1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579 | /* *****************************************************************
MESQUITE -- The Mesh Quality Improvement Toolkit
Copyright 2004 Sandia Corporation and Argonne National
Laboratory. Under the terms of Contract DE-AC04-94AL85000
with Sandia Corporation, the U.S. Government retains certain
rights in this software.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
(lgpl.txt) along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
[email protected], [email protected], [email protected],
[email protected], [email protected], [email protected]
***************************************************************** */
/*!
\file ConjugateGradient.cpp
\brief
The Conjugate Gradient class is a concrete vertex mover
which performs conjugate gradient minimizaiton.
\author Michael Brewer
\date 2002-06-19
*/
#include "ConjugateGradient.hpp"
#include <cmath>
#include "MsqDebug.hpp"
#include "MsqTimer.hpp"
//#include "MsqFreeVertexIndexIterator.hpp"
namespace MBMesquite
{
extern int get_parallel_rank();
extern int get_parallel_size();
std::string ConjugateGradient::get_name() const
{
return "ConjugateGradient";
}
PatchSet* ConjugateGradient::get_patch_set()
{
return PatchSetUser::get_patch_set();
}
ConjugateGradient::ConjugateGradient( ObjectiveFunction* objective )
: VertexMover( objective ), PatchSetUser( true ), pMemento( NULL ), conjGradDebug( 0 )
{
}
ConjugateGradient::ConjugateGradient( ObjectiveFunction* objective, MsqError& err )
: VertexMover( objective ), PatchSetUser( true ), pMemento( NULL ), conjGradDebug( 0 )
{
// Michael:: default to global?
set_debugging_level( 0 );
// set the default inner termination criterion
TerminationCriterion* default_crit = get_inner_termination_criterion();
if( default_crit == NULL )
{
MSQ_SETERR( err )
( "QualityImprover did not create a default inner "
"termination criterion.",
MsqError::INVALID_STATE );
return;
}
else
{
default_crit->add_iteration_limit( 5 );MSQ_ERRRTN( err );
}
}
ConjugateGradient::~ConjugateGradient()
{
// Checks that cleanup() has been called.
assert( pMemento == NULL );
}
void ConjugateGradient::initialize( PatchData& pd, MsqError& err )
{
if( get_parallel_size() )
{
MSQ_DBGOUT( 2 ) << "\nP[" << get_parallel_rank() << "] "
<< "o Performing Conjugate Gradient optimization.\n";
}
else
{
MSQ_DBGOUT( 2 ) << "\no Performing Conjugate Gradient optimization.\n";
}
pMemento = pd.create_vertices_memento( err );
}
void ConjugateGradient::initialize_mesh_iteration( PatchData& /*pd*/, MsqError& /*err*/ ) {}
/*!Performs Conjugate gradient minimization on the PatchData, pd.*/
void ConjugateGradient::optimize_vertex_positions( PatchData& pd, MsqError& err )
{
// pd.reorder();
MSQ_FUNCTION_TIMER( "ConjugateGradient::optimize_vertex_positions" );
Timer c_timer;
size_t num_vert = pd.num_free_vertices();
if( num_vert < 1 )
{
MSQ_DBGOUT( 1 ) << "\nEmpty free vertex list in ConjugateGradient\n";
return;
}
/*
//zero out arrays
int zero_loop=0;
while(zero_loop<arraySize){
fGrad[zero_loop].set(0,0,0);
pGrad[zero_loop].set(0,0,0);
fNewGrad[zero_loop].set(0,0,0);
++zero_loop;
}
*/
// get OF evaluator
OFEvaluator& objFunc = get_objective_function_evaluator();
size_t ind;
// Michael cull list: possibly set soft_fixed flags here
// MsqFreeVertexIndexIterator free_iter(pd, err); MSQ_ERRRTN(err);
double f = 0;
// Michael, this isn't equivalent to CUBIT because we only want to check
// the objective function value of the 'bad' elements
// if invalid initial patch set an error.
bool temp_bool = objFunc.update( pd, f, fGrad, err );
assert( fGrad.size() == num_vert );
if( MSQ_CHKERR( err ) ) return;
if( !temp_bool )
{
MSQ_SETERR( err )
( "Conjugate Gradient not able to get valid gradient "
"and function values on intial patch.",
MsqError::INVALID_MESH );
return;
}
double grad_norm = MSQ_MAX_CAP;
if( conjGradDebug > 0 )
{
MSQ_PRINT( 2 )( "\nCG's DEGUB LEVEL = %i \n", conjGradDebug );
grad_norm = Linf( arrptr( fGrad ), fGrad.size() );
MSQ_PRINT( 2 )( "\nCG's FIRST VALUE = %f,grad_norm = %f", f, grad_norm );
MSQ_PRINT( 2 )( "\n TIME %f", c_timer.since_birth() );
grad_norm = MSQ_MAX_CAP;
}
// Initializing pGrad (search direction).
pGrad.resize( fGrad.size() );
for( ind = 0; ind < num_vert; ++ind )
pGrad[ind] = ( -fGrad[ind] );
int j = 0; // total nb of step size changes ... not used much<--- Variable 'j' is assigned a value that is never used.
int i = 0; // iteration counter
unsigned m = 0; //<--- Variable 'm' is assigned a value that is never used.
double alp = MSQ_MAX_CAP; // alp: scale factor of search direction
// we know inner_criterion is false because it was checked in
// loop_over_mesh before being sent here.
TerminationCriterion* term_crit = get_inner_termination_criterion();
// while ((i<maxIteration && alp>stepBound && grad_norm>normGradientBound)
// && !inner_criterion){
while( !term_crit->terminate() )
{
++i;
// std::cout<<"\Michael delete i = "<<i;
int k = 0;
alp = get_step( pd, f, k, err );
j += k;<--- Variable 'j' is assigned a value that is never used.
if( conjGradDebug > 2 )
{
MSQ_PRINT( 2 )( "\n Alp initial, alp = %20.18f", alp );
}
// if alp == 0, revert to steepest descent search direction
if( alp == 0 )
{
for( m = 0; m < num_vert; ++m )
{
pGrad[m] = ( -fGrad[m] );
}
alp = get_step( pd, f, k, err );
j += k;<--- Variable 'j' is assigned a value that is never used.
if( conjGradDebug > 1 )
{
MSQ_PRINT( 2 )( "\n CG's search direction reset." );
if( conjGradDebug > 2 ) MSQ_PRINT( 2 )( "\n Alp was zero, alp = %20.18f", alp );
}
}
if( alp != 0 )
{
pd.move_free_vertices_constrained( arrptr( pGrad ), num_vert, alp, err );MSQ_ERRRTN( err );
if( !objFunc.update( pd, f, fNewGrad, err ) )
{
MSQ_SETERR( err )
( "Error inside Conjugate Gradient, vertices moved "
"making function value invalid.",
MsqError::INVALID_MESH );
return;
}
assert( fNewGrad.size() == (unsigned)num_vert );
if( conjGradDebug > 0 )
{
grad_norm = Linf( arrptr( fNewGrad ), num_vert );
MSQ_PRINT( 2 )
( "\nCG's VALUE = %f, iter. = %i, grad_norm = %f, alp = %f", f, i, grad_norm, alp );
MSQ_PRINT( 2 )( "\n TIME %f", c_timer.since_birth() );
}
double s11 = 0;
double s12 = 0;
double s22 = 0;
// free_iter.reset();
// while (free_iter.next()) {
// m=free_iter.value();
for( m = 0; m < num_vert; ++m )
{
s11 += fGrad[m] % fGrad[m];<--- Same expression on both sides of '%'. [+]Finding the same expression on both sides of an operator is suspicious and might indicate a cut and paste or logic error. Please examine this code carefully to determine if it is correct.
s12 += fGrad[m] % fNewGrad[m];
s22 += fNewGrad[m] % fNewGrad[m];<--- Same expression on both sides of '%'. [+]Finding the same expression on both sides of an operator is suspicious and might indicate a cut and paste or logic error. Please examine this code carefully to determine if it is correct.
}
// Steepest Descent (takes 2-3 times as long as P-R)
// double bet=0;
// Fletcher-Reeves (takes twice as long as P-R)
// double bet = s22/s11;
// Polack-Ribiere
double bet;
if( !divide( s22 - s12, s11, bet ) ) return; // gradient is zero
// free_iter.reset();
// while (free_iter.next()) {
// m=free_iter.value();
for( m = 0; m < num_vert; ++m )
{
pGrad[m] = ( -fNewGrad[m] + ( bet * pGrad[m] ) );
fGrad[m] = fNewGrad[m];
}
if( conjGradDebug > 2 )
{
MSQ_PRINT( 2 )
( " \nSEARCH DIRECTION INFINITY NORM = %e", Linf( arrptr( fNewGrad ), num_vert ) );
}
} // end if on alp == 0
term_crit->accumulate_patch( pd, err );MSQ_ERRRTN( err );
term_crit->accumulate_inner( pd, f, arrptr( fGrad ), err );MSQ_ERRRTN( err );
} // end while
if( conjGradDebug > 0 )
{
MSQ_PRINT( 2 )( "\nConjugate Gradient complete i=%i ", i );
MSQ_PRINT( 2 )( "\n- FINAL value = %f, alp=%4.2e grad_norm=%4.2e", f, alp, grad_norm );
MSQ_PRINT( 2 )( "\n FINAL TIME %f", c_timer.since_birth() );
}
}
void ConjugateGradient::terminate_mesh_iteration( PatchData& /*pd*/, MsqError& /*err*/ )
{
// cout << "- Executing ConjugateGradient::iteration_complete()\n";
}
void ConjugateGradient::cleanup()
{
// cout << "- Executing ConjugateGradient::iteration_end()\n";
fGrad.clear();
pGrad.clear();
fNewGrad.clear();
// pMemento->~PatchDataVerticesMemento();
delete pMemento;
pMemento = NULL;
}
//! Computes a distance to move vertices given an initial position and search direction (stored in
//! data member pGrad).
/*!Returns alp, the double which scales the search direction vector
which when added to the old nodal positions yields the new nodal
positions.*/
/*!\todo Michael NOTE: ConjugateGradient::get_step's int &j is only
to remain consisitent with CUBIT for an initial test. It can be
removed.*/
double ConjugateGradient::get_step( PatchData& pd, double f0, int& j, MsqError& err )
{
// get OF evaluator
OFEvaluator& objFunc = get_objective_function_evaluator();
size_t num_vertices = pd.num_free_vertices();
// initial guess for alp
double alp = 1.0;
int jmax = 100;
double rho = 0.5;
// feasible=false implies the mesh is not in the feasible region
bool feasible = false;
int found = 0;
// f and fnew hold the objective function value
double f = 0;
double fnew = 0;
// Counter to avoid infinitly scaling alp
j = 0;
// save memento
pd.recreate_vertices_memento( pMemento, err );
// if we must check feasiblility
// while step takes mesh into infeasible region and ...
while( j < jmax && !feasible && alp > MSQ_MIN )
{
++j;
pd.set_free_vertices_constrained( pMemento, arrptr( pGrad ), num_vertices, alp, err );
feasible = objFunc.evaluate( pd, f, err );
if( err.error_code() == err.BARRIER_VIOLATED )
err.clear(); // barrier violation does not represent an actual error here
MSQ_ERRZERO( err );
// if not feasible, try a smaller alp (take smaller step)
if( !feasible )
{
alp *= rho;
}
} // end while ...
// if above while ended due to j>=jmax, no valid step was found.
if( j >= jmax )
{
MSQ_PRINT( 2 )( "\nFeasible Point Not Found" );
return 0.0;
}
// Message::print_info("\nOriginal f %f, first new f = %f, alp = %f",f0,f,alp);
// if new f is larger than original, our step was too large
if( f >= f0 )
{
j = 0;
while( j < jmax && found == 0 )
{
++j;
alp *= rho;
pd.set_free_vertices_constrained( pMemento, arrptr( pGrad ), num_vertices, alp, err );
// Get new obj value
// if patch is now invalid, then the feasible region is convex or
// we have an error. For now, we assume an error.
if( !objFunc.evaluate( pd, f, err ) )
{
MSQ_SETERR( err )
( "Non-convex feasiblility region found.", MsqError::INVALID_MESH );
}
pd.set_to_vertices_memento( pMemento, err );
MSQ_ERRZERO( err );
// if our step has now improved the objective function value
if( f < f0 )
{
found = 1;
}
} // end while j less than jmax
// Message::print_info("\nj = %d found = %d f = %20.18f f0 = %20.18f\n",j,found,f,f0);
// if above ended because of j>=jmax, take no step
if( found == 0 )
{
// Message::print_info("alp = %10.8f, but returning zero\n",alp);
alp = 0.0;
return alp;
}
j = 0;
// while shrinking the step improves the objFunc value further,
// scale alp down. Return alp, when scaling once more would
// no longer improve the objFunc value.
