1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730 | /* *****************************************************************
MESQUITE -- The Mesh Quality Improvement Toolkit
Copyright 2004 Sandia Corporation and Argonne National
Laboratory. Under the terms of Contract DE-AC04-94AL85000
with Sandia Corporation, the U.S. Government retains certain
rights in this software.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
(lgpl.txt) along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
[email protected], [email protected], [email protected],
[email protected], [email protected], [email protected]
***************************************************************** */
// -*- Mode : c++; tab-width: 3; c-tab-always-indent: t; indent-tabs-mode: nil; c-basic-offset: 3
// -*-
/*! \File NonSmoothDescent.cpp \brief
Implements the NonSmoothDescent class member functions.
\author Lori Freitag
\date 2002-07-20 */
#include <cstdlib>
#include <cstdio>
#include "NonSmoothDescent.hpp"
#include "MsqTimer.hpp"
#undef NUMERICAL_GRADIENT
namespace MBMesquite
{
const double EPSILON = 1e-16;
const int MSQ_MAX_OPT_ITER = 20;
enum Rotate
{
COUNTERCLOCKWISE = 1,
CLOCKWISE = 0
};
NonSmoothDescent::NonSmoothDescent( QualityMetric* qm ) : currentQM( qm )<--- Member variable 'NonSmoothDescent::freeVertexIndex' is not initialized in the constructor.<--- Member variable 'NonSmoothDescent::minStepSize' is not initialized in the constructor.<--- Member variable 'NonSmoothDescent::originalValue' is not initialized in the constructor.<--- Member variable 'NonSmoothDescent::optStatus' is not initialized in the constructor.<--- Member variable 'NonSmoothDescent::mSteepest' is not initialized in the constructor.<--- Member variable 'NonSmoothDescent::mAlpha' is not initialized in the constructor.<--- Member variable 'NonSmoothDescent::maxAlpha' is not initialized in the constructor.<--- Member variable 'NonSmoothDescent::pdgInd' is not initialized in the constructor.<--- Member variable 'NonSmoothDescent::mActive' is not initialized in the constructor.<--- Member variable 'NonSmoothDescent::testActive' is not initialized in the constructor.<--- Member variable 'NonSmoothDescent::originalActive' is not initialized in the constructor.
{
MSQ_DBGOUT( 1 ) << "- Executed NonSmoothDescent::NonSmoothDescent()\n";
}
std::string NonSmoothDescent::get_name() const
{
return "NonSmoothDescent";
}
PatchSet* NonSmoothDescent::get_patch_set()
{
return &patchSet;
}
void NonSmoothDescent::initialize( PatchData& /*pd*/, MsqError& /*err*/ )
{
minStepSize = 1e-6;
MSQ_DBGOUT( 1 ) << "- Executed NonSmoothDescent::initialize()\n";
}
void NonSmoothDescent::initialize_mesh_iteration( PatchData& /*pd*/, MsqError& /*err*/ ) {}
void NonSmoothDescent::optimize_vertex_positions( PatchData& pd, MsqError& err )
{
MSQ_FUNCTION_TIMER( "NonSmoothDescent" );
// cout << "- Executing NonSmoothDescent::optimize_node_positions()\n";
/* perform the min max smoothing algorithm */
MSQ_PRINT( 2 )( "\nInitializing the patch iteration\n" );
MSQ_PRINT( 3 )( "Number of Vertices: %d\n", (int)pd.num_nodes() );
MSQ_PRINT( 3 )( "Number of Elements: %d\n", (int)pd.num_elements() );
// Michael: Note: is this a reliable way to get the dimension?
// NOTE: Mesquite only does 3-dimensional (including surface) meshes.
// mDimension = pd.get_mesh()->get_geometric_dimension(err); MSQ_ERRRTN(err);
// MSQ_PRINT(3)("Spatial Dimension: %d\n",mDimension);
MSQ_PRINT( 3 )( "Spatial Dimension: 3\n" );
MSQ_PRINT( 3 )( "Num Free = %d\n", (int)pd.num_free_vertices() );
MsqFreeVertexIndexIterator free_iter( pd, err );MSQ_ERRRTN( err );
free_iter.reset();
free_iter.next();
freeVertexIndex = free_iter.value();
MSQ_PRINT( 3 )( "Free Vertex Index = %lu\n", (unsigned long)freeVertexIndex );
// TODO - need to switch to validity via metric evaluations should
// be associated with the compute_function somehow
/* check for an invalid mesh; if it's invalid return and ask the user
to use untangle */
if( !this->validity_check( pd, err ) )
{
MSQ_PRINT( 1 )( "ERROR: Invalid mesh\n" );
MSQ_SETERR( err )
( "Invalid Mesh: Use untangle to create a valid "
"triangulation",
MsqError::INVALID_MESH );
return;
}
/* initialize the optimization data up to numFunctionValues */
this->init_opt( pd, err );MSQ_ERRRTN( err );
this->init_max_step_length( pd, err );MSQ_ERRRTN( err );
MSQ_PRINT( 3 )( "Done initializing optimization\n" );
/* compute the initial function values */
// TODO this should return a bool with the validity
this->compute_function( &pd, originalFunction, err );MSQ_ERRRTN( err );
// find the initial active set
this->find_active_set( originalFunction, mActive );
this->minmax_opt( pd, err );MSQ_ERRRTN( err );
}
void NonSmoothDescent::terminate_mesh_iteration( PatchData& /*pd*/, MsqError& /*err*/ ) {}
void NonSmoothDescent::cleanup()
{
MSQ_DBGOUT( 1 ) << "- Executing NonSmoothDescent::cleanup()\n";
MSQ_DBGOUT( 1 ) << "- Done with NonSmoothDescent::cleanup()\n";
}
void NonSmoothDescent::find_plane_points( Direction dir1,
Direction dir2,
const std::vector< Vector3D >& vec,
Vector3D& pt1,
Vector3D& pt2,
Vector3D& /*pt3*/,
Status& status,
MsqError& )
{
int i;
int num_min, num_max;<--- The scope of the variable 'num_max' can be reduced. [+]The scope of the variable 'num_max' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
Rotate rotate = CLOCKWISE;
int num_rotated = 0;
double pt_1, pt_2;
double min, inv_slope;
double min_inv_slope = 0.;
double max;<--- The scope of the variable 'max' can be reduced. [+]The scope of the variable 'max' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
double max_inv_slope = 0;
double inv_origin_slope = 0;
const int num_vec = vec.size();
const int auto_ind_size = 50;
int auto_ind[auto_ind_size];
std::vector< int > heap_ind;
int* ind;
if( num_vec <= auto_ind_size )
ind = auto_ind;
else
{
heap_ind.resize( num_vec );
ind = &heap_ind[0];
}
status = MSQ_CHECK_BOTTOM_UP;
/* find the minimum points in dir1 starting at -1 */
num_min = 0;
ind[0] = -1;
ind[1] = -1;
ind[2] = -1;
min = 1.0;
for( i = 0; i < num_vec; i++ )
{
if( vec[i][dir1] < min )
{
min = vec[i][dir1];
ind[0] = i;
num_min = 1;
}
else if( fabs( vec[i][dir1] - min ) < EPSILON )
{
ind[num_min++] = i;
}
}
if( min >= 0 ) status = MSQ_NO_EQUIL;
if( status != MSQ_NO_EQUIL )
{
switch( num_min )
{
case 1: /* rotate to find the next point */
pt1 = vec[ind[0]];
pt_1 = pt1[dir1];
pt_2 = pt1[dir2];
if( pt1[dir2] <= 0 )
{
rotate = COUNTERCLOCKWISE;
max_inv_slope = -HUGE_VAL;
}
if( pt1[dir2] > 0 )
{
rotate = CLOCKWISE;
min_inv_slope = HUGE_VAL;
}
switch( rotate )
{
case COUNTERCLOCKWISE:
for( i = 0; i < num_vec; i++ )
{
if( i != ind[0] )
{
inv_slope = ( vec[i][dir2] - pt_2 ) / ( vec[i][dir1] - pt_1 );
if( ( inv_slope > max_inv_slope ) && ( fabs( inv_slope - max_inv_slope ) > EPSILON ) )
{
ind[1] = i;
max_inv_slope = inv_slope;
num_rotated = 1;
}
else if( fabs( inv_slope - max_inv_slope ) < EPSILON )
{
ind[2] = i;
num_rotated++;
}
}
}
break;
case CLOCKWISE:
for( i = 0; i < num_vec; i++ )
{
if( i != ind[0] )
{
inv_slope = ( vec[i][dir2] - pt_2 ) / ( vec[i][dir1] - pt_1 );
if( ( inv_slope < min_inv_slope ) && ( fabs( inv_slope - max_inv_slope ) > EPSILON ) )
{
ind[1] = i;
min_inv_slope = inv_slope;
num_rotated = 1;
}
else if( fabs( inv_slope - min_inv_slope ) < EPSILON )
{
ind[2] = i;
num_rotated++;
}
}
}
}
switch( num_rotated )
{
case 0:
MSQ_PRINT( 3 )( "No points in the rotation ... odd\n" );
status = MSQ_HULL_TEST_ERROR;
break;
case 1:
MSQ_PRINT( 3 )( "Found a line in the convex hull\n" );
pt2 = vec[ind[1]];
status = MSQ_TWO_PT_PLANE;
break;
default:
MSQ_PRINT( 3 )( "Found 2 or more points in the rotation\n" );
if( fabs( pt_1 ) > EPSILON ) inv_origin_slope = pt_2 / pt_1;
switch( rotate )
{
case COUNTERCLOCKWISE:
if( inv_origin_slope >= max_inv_slope )
status = MSQ_NO_EQUIL;
else
status = MSQ_CHECK_TOP_DOWN;
break;
case CLOCKWISE:
if( inv_origin_slope <= min_inv_slope )
status = MSQ_NO_EQUIL;
else
status = MSQ_CHECK_TOP_DOWN;
}
}
break;
case 2: /* use these two points to define the plane */
MSQ_PRINT( 3 )( "Found two minimum points to define the plane\n" );
pt1 = vec[ind[0]];
pt2 = vec[ind[1]];
status = MSQ_TWO_PT_PLANE;
break;
default: /* check to see if all > 0 */
MSQ_PRINT( 3 )( "Found 3 or more points in min plane %f\n", min );
if( vec[ind[0]][dir1] >= 0 )
status = MSQ_NO_EQUIL;
else
status = MSQ_CHECK_TOP_DOWN;
}
}
/***************************/
/* failed to find any information, checking top/down this coord*/
/***************************/
if( status == MSQ_CHECK_TOP_DOWN )
{
/* find the maximum points in dir1 starting at 1 */
num_max = 0;
ind[0] = -1;
ind[1] = -1;
ind[2] = -1;
max = -1.0;
for( i = 0; i < num_vec; i++ )
{
if( vec[i][dir1] > max )
{
max = vec[i][dir1];
ind[0] = i;
num_max = 1;
}
else if( fabs( vec[i][dir1] - max ) < EPSILON )
{
ind[num_max++] = i;
}
}
if( max <= 0 ) status = MSQ_NO_EQUIL;
if( status != MSQ_NO_EQUIL )
{
switch( num_max )
{
case 1: /* rotate to find the next point */
pt1 = vec[ind[0]];
pt_1 = pt1[dir1];
pt_2 = pt1[dir2];
if( pt1[dir2] < 0 )
{
rotate = CLOCKWISE;
min_inv_slope = HUGE_VAL;
}
if( pt1[dir2] >= 0 )
{
rotate = COUNTERCLOCKWISE;
max_inv_slope = -HUGE_VAL;
}
switch( rotate )
{
case COUNTERCLOCKWISE:
for( i = 0; i < num_vec; i++ )
{
if( i != ind[0] )
{
inv_slope = ( vec[i][dir2] - pt_2 ) / ( vec[i][dir1] - pt_1 );
if( inv_slope > max_inv_slope )
{
ind[1] = i;
max_inv_slope = inv_slope;
num_rotated = 1;
}
else if( fabs( inv_slope - max_inv_slope ) < EPSILON )
{
ind[2] = i;
num_rotated++;
}
}
}
break;
case CLOCKWISE:
for( i = 0; i < num_vec; i++ )
{
if( i != ind[0] )
{
inv_slope = ( vec[i][dir2] - pt_2 ) / ( vec[i][dir1] - pt_1 );
if( inv_slope < min_inv_slope )
{
ind[1] = i;
min_inv_slope = inv_slope;
num_rotated = 1;
}
else if( fabs( inv_slope - min_inv_slope ) < EPSILON )
{
ind[2] = i;
num_rotated++;
}
}
}
}
switch( num_rotated )
{
case 0:
MSQ_PRINT( 3 )( "No points in the rotation ... odd\n" );
status = MSQ_HULL_TEST_ERROR;
break;
case 1:
MSQ_PRINT( 3 )( "Found a line in the convex hull\n" );
pt2 = vec[ind[1]];
status = MSQ_TWO_PT_PLANE;
break;
default:
MSQ_PRINT( 3 )( "Found 2 or more points in the rotation\n" );
/* check to see if rotation got past origin */
inv_origin_slope = pt_2 / pt_1;
switch( rotate )
{
case COUNTERCLOCKWISE:
if( inv_origin_slope >= max_inv_slope )
status = MSQ_NO_EQUIL;
else if( dir1 == 2 )
status = MSQ_CHECK_Y_COORD_DIRECTION;
else if( dir1 == 1 )
status = MSQ_CHECK_X_COORD_DIRECTION;
else
status = MSQ_EQUIL;
break;
case CLOCKWISE:
if( inv_origin_slope <= min_inv_slope )
status = MSQ_NO_EQUIL;
else if( dir1 == 2 )
status = MSQ_CHECK_Y_COORD_DIRECTION;
else if( dir1 == 1 )
status = MSQ_CHECK_X_COORD_DIRECTION;
else
status = MSQ_EQUIL;
}
}
break;
case 2: /* use these two points to define the plane */
pt1 = vec[ind[0]];
pt2 = vec[ind[1]];
status = MSQ_TWO_PT_PLANE;
break;
default: /* check to see if all > 0 */
MSQ_PRINT( 3 )( "Found 3 in max plane %f\n", max );
if( vec[ind[0]][dir1] <= 0 )
status = MSQ_NO_EQUIL;
else if( dir1 == 2 )
status = MSQ_CHECK_Y_COORD_DIRECTION;
else if( dir1 == 1 )
status = MSQ_CHECK_X_COORD_DIRECTION;
else
status = MSQ_EQUIL;
}
}
}
}
void NonSmoothDescent::search_direction( PatchData& /*pd*/, Vector3D& mSearch, MsqError& err )
{
bool viable;
double a, b, c, denom;<--- The scope of the variable 'c' can be reduced. [+]The scope of the variable 'c' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
std::vector< Vector3D > dir;
double R0, R1;<--- The scope of the variable 'R0' can be reduced. [+]The scope of the variable 'R0' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level. <--- The scope of the variable 'R1' can be reduced. [+]The scope of the variable 'R1' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
SymmetricMatrix P;
double x[2];
double search_mag;
const int num_active = mActive.active_ind.size();
;
// TODO This might be o.k. actually - i don't see any dependence
// on the element geometry here... try it and see if it works.
// if not, try taking all of the gradients in the active set
// and let the search direction be the average of those.
// MSQ_FUNCTION_TIMER( "Search Direction" );
MSQ_PRINT( 2 )( "\nIn Search Direction\n" );
this->print_active_set( mActive, mFunction );
if( num_active == 0 )
{
MSQ_SETERR( err )( "No active values in search", MsqError::INVALID_STATE );
return;
}
switch( num_active )
{
case 1:
mSearch = mGradient[mActive.active_ind[0]];
mSteepest = mActive.active_ind[0];
break;
case 2:
/* if there are two active points, move in the direction of the
intersection of the planes. This is the steepest descent
direction found by analytically solving the QP */
/* set up the active gradient directions */
this->get_active_directions( mGradient, dir, err );MSQ_ERRRTN( err );
/* form the grammian */
this->form_grammian( dir, err );MSQ_ERRRTN( err );
this->form_PD_grammian( err );MSQ_ERRRTN( err );
denom = ( mG( 0, 0 ) + mG( 1, 1 ) - 2 * mG( 0, 1 ) );
viable = true;
if( fabs( denom ) > EPSILON )
{
/* gradients are LI, move along their intersection */
b = ( mG( 0, 0 ) - mG( 0, 1 ) ) / denom;
a = 1 - b;
if( ( b < 0 ) || ( b > 1 ) ) viable = false; /* 0 < b < 1 */
if( viable )
{
mSearch = a * dir[0] + b * dir[1];
}
else
{
/* the gradients are dependent, move along one face */
mSearch = dir[0];
}
}
else
{
/* the gradients are dependent, move along one face */
mSearch = dir[0];
}
mSteepest = mActive.active_ind[0];
break;
default:
/* as in case 2: solve the QP problem to find the steepest
descent direction. This can be done analytically - as
is done in Gill, Murray and Wright
for 3 active points in 3 directions - test PD of G
otherwise we know it's SP SD so search edges and faces */
/* get the active gradient directions */
this->get_active_directions( mGradient, dir, err );MSQ_ERRRTN( err );
/* form the entries of the grammian matrix */
this->form_grammian( dir, err );MSQ_ERRRTN( err );
this->form_PD_grammian( err );MSQ_ERRRTN( err );
if( num_active == 3 )
{
if( mG.condition3x3() < 1e14 )
{ // if not singular
/* form the entries of P=Z^T G Z where Z = [-1...-1; I ] */
this->form_reduced_matrix( P );
/* form the RHS and solve the system for the coeffs */
R0 = mG( 0, 0 ) - mG( 1, 0 );
R1 = mG( 0, 0 ) - mG( 2, 0 );
bool ok = this->solve2x2( P( 0, 0 ), P( 0, 1 ), P( 1, 0 ), P( 1, 1 ), R0, R1, x, err );MSQ_ERRRTN( err );
if( ok )
{
a = 1 - x[0] - x[1];
b = x[0];
c = x[1];
mSearch = a * dir[0] + b * dir[1] + c * dir[2];
mSteepest = mActive.active_ind[0];
}
else
{
this->search_edges_faces( &dir[0], mSearch, err );MSQ_ERRRTN( err );
}
}
else
{
this->search_edges_faces( &dir[0], mSearch, err );MSQ_ERRRTN( err );
}
}
else
{
this->search_edges_faces( &dir[0], mSearch, err );MSQ_ERRRTN( err );
}
}
/* if the search direction is essentially zero, equilibrium pt */
search_mag = mSearch % mSearch;<--- Same expression on both sides of '%'. [+]Finding the same expression on both sides of an operator is suspicious and might indicate a cut and paste or logic error. Please examine this code carefully to determine if it is correct.
MSQ_PRINT( 3 )( " Search Magnitude %g \n", search_mag );
if( fabs( search_mag ) < 1E-13 )
optStatus = MSQ_ZERO_SEARCH;
else
mSearch /= std::sqrt( search_mag );
MSQ_PRINT( 3 )
( " Search Direction %g %g Steepest %lu\n", mSearch[0], mSearch[1], (unsigned long)mSteepest );
}
void NonSmoothDescent::minmax_opt( PatchData& pd, MsqError& err )
{
bool equilibriumPt = false;
Vector3D mSearch( 0, 0, 0 );
// int valid;
MSQ_FUNCTION_TIMER( "Minmax Opt" );
MSQ_PRINT( 2 )( "In minmax_opt\n" );
mFunction = originalFunction;
originalValue = mActive.true_active_value;
int iterCount = 0;
int optIterCount = 0;
MSQ_PRINT( 3 )( "Done copying original function to function\n" );
this->find_active_set( mFunction, mActive );
prevActiveValues.clear();
prevActiveValues.push_back( mActive.true_active_value );
/* check for equilibrium point */
/* compute the gradient */
this->compute_gradient( &pd, mGradient, err );MSQ_ERRRTN( err );
if( mActive.active_ind.size() >= 2 )
{
MSQ_PRINT( 3 )( "Testing for an equilibrium point \n" );
equilibriumPt = this->check_equilibrium( optStatus, err );MSQ_ERRRTN( err );
if( MSQ_DBG( 2 ) && equilibriumPt ) MSQ_PRINT( 2 )( "Optimization Exiting: An equilibrium point \n" );
}
/* terminate if we have found an equilibrium point or if the step is
too small to be worthwhile continuing */
while( ( optStatus != MSQ_EQUILIBRIUM ) && ( optStatus != MSQ_STEP_TOO_SMALL ) &&
( optStatus != MSQ_IMP_TOO_SMALL ) && ( optStatus != MSQ_FLAT_NO_IMP ) && ( optStatus != MSQ_ZERO_SEARCH ) &&
( optStatus != MSQ_MAX_ITER_EXCEEDED ) )
{
/* increase the iteration count by one */
/* smooth_param->iter_count += 1; */
iterCount += 1;
optIterCount += 1;
if( iterCount > MSQ_MAX_OPT_ITER ) optStatus = MSQ_MAX_ITER_EXCEEDED;
MSQ_PRINT( 3 )( "\nITERATION %d \n", iterCount );
/* compute the gradient */
this->compute_gradient( &pd, mGradient, err );MSQ_ERRRTN( err );
MSQ_PRINT( 3 )( "Computing the search direction \n" );
this->search_direction( pd, mSearch, err );MSQ_ERRRTN( err );
/* if there are viable directions to search */
if( ( optStatus != MSQ_ZERO_SEARCH ) && ( optStatus != MSQ_MAX_ITER_EXCEEDED ) )
{
MSQ_PRINT( 3 )( "Computing the projections of the gradients \n" );
this->get_gradient_projections( mSearch, err );MSQ_ERRRTN( err );
MSQ_PRINT( 3 )( "Computing the initial step size \n" );
this->compute_alpha( err );MSQ_ERRRTN( err );
MSQ_PRINT( 3 )( "Testing whether to accept this step \n" );
this->step_acceptance( pd, iterCount, mSearch, err );MSQ_ERRRTN( err );
// MSQ_PRINT(3)("The new free vertex position is %f %f %f\n",
// mCoords[freeVertexIndex][0],mCoords[freeVertexIndex][1],mCoords[freeVertexIndex][2]);
if( MSQ_DBG( 3 ) )
{
/* Print the active set */
this->print_active_set( mActive, mFunction );
}
/* check for equilibrium point */
if( mActive.active_ind.size() >= 2 )
{
MSQ_PRINT( 3 )( "Testing for an equilibrium point \n" );
equilibriumPt = this->check_equilibrium( optStatus, err );MSQ_ERRRTN( err );
if( MSQ_DBG( 2 ) && equilibriumPt ) MSQ_PRINT( 2 )( "Optimization Exiting: An equilibrium point \n" );
}
/* record the values */
prevActiveValues.push_back( mActive.true_active_value );
}
else
{
/* decrease the iteration count by one */
/* smooth_param->iter_count -= 1; */
iterCount -= 1;
if( MSQ_DBG( 2 ) )
{
MSQ_PRINT( 2 )
( "Optimization Exiting: No viable directions; equilibrium point \n" );
/* Print the old active set */
this->print_active_set( mActive, mFunction );
}
}
}
MSQ_PRINT( 2 )( "Checking the validity of the mesh\n" );
if( !this->validity_check( pd, err ) ) MSQ_PRINT( 2 )( "The final mesh is not valid\n" );MSQ_ERRRTN( err );
MSQ_PRINT( 2 )( "Number of optimization iterations %d\n", iterCount );
switch( optStatus )
{
default:
MSQ_PRINT( 2 )( "Optimization Termination OptStatus: Invalid early termination\n" );
break;
case MSQ_EQUILIBRIUM:
MSQ_PRINT( 2 )( "Optimization Termination OptStatus: Equilibrium\n" );
break;
case MSQ_STEP_TOO_SMALL:
MSQ_PRINT( 2 )( "Optimization Termination OptStatus: Step Too Small\n" );
break;
case MSQ_IMP_TOO_SMALL:
MSQ_PRINT( 2 )( "Optimization Termination OptStatus: Improvement Too Small\n" );
break;
case MSQ_FLAT_NO_IMP:
MSQ_PRINT( 2 )( "Optimization Termination OptStatus: Flat No Improvement\n" );
break;
case MSQ_ZERO_SEARCH:
MSQ_PRINT( 2 )( "Optimization Termination OptStatus: Zero Search\n" );
break;
case MSQ_MAX_ITER_EXCEEDED:
MSQ_PRINT( 2 )( "Optimization Termination OptStatus: Max Iter Exceeded\n" );
break;
}
}
void NonSmoothDescent::step_acceptance( PatchData& pd, int iterCount, const Vector3D& mSearch, MsqError& err )
{
const double minAcceptableImprovement = 1e-6;
// int ierr;
// int num_values;
bool step_done;
bool valid = true, accept_alpha;<--- The scope of the variable 'accept_alpha' can be reduced. [+]The scope of the variable 'accept_alpha' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
double estimated_improvement;
double current_improvement = HUGE_VAL;
double previous_improvement = HUGE_VAL;
double current_percent_diff = HUGE_VAL;<--- Variable 'current_percent_diff' is assigned a value that is never used.
Vector3D original_point;
// MSQ_FUNCTION_TIMER( "Step Acceptance" );
// num_values = qmHandles.size();
optStatus = MSQ_NO_STATUS;
if( mAlpha < minStepSize )
{
optStatus = MSQ_IMP_TOO_SMALL;
step_done = true;<--- step_done is assigned
MSQ_PRINT( 3 )( "Alpha starts too small, no improvement\n" );
}
const MsqVertex* coords = pd.get_vertex_array( err );
/* save the original function and active set */
original_point = coords[freeVertexIndex];
originalFunction = mFunction;
originalActive = mActive;
step_done = false;<--- step_done is overwritten
for( int num_steps = 0; !step_done && num_steps < 100; ++num_steps )
{
accept_alpha = false;
while( !accept_alpha && mAlpha > minStepSize )
{
/* make the step */
pd.move_vertex( -mAlpha * mSearch, freeVertexIndex, err );
// pd.set_coords_array_element(coords[freeVertexIndex],0,err);
MSQ_PRINT( 2 )( "search direction %f %f \n", mSearch[0], mSearch[1] );
MSQ_PRINT( 2 )
( "new vertex position %f %f \n", coords[freeVertexIndex][0], coords[freeVertexIndex][1] );
/* assume alpha is acceptable */
accept_alpha = true;
/* never take a step that makes a valid mesh invalid or worsens the quality */
// TODO Validity check revision -- do the compute function up here
// and then the rest based on validity
valid = validity_check( pd, err );MSQ_ERRRTN( err );
if( valid )
{
valid = improvement_check( err );MSQ_ERRRTN( err );
}
if( !valid )
{
accept_alpha = false;
pd.move_vertex( mAlpha * mSearch, freeVertexIndex, err );
// pd.set_coords_array_element(coords[freeVertexIndex],0,err);
mAlpha = mAlpha / 2;
MSQ_PRINT( 2 )( "Step not accepted, the new alpha %f\n", mAlpha );
if( mAlpha < minStepSize )
{
optStatus = MSQ_STEP_TOO_SMALL;
step_done = true;
MSQ_PRINT( 2 )( "Step too small\n" );
/* get back the original point, mFunction, and active set */
pd.set_vertex_coordinates( original_point, freeVertexIndex, err );
mFunction = originalFunction;
mActive = originalActive;
}
}
}
if( valid && ( mAlpha > minStepSize ) )
{
/* compute the new function and active set */
this->compute_function( &pd, mFunction, err );MSQ_ERRRTN( err );
this->find_active_set( mFunction, mActive );
/* estimate the minimum improvement by taking this step */
this->get_min_estimate( &estimated_improvement, err );MSQ_ERRRTN( err );
MSQ_PRINT( 2 )
( "The estimated improvement for this step: %f\n", estimated_improvement );
/* calculate the actual increase */
current_improvement = mActive.true_active_value - prevActiveValues[iterCount - 1];
MSQ_PRINT( 3 )( "Actual improvement %f\n", current_improvement );
/* calculate the percent difference from estimated increase */
current_percent_diff = fabs( current_improvement - estimated_improvement ) / fabs( estimated_improvement );
/* determine whether to accept a step */
if( ( fabs( previous_improvement ) > fabs( current_improvement ) ) && ( previous_improvement < 0 ) )
{
/* accept the previous step - it was better */
MSQ_PRINT( 2 )( "Accepting the previous step\n" );
/* subtract alpha in again (previous step) */
pd.move_vertex( -mAlpha * mSearch, freeVertexIndex, err );
// pd.set_coords_array_element(coords[freeVertexIndex],0,err);
/* does this make an invalid mesh valid? */
// TODO Validity check revisison
valid = validity_check( pd, err );MSQ_ERRRTN( err );
if( valid ) valid = improvement_check( err );MSQ_ERRRTN( err );
/* copy test function and active set */
mFunction = testFunction;
mActive = testActive;
optStatus = MSQ_STEP_ACCEPTED;
step_done = true;
/* check to see that we're still making good improvements */
if( fabs( previous_improvement ) < minAcceptableImprovement )
{
optStatus = MSQ_IMP_TOO_SMALL;
step_done = true;
MSQ_PRINT( 2 )( "Optimization Exiting: Improvement too small\n" );
}
}
else if( ( ( fabs( current_improvement ) > fabs( estimated_improvement ) ) ||
( current_percent_diff < .1 ) ) &&
( current_improvement < 0 ) )
{
/* accept this step, exceeded estimated increase or was close */
optStatus = MSQ_STEP_ACCEPTED;
step_done = true;
/* check to see that we're still making good improvements */
if( fabs( current_improvement ) < minAcceptableImprovement )
{
MSQ_PRINT( 2 )( "Optimization Exiting: Improvement too small\n" );
optStatus = MSQ_IMP_TOO_SMALL;
step_done = true;
}
}
else if( ( current_improvement > 0 ) && ( previous_improvement > 0 ) &&
( fabs( current_improvement ) < minAcceptableImprovement ) &&
( fabs( previous_improvement ) < minAcceptableImprovement ) )
{
/* we are making no progress, quit */
optStatus = MSQ_FLAT_NO_IMP;
step_done = true;
MSQ_PRINT( 2 )( "Opimization Exiting: Flat no improvement\n" );
/* get back the original point, function, and active set */
pd.set_vertex_coordinates( original_point, freeVertexIndex, err );MSQ_ERRRTN( err );
mFunction = originalFunction;
mActive = originalActive;
}
else
{
/* halve alpha and try again */
/* add out the old step */
pd.move_vertex( mAlpha * mSearch, freeVertexIndex, err );
// pd.set_coords_array_element(coords[freeVertexIndex],0,err);
/* halve step size */
mAlpha = mAlpha / 2;
MSQ_PRINT( 3 )( "Step not accepted, the new alpha %f\n", mAlpha );
if( mAlpha < minStepSize )
{
/* get back the original point, function, and active set */
MSQ_PRINT( 2 )( "Optimization Exiting: Step too small\n" );
pd.set_vertex_coordinates( original_point, freeVertexIndex, err );MSQ_ERRRTN( err );
mFunction = originalFunction;
mActive = originalActive;
optStatus = MSQ_STEP_TOO_SMALL;
step_done = true;
}
else
{
testFunction = mFunction;
testActive = mActive;
previous_improvement = current_improvement;
}
}
}
}
if( current_improvement > 0 && optStatus == MSQ_STEP_ACCEPTED )
{
MSQ_PRINT( 2 )( "Accepted a negative step %f \n", current_improvement );
}
}
bool NonSmoothDescent::compute_function( PatchData* patch_data, std::vector< double >& func, MsqError& err )
{
// NEED 1.0/FUNCTION WHICH IS ONLY TRUE OF CONDITION NUMBER
func.resize( qmHandles.size() );
bool valid_bool = true;
for( size_t i = 0; i < qmHandles.size(); i++ )
{
valid_bool = valid_bool && currentQM->evaluate( *patch_data, qmHandles[i], func[i], err );
MSQ_ERRZERO( err );
}
return valid_bool;
}
bool NonSmoothDescent::compute_gradient( PatchData* patch_data, std::vector< Vector3D >& gradient_out, MsqError& err )
{
MSQ_DBGOUT( 2 ) << "Computing Gradient\n";
bool valid = true;
#ifdef NUMERICAL_GRADIENT
const double delta = 10e-6;
std::vector< double > func( qmHandles.size() ), fdelta( qmHandles.size() );
valid = this->compute_function( patch_data, func, err );
MSQ_ERRZERO( err );
/* gradient in the x, y, z direction */
for( int j = 0; j < 3; j++ )
{
// perturb the coordinates of the free vertex in the j direction by delta
Vector3D delta_3( 0, 0, 0 );
Vector3D orig_pos = patch_data->vertex_by_index( freeVertexIndex );
delta_3[j] = delta;
patch_data->move_vertex( delta_3, freeVertexIndex, err );
// compute the function at the perturbed point location
valid = valid && this->compute_function( patch_data, fdelta, err );
MSQ_ERRZERO( err );
// compute the numerical gradient
for( size_t i = 0; i < qmHandles.size(); i++ )
{
mGradient[i][j] = ( fdelta[i] - func[i] ) / delta;
// MSQ_DEBUG_ACTION(3,{fprintf(stdout," Gradient
// value[%d][%d]=%g\n",i,j,mGradient[i][j]);});
}
// put the coordinates back where they belong
patch_data->set_vertex_coordinates( orig_pos, freeVertexIndex, err );
}
#else
double value;
gradient_out.resize( qmHandles.size() );
for( size_t i = 0; i < qmHandles.size(); i++ )
{
valid = valid && currentQM->evaluate_with_gradient( *patch_data, qmHandles[i], value, tmpIdx, tmpGrad, err );
MSQ_ERRZERO( err );
assert( tmpIdx.size() == 1 && tmpIdx[0] == freeVertexIndex );
gradient_out[i] = tmpGrad[0];
}
#endif
return valid;
}
void NonSmoothDescent::find_active_set( const std::vector< double >& function, ActiveSet& active_set )
{
// local parameter initialization
const double activeEpsilon = .3e-4;
// activeEpsilon = .3e-8;
double function_val;<--- The scope of the variable 'function_val' can be reduced. [+]The scope of the variable 'function_val' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
double active_value0;<--- The scope of the variable 'active_value0' can be reduced. [+]The scope of the variable 'active_value0' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
double temp;<--- The scope of the variable 'temp' can be reduced. [+]The scope of the variable 'temp' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
// FUNCTION_TIMER_START("Find Active Set");
MSQ_DBGOUT( 2 ) << "\nFinding the active set\n";
/* the first function value is our initial active value */
active_set.set( 0 );
active_set.true_active_value = function[0];
// MSQ_DEBUG_ACTION(3,{fprintf(stdout," function value[0]: %g\n",function[0]);});
/* first sort out the active set...
all vals within active_epsilon of largest val */
for( size_t i = 1; i < qmHandles.size(); i++ )
{
function_val = function[i];
if( active_set.true_active_value < function_val ) active_set.true_active_value = function_val;
active_value0 = function[active_set.active_ind[0]];
temp = fabs( function_val - active_value0 );
// MSQ_DEBUG_ACTION(3,{fprintf(stdout," function value[%d]: %g\n",i,function[i]);});
if( function_val > active_value0 )
{ // seek max_i function[i]
if( temp >= activeEpsilon )
{
active_set.set( i ); // new max
}
else
{
active_set.add( i, fabs( function_val - active_value0 ) < EPSILON );
}
}
else
{
if( temp < activeEpsilon )
{
active_set.add( i, fabs( function_val - active_value0 ) < EPSILON );
}
}
}
}
bool NonSmoothDescent::validity_check( PatchData& pd, MsqError& err )
{
// FUNCTION_TIMER_START("Validity Check");
// ONLY FOR SIMPLICIAL MESHES - THERE SHOULD BE A VALIDITY CHECKER ASSOCIATED
// WITH MSQ ELEMENTS
/* check that the simplicial mesh is still valid, based on right handedness.
Returns a 1 or a 0 */
// TODO as a first step we can switch this over to the function
// evaluation and use the rest of the code as is
bool valid = true;
double dEps = 1.e-13;
double x1, x2, x3, x4, y1, y2, y3, y4, z1, z2, z3, z4;
const MsqVertex* coords = pd.get_vertex_array( err );
for( size_t i = 0; i < pd.num_elements(); i++ )
{
const size_t* conn = pd.element_by_index( i ).get_vertex_index_array();
coords[conn[0]].get_coordinates( x1, y1, z1 );
coords[conn[1]].get_coordinates( x2, y2, z2 );
coords[conn[2]].get_coordinates( x3, y3, z3 );
coords[conn[3]].get_coordinates( x4, y4, z4 );
double dDX2 = x2 - x1;
double dDX3 = x3 - x1;
double dDX4 = x4 - x1;
double dDY2 = y2 - y1;
double dDY3 = y3 - y1;
double dDY4 = y4 - y1;
double dDZ2 = z2 - z1;
double dDZ3 = z3 - z1;
double dDZ4 = z4 - z1;
/* dDet is proportional to the cell volume */
double dDet = dDX2 * dDY3 * dDZ4 + dDX3 * dDY4 * dDZ2 + dDX4 * dDY2 * dDZ3 - dDZ2 * dDY3 * dDX4 -
dDZ3 * dDY4 * dDX2 - dDZ4 * dDY2 * dDX3;
/* Compute a length scale based on edge lengths. */
double dScale = ( sqrt( ( x1 - x2 ) * ( x1 - x2 ) + ( y1 - y2 ) * ( y1 - y2 ) + ( z1 - z2 ) * ( z1 - z2 ) ) +
sqrt( ( x1 - x3 ) * ( x1 - x3 ) + ( y1 - y3 ) * ( y1 - y3 ) + ( z1 - z3 ) * ( z1 - z3 ) ) +
sqrt( ( x1 - x4 ) * ( x1 - x4 ) + ( y1 - y4 ) * ( y1 - y4 ) + ( z1 - z4 ) * ( z1 - z4 ) ) +
sqrt( ( x2 - x3 ) * ( x2 - x3 ) + ( y2 - y3 ) * ( y2 - y3 ) + ( z2 - z3 ) * ( z2 - z3 ) ) +
sqrt( ( x2 - x4 ) * ( x2 - x4 ) + ( y2 - y4 ) * ( y2 - y4 ) + ( z2 - z4 ) * ( z2 - z4 ) ) +
sqrt( ( x3 - x4 ) * ( x3 - x4 ) + ( y3 - y4 ) * ( y3 - y4 ) + ( z3 - z4 ) * ( z3 - z4 ) ) ) /
6.;
/* Use the length scale to get a better idea if the tet is flat or
just really small. */
if( fabs( dScale ) < EPSILON )
{
return false;
}
else
{
dDet /= ( dScale * dScale * dScale );
}
if( dDet > dEps )
{
valid = true;
}
else if( dDet < -dEps )
{
return false;
}
else
{
return false;
}
} // end for i=1,numElements
// MSQ_DEBUG_ACTION(2,{fprintf(stdout,"Mesh Validity is: %d \n",valid);});
// FUNCTION_TIMER_END();
return ( valid );
}
void NonSmoothDescent::get_active_directions( const std::vector< Vector3D >& pGradient,
std::vector< Vector3D >& dir,
MsqError& /*err*/ )
{
const size_t num_active = mActive.active_ind.size();
dir.resize( num_active );
for( size_t i = 0; i < num_active; i++ )
{
dir[i] = pGradient[mActive.active_ind[i]];
}
}
bool NonSmoothDescent::check_vector_dots( const std::vector< Vector3D >& vec,
const Vector3D& normal,
MsqError& /*err*/ )
{
double test_dot = vec[0] % normal;
unsigned ind = 1;
while( ( fabs( test_dot ) < EPSILON ) && ( ind < vec.size() ) )
{
test_dot = vec[ind] % normal;
ind++;
}
for( unsigned i = ind; i < vec.size(); i++ )
{
double dot = vec[i] % normal;
if( ( ( dot > 0 && test_dot < 0 ) || ( dot < 0 && test_dot > 0 ) ) && ( fabs( dot ) > EPSILON ) )
{
return true;
}
}
return false;
}
bool NonSmoothDescent::convex_hull_test( const std::vector< Vector3D >& vec, MsqError& err )
{
// int ierr;
bool equil = false;
Direction dir_done = MSQ_ZDIR;
Status status = MSQ_CHECK_Z_COORD_DIRECTION;
Vector3D pt1, pt2, pt3, normal;
/* tries to determine equilibrium for the 3D case */
if( vec.size() <= 2 ) status = MSQ_NO_EQUIL;
while( ( status != MSQ_EQUIL ) && ( status != MSQ_NO_EQUIL ) && ( status != MSQ_HULL_TEST_ERROR ) )
{
if( status == MSQ_CHECK_Z_COORD_DIRECTION )
{
this->find_plane_points( MSQ_ZDIR, MSQ_YDIR, vec, pt1, pt2, pt3, status, err );
dir_done = MSQ_ZDIR;
}
if( status == MSQ_CHECK_Y_COORD_DIRECTION )
{
this->find_plane_points( MSQ_YDIR, MSQ_XDIR, vec, pt1, pt2, pt3, status, err );
dir_done = MSQ_YDIR;
}
if( status == MSQ_CHECK_X_COORD_DIRECTION )
{
this->find_plane_points( MSQ_XDIR, MSQ_ZDIR, vec, pt1, pt2, pt3, status, err );
dir_done = MSQ_XDIR;
}
if( status == MSQ_TWO_PT_PLANE )
{
pt3 = Vector3D( 0, 0, 0 );
}
if( ( status == MSQ_TWO_PT_PLANE ) || ( status == MSQ_THREE_PT_PLANE ) )
{
this->find_plane_normal( pt1, pt2, pt3, normal, err );
equil = this->check_vector_dots( vec, normal, err );
if( equil )<--- Assuming that condition 'equil' is not redundant
{
switch( dir_done )
{
case MSQ_ZDIR:
equil = false;
status = MSQ_CHECK_Y_COORD_DIRECTION;
break;
case MSQ_YDIR:
equil = false;
status = MSQ_CHECK_X_COORD_DIRECTION;
break;
case MSQ_XDIR:
equil = true;
status = MSQ_EQUIL;
}
}
else if( equil == 0 )<--- Condition 'equil==0' is always true
{
status = MSQ_NO_EQUIL;
}
else
{
MSQ_SETERR( err )( "equil flag not set to 0 or 1", MsqError::INVALID_STATE );
}
}
}
switch( status )
{
case MSQ_NO_EQUIL:
MSQ_PRINT( 3 )( "Not an equilibrium point\n" );
equil = false;
break;
case MSQ_EQUIL:
MSQ_PRINT( 3 )( "An equilibrium point\n" );
equil = true;
break;
default:
MSQ_PRINT( 3 )( "Failed to determine equil or not; status = %d\n", status );
}
// FUNCTION_TIMER_END();
return ( equil );
}
void NonSmoothDescent::form_grammian( const std::vector< Vector3D >& vec, MsqError& /*err*/ )
{
/* form the grammian with the dot products of the gradients */
const size_t num_active = mActive.active_ind.size();
mG.resize( num_active );
for( size_t i = 0; i < num_active; i++ )
for( size_t j = i; j < num_active; j++ )
mG( i, j ) = vec[i] % vec[j];
}
bool NonSmoothDescent::check_equilibrium( OptStatus& status, MsqError& err )
{
std::vector< Vector3D > dir;
// TODO - this subroutine is no longer clear to me... is it still
// appropriate for quads and hexes? I think it might be in 2D, but
// 3D is less clear. Is there a more general algorithm to use?
// ask Todd/check in numerical optimization
bool equil = false;
const size_t num_active = mActive.active_ind.size();
;
if( num_active == qmHandles.size() )
{
equil = true;<--- equil is assigned
status = MSQ_EQUILIBRIUM;
MSQ_PRINT( 3 )( "All the function values are in the active set\n" );
}
/* set up the active mGradient directions */
this->get_active_directions( mGradient, dir, err );
MSQ_ERRZERO( err );
/* normalize the active directions */
for( size_t j = 0; j < num_active; j++ )
dir[j] /= dir[j].length();
equil = this->convex_hull_test( dir, err );<--- equil is overwritten
if( equil ) status = MSQ_EQUILIBRIUM;
return equil;
}
static double condition3x3( const double A[9] )
{
// int ierr;
double a11, a12, a13;
double a21, a22, a23;
double a31, a32, a33;
// double s1, s2, s4, s3, t0;
double s1, s2, s3;<--- The scope of the variable 's1' can be reduced. [+]The scope of the variable 's1' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level. <--- The scope of the variable 's2' can be reduced. [+]The scope of the variable 's2' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level. <--- The scope of the variable 's3' can be reduced. [+]The scope of the variable 's3' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
double denom;
// double one = 1.0;
double temp;<--- The scope of the variable 'temp' can be reduced. [+]The scope of the variable 'temp' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
bool zero_denom = true;
a11 = A[0];
a12 = A[1];
a13 = A[2];
a21 = A[3];
a22 = A[4];
a23 = A[5];
a31 = A[6];
a32 = A[7];
a33 = A[8];
denom = -a11 * a22 * a33 + a11 * a23 * a32 + a21 * a12 * a33 - a21 * a13 * a32 - a31 * a12 * a23 + a31 * a13 * a22;
if( ( fabs( a11 ) > EPSILON ) && ( fabs( denom / a11 ) > EPSILON ) )
{
zero_denom = false;
}
if( ( fabs( a22 ) > EPSILON ) && ( fabs( denom / a22 ) > EPSILON ) )
{
zero_denom = false;
}
if( ( fabs( a33 ) > EPSILON ) && ( fabs( denom / a33 ) > EPSILON ) )
{
zero_denom = false;
}
if( zero_denom )
{
return HUGE_VAL;
}
else
{
s1 = sqrt( a11 * a11 + a12 * a12 + a13 * a13 + a21 * a21 + a22 * a22 + a23 * a23 + a31 * a31 + a32 * a32 +
a33 * a33 );
temp = ( -a22 * a33 + a23 * a32 ) / denom;
s3 = temp * temp;
temp = ( a12 * a33 - a13 * a32 ) / denom;
s3 += temp * temp;
temp = ( a12 * a23 - a13 * a22 ) / denom;
s3 += temp * temp;
temp = ( a21 * a33 - a23 * a31 ) / denom;
s3 += temp * temp;
temp = ( a11 * a33 - a13 * a31 ) / denom;
s3 += temp * temp;
temp = ( a11 * a23 - a13 * a21 ) / denom;
s3 += temp * temp;
temp = ( a21 * a32 - a22 * a31 ) / denom;
s3 += temp * temp;
temp = ( -a11 * a32 + a12 * a31 ) / denom;
s3 += temp * temp;
temp = ( -a11 * a22 + a12 * a21 ) / denom;
s3 += temp * temp;
s2 = sqrt( s3 );
return s1 * s2;
}
}
double NonSmoothDescent::SymmetricMatrix::condition3x3() const
{
double values[9] =
{ operator()( 0, 0 ), operator()( 0, 1 ), operator()( 0, 2 ), operator()( 1, 0 ), operator()( 1, 1 ),
operator()( 1, 2 ), operator()( 2, 0 ), operator()( 2, 1 ), operator()( 2, 2 ) };
return MBMesquite::condition3x3( values );
}
void NonSmoothDescent::singular_test( int n, const Matrix3D& A, bool& singular, MsqError& err )
{
// int test;
// double determinant;
double cond;
if( ( n > 3 ) || ( n < 1 ) )
{
MSQ_SETERR( err )( "Singular test works only for n=1 to n=3", MsqError::INVALID_ARG );
return;
}
singular = true;
switch( n )
{
case 1:
if( A[0][0] > 0 ) singular = false;
break;
case 2:
if( fabs( A[0][0] * A[1][1] - A[0][1] * A[1][0] ) > EPSILON ) singular = false;
break;
case 3:
/* calculate the condition number */
cond = condition3x3( A[0] );
if( cond < 1E14 ) singular = false;
break;
}
}
void NonSmoothDescent::form_PD_grammian( MsqError& err )
{
int i, j, k;
int g_ind_1;
bool singular = false;
const int num_active = mActive.active_ind.size();
/* this assumes the grammian has been formed */
for( i = 0; i < num_active; i++ )
{
for( j = i; j < num_active; j++ )
{
if( mG( i, j ) == -1 )
{
MSQ_SETERR( err )( "Grammian not computed properly", MsqError::INVALID_STATE );
return;
}
}
}
/* use the first gradient in the active set */
g_ind_1 = 0;
mPDG[0][0] = mG( 0, 0 );
pdgInd[0] = mActive.active_ind[0];
/* test the rest and add them as appropriate */
k = 1;
i = 1;
while( ( k < 3 ) && ( i < num_active ) )
{
mPDG[0][k] = mPDG[k][0] = mG( 0, i );
mPDG[k][k] = mG( i, i );
if( k == 2 )
{ /* add the dot product of g1 and g2 */
mPDG[1][k] = mPDG[k][1] = mG( g_ind_1, i );
}
this->singular_test( k + 1, mPDG, singular, err );
if( !singular )
{
pdgInd[k] = mActive.active_ind[i];
if( k == 1 ) g_ind_1 = i;
k++;
}
i++;
}
}
void NonSmoothDescent::search_edges_faces( const Vector3D* dir, Vector3D& mSearch, MsqError& /*err*/ )
{
bool viable;<--- The scope of the variable 'viable' can be reduced. [+]The scope of the variable 'viable' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
double a, b, denom;
Vector3D g_bar;
Vector3D temp_search( 0, 0, 0 ); /* initialize the search direction to 0,0 */
double projection, min_projection;
const size_t num_active = mActive.active_ind.size();
;
/* Check for viable faces */
min_projection = HUGE_VAL;
for( size_t i = 0; i < num_active; i++ )
{
/* FACE I */
viable = true;
/* test the viability */
for( size_t j = 0; j < num_active; j++ )
{ /* lagrange multipliers>0 */
if( mG( j, i ) < 0 ) viable = false;
}
/* find the minimum of viable directions */
if( ( viable ) && ( mG( i, i ) < min_projection ) )
{
min_projection = mG( i, i );
temp_search = dir[i];
mSteepest = mActive.active_ind[i];
}
/* INTERSECTION IJ */
for( size_t j = i + 1; j < num_active; j++ )
{
viable = true;
/* find the coefficients of the intersection
and test the viability */
denom = 2 * mG( i, j ) - mG( i, i ) - mG( j, j );
a = b = 0;
if( fabs( denom ) > EPSILON )
{
b = ( mG( i, j ) - mG( i, i ) ) / denom;
a = 1 - b;
if( ( b < 0 ) || ( b > 1 ) ) /* 0 < b < 1 */
viable = false;
for( size_t k = 0; k < num_active; k++ )
{ /* lagrange multipliers>0 */
if( ( a * mG( k, i ) + b * mG( k, j ) ) <= 0 ) viable = false;
}
}
else
{
viable = false; /* Linearly dependent */
}
/* find the minimum of viable directions */
if( viable )
{
g_bar = a * dir[i] + b * dir[j];
projection = g_bar % g_bar;
if( projection < min_projection )
{
min_projection = projection;
temp_search = g_bar;
mSteepest = mActive.active_ind[i];
}
}
}
}
if( optStatus != MSQ_EQUILIBRIUM )
{
mSearch = temp_search;
}
}
bool NonSmoothDescent::solve2x2( double a11,
double a12,
double a21,
double a22,
double b1,
double b2,
double x[2],
MsqError& /*err*/ )
{
double factor;<--- The scope of the variable 'factor' can be reduced. [+]The scope of the variable 'factor' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
/* if the system is not singular, solve it */
if( fabs( a11 * a22 - a21 * a12 ) > EPSILON )
{
if( fabs( a11 ) > EPSILON )
{
factor = ( a21 / a11 );
x[1] = ( b2 - factor * b1 ) / ( a22 - factor * a12 );
x[0] = ( b1 - a12 * x[1] ) / a11;
}
else if( fabs( a21 ) > EPSILON )
{
factor = ( a11 / a21 );
x[1] = ( b1 - factor * b2 ) / ( a12 - factor * a22 );
x[0] = ( b2 - a22 * x[1] ) / a21;
}
return true;
}
else
{
return false;
}
}
void NonSmoothDescent::form_reduced_matrix( SymmetricMatrix& P )
{
const size_t P_size = mActive.active_ind.size() - 1;
P.resize( P_size );
for( size_t i = 0; i < P_size; i++ )
{
P( i, i ) = mG( 0, 0 ) - 2 * mG( 0, i + 1 ) + mG( i + 1, i + 1 );
for( size_t j = i + 1; j < P_size; j++ )
{
P( i, j ) = mG( 0, 0 ) - mG( 0, j + 1 ) - mG( i + 1, 0 ) + mG( i + 1, j + 1 );
}
}
}
void NonSmoothDescent::get_min_estimate( double* final_est, MsqError& /*err*/ )
{
double est_imp;
*final_est = -HUGE_VAL;
for( size_t i = 0; i < mActive.active_ind.size(); i++ )
{
est_imp = -mAlpha * mGS[mActive.active_ind[i]];
if( est_imp > *final_est ) *final_est = est_imp;
}
if( *final_est == 0 )
{
*final_est = -HUGE_VAL;
for( size_t i = 0; i < qmHandles.size(); i++ )
{
est_imp = -mAlpha * mGS[i];
if( ( est_imp > *final_est ) && ( fabs( est_imp ) > EPSILON ) )
{
*final_est = est_imp;
}
}
}
}
void NonSmoothDescent::get_gradient_projections( const Vector3D& mSearch, MsqError& /*err*/ )
{
for( size_t i = 0; i < qmHandles.size(); i++ )
mGS[i] = mGradient[i] % mSearch;
MSQ_PRINT( 3 )( "steepest in get_gradient_projections %lu\n", (unsigned long)mSteepest );
}
void NonSmoothDescent::compute_alpha( MsqError& /*err*/ )
{
double steepest_function;
double steepest_grad;
double alpha_i;
double min_positive_value = HUGE_VAL;
// FUNCTION_TIMER_START("Compute Alpha");
MSQ_PRINT( 2 )( "In compute alpha\n" );
mAlpha = HUGE_VAL;
steepest_function = mFunction[mSteepest];
steepest_grad = mGS[mSteepest];
for( size_t i = 0; i < qmHandles.size(); i++ )
{
/* if it's not active */
if( i != mSteepest )
{
alpha_i = steepest_function - mFunction[i];
if( fabs( mGS[mSteepest] - mGS[i] ) > 1E-13 )
{
/* compute line intersection */
alpha_i = alpha_i / ( steepