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
/* *****************************************************************
    MESQUITE -- The Mesh Quality Improvement Toolkit

    Copyright 2007 Sandia National Laboratories.  Developed at the
    University of Wisconsin--Madison under SNL contract number
    624796.  The U.S. Government and the University of Wisconsin
    retain certain rights to this software.

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.

    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public License
    (lgpl.txt) along with this library; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

    (2007) [email protected]

  ***************************************************************** */

/** \file MsqGeomPrim.cpp
 *  \brief
 *  \author Jason Kraftcheck
 */

#include "Mesquite.hpp"
#include "MsqGeomPrim.hpp"

namespace MBMesquite
{

bool MsqLine::intersect( const MsqLine& other, double& param, double epsilon ) const
{
    if( !closest( other, param ) ) return false;
    Vector3D p1 = point( param );
    Vector3D p2 = other.point( other.closest( p1 ) );
    return ( p1 - p2 ).length_squared() < epsilon * epsilon;
}

bool MsqLine::closest( const MsqLine& other, double& param ) const
{
    const Vector3D N = other.direction() * ( direction() * other.direction() );
    const double D   = -( N % other.point() );
    const double dot = N % direction();
    if( dot < DBL_EPSILON ) return false;  // parallel
    param = -( N % point() + D ) / dot;
    return true;
}

bool MsqCircle::three_point( const Vector3D& p1, const Vector3D& p2, const Vector3D& p3, MsqCircle& result )
{
    Vector3D norm = ( p1 - p2 ) * ( p3 - p2 );
    if( norm.length_squared() < DBL_EPSILON ) return false;

    MsqLine line1( 0.5 * ( p1 + p2 ), norm * ( p1 - p2 ) );
    MsqLine line2( 0.5 * ( p2 + p3 ), norm * ( p3 - p2 ) );
    double t_xsect;
    if( !line1.closest( line2, t_xsect ) ) return false;

    Vector3D center = line1.point( t_xsect );
    double radius   = ( ( center - p1 ).length() + ( center - p2 ).length() + ( center - p3 ).length() ) / 3.0;
    result          = MsqCircle( center, norm, radius );
    return true;
}

bool MsqCircle::two_point( const Vector3D& center, const Vector3D& p1, const Vector3D& p2, MsqCircle& result )
{
    Vector3D norm = ( p1 - center ) * ( p2 - center );
    if( norm.length_squared() < DBL_EPSILON ) return false;

    double radius = 0.5 * ( ( center - p1 ).length() + ( center - p2 ).length() );
    result        = MsqCircle( center, norm, radius );
    return true;
}

Vector3D MsqCircle::radial_vector() const
{
    int min_idx = 0;
    if( normal()[1] < normal()[min_idx] ) min_idx = 1;
    if( normal()[2] < normal()[min_idx] ) min_idx = 2;
    Vector3D vect( 0, 0, 0 );
    vect[min_idx] = 1;
    vect          = normal() * vect;
    vect *= radius() / vect.length();
    return vect;
}

Vector3D MsqCircle::closest( const Vector3D& point ) const
{
    const Vector3D from_center = point - center();
    const Vector3D norm_proj   = normal() * ( normal() % from_center );  // unit normal!
    const Vector3D in_plane    = from_center - norm_proj;
    const double length        = in_plane.length();<--- Shadow variable
    if( length < DBL_EPSILON )
        return center() + radial_vector();
    else
        return center() + in_plane * radius() / length;
}

bool MsqCircle::closest( const Vector3D& point, Vector3D& result_pt, Vector3D& result_tngt ) const
{
    const Vector3D from_center = point - center();
    Vector3D in_plane          = from_center - ( from_center % normal() );
    if( in_plane.length_squared() < DBL_EPSILON ) return false;

    result_pt   = center() + in_plane * radius() / in_plane.length();
    result_tngt = in_plane * normal();
    return true;
}

MsqPlane::MsqPlane( const Vector3D& p_normal, double coeff )
{
    const double len = p_normal.length();
    mNormal          = p_normal / len;
    mCoeff           = coeff / len;
}

MsqPlane::MsqPlane( const Vector3D& p_normal, const Vector3D& p_point )
    : mNormal( p_normal / p_normal.length() ), mCoeff( -( mNormal % p_point ) )
{
}

MsqPlane::MsqPlane( double a, double b, double c, double d ) : mNormal( a, b, c ), mCoeff( d )
{
    const double len = mNormal.length();
    mNormal /= len;
    mCoeff /= len;
}

bool MsqPlane::intersect( const MsqPlane& plane, MsqLine& result ) const
{
    const double dot = normal() % plane.normal();
    const double det = dot * dot - 1.0;
    if( fabs( det ) < DBL_EPSILON )  // parallel
        return false;

    const double s1 = ( coefficient() - dot * plane.coefficient() ) / det;
    const double s2 = ( plane.coefficient() - dot * coefficient() ) / det;
    result          = MsqLine( s1 * normal() + s2 * plane.normal(), normal() * plane.normal() );
    return true;
}

bool MsqPlane::intersect( const MsqLine& line, double& result ) const
{
    const double dot = line.direction() % normal();
    if( fabs( dot ) < DBL_EPSILON ) return false;

    result = -( normal() % line.point() + coefficient() ) / dot;
    return true;
}

Vector3D MsqSphere::closest( const Vector3D& point ) const
{
    Vector3D diff = point - center();
    double len    = diff.length();
    if( len < DBL_EPSILON )
    {
        // pick any point
        diff = Vector3D( 1, 0, 0 );
        len  = 1;
    }

    return center() + diff * radius() / len;
}

bool MsqSphere::closest( const Vector3D& point, Vector3D& point_on_sphere, Vector3D& normal_at_point ) const
{
    normal_at_point = point - center();
    double len      = normal_at_point.length();
    if( len < DBL_EPSILON ) return false;

    normal_at_point /= len;
    point_on_sphere = center() + radius() * normal_at_point;
    return true;
}

bool MsqSphere::intersect( const MsqPlane& plane, MsqCircle& result ) const
{
    const Vector3D plane_pt  = plane.closest( center() );
    const Vector3D plane_dir = plane_pt - center();
    const double dir_sqr     = plane_dir.length_squared();
    if( dir_sqr < DBL_EPSILON )
    {  // plane passes through center of sphere
        result = MsqCircle( center(), plane.normal(), radius() );
        return true;
    }

    double rad_sqr = radius() * radius() - plane_dir.length_squared();
    if( rad_sqr < 0 )  // no intersection
        return false;

    result = MsqCircle( plane_pt, plane_dir, sqrt( rad_sqr ) );
    return true;
}

bool MsqSphere::intersect( const MsqSphere& sphere, MsqCircle& result ) const
{
    const Vector3D d  = sphere.center() - center();
    const double dist = d.length();
    if( dist > ( radius() + sphere.radius() ) ) return false;

    const double r1_sqr = radius() * radius();
    const double r2_sqr = sphere.radius() * sphere.radius();
    const double f      = ( d % d + r1_sqr - r2_sqr ) / 2;
    // const double d1 = f / dist;

    const double rad = sqrt( r1_sqr - f * f / ( d % d ) );
    Vector3D c       = center() + d * f / ( d % d );
    result           = MsqCircle( c, d, rad );
    return true;
}

}  // namespace MBMesquite