while( j < jmax )
{
++j;
alp *= rho;
// step alp in search direction from original positions
pd.set_free_vertices_constrained( pMemento, arrptr( pGrad ), num_vertices, alp, err );
MSQ_ERRZERO( err );
// get new objective function value
if( !objFunc.evaluate( pd, fnew, err ) ) MSQ_SETERR( err )
( "Non-convex feasiblility region found while "
"computing new f.",
MsqError::INVALID_MESH );
if( fnew < f )
{
f = fnew;
}
else
{
// Reset the vertices to original position
pd.set_to_vertices_memento( pMemento, err );
MSQ_ERRZERO( err );
alp /= rho;
return alp;
}
}
// Reset the vertices to original position and return alp
pd.set_to_vertices_memento( pMemento, err );
MSQ_ERRZERO( err );
return alp;
}
// else our new f was already smaller than our original
else
{
j = 0;
// check to see how large of step we can take
while( j < jmax && found == 0 )
{
++j;
// scale alp up (rho must be less than 1)
alp /= rho;
// step alp in search direction from original positions
pd.set_free_vertices_constrained( pMemento, arrptr( pGrad ), num_vertices, alp, err );
MSQ_ERRZERO( err );
feasible = objFunc.evaluate( pd, fnew, err );
if( err.error_code() == err.BARRIER_VIOLATED )
err.clear(); // evaluate() error does not represent an actual problem here
MSQ_ERRZERO( err );
if( !feasible )
{
alp *= rho;
// Reset the vertices to original position and return alp
pd.set_to_vertices_memento( pMemento, err );
MSQ_ERRZERO( err );
return alp;
}
if( fnew < f )
{
f = fnew;
}
else
{
found = 1;
alp *= rho;
}
}
// Reset the vertices to original position and return alp
pd.set_to_vertices_memento( pMemento, err );
MSQ_ERRZERO( err );
return alp;
}
}
/*!Quadratic one-dimensional line search.*/
/*
double ConjugateGradient::get_step(PatchData &pd,double f0,int &j,
MsqError &err){
const double CGOLD = 0.3819660;
const double ZEPS = 1.0e-10;
int n=pd.num_free_vertices();
MsqVertex* vertices=pd.get_vertex_array(err);
double a,b,d,etemp,fb,fu,fv,fw,fx,p,q,r,tol,tol1,tol2,u,v,w,x,xm;
double e=0.0;
d=0.0;
tol=.001;
int iter, maxiter;
maxiter=100;
a=0;
b=.125;
int m=0;
fb=f0-1.0;
iter=0;
//find b such that a b 'should' bracket the min
while (fb<=f0 && iter<maxiter){
++iter;
b*=2.0;
for(m=0;m<n;++m){
mCoord[m]=mCoord[m] + (b*pGrad[m]);
vertices[m]=(mCoord[m]);
}
fb=objFunc->evaluate(pd,err);
}
iter=0;
x=w=v=(b/2.0);
for(m=0;m<n;++m){
mCoord[m]=mCoord[m] + (x*pGrad[m]);
vertices[m]=(mCoord[m]);
}
fw=fv=fx=objFunc->evaluate(pd,err);
for(iter=0;iter<maxiter;++iter){
//Message::print_info("a=%f,b=%f,x=%f,iter=%i\n",a,b,x,iter);
xm=(a+b)*.5;
tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
if(fabs(x-xm)<= (tol2-0.5*(b-a))){
return x;
}
if(fabs(e)>tol1){
r=(x-w)*(fx-fv);
q=(x-v)*(fx-fw);
p=(x-v)*q-(x-w)*r;
q=2.0*(q-r);
if(q>0.0)
p=-p;
q=fabs(q);
etemp=e;
e=d;
if(fabs(p)>=fabs(0.5*q*etemp)||(p<=q*(a-x))||(p>=q*(b-x))){
d=CGOLD*(e=(x>=xm?a-x:b-x));
}
else{
d=p/q;
u=x+d;
if(u-a<tol2||b-u<tol2)
{
if(tol1<0.0)
d=x-xm;
else
d=xm-x;
}
}
}
else{
d=CGOLD*(e=(x>=xm?a-x:b-x));
}
if(tol<0.0)
u=(fabs(d)>=tol1?x+d:x-d);
else
u=(fabs(d)>=tol1?x+d:x+d);
for(m=0;m<n;++m){
mCoord[m]=mCoord[m] + (u*pGrad[m]);
vertices[m]=(mCoord[m]);
}
fu=objFunc->evaluate(pd,err);
if(fu<fx){
if(u>=x)
a=x;
else
b=x;
v=w;
w=x;
x=u;
fv=fw;
fw=fx;
fx=fu;
}
else{
if(u<x)
a=u;
else
b=u;
if(fu<=fw||w==x){
v=w;
w=u;
fv=fw;
fw=fu;
}
else if (fu<=fv||v==x||v==w){
v=u;
fv=fu;
}
}
}
for(m=0;m<n;++m){
vertices[m]=(mCoord[m]);
}
//PRINT_WARNING("TOO MANY ITERATIONS IN QUADRATIC LINE SEARCH");
return x;
}
*/
} // namespace MBMesquite
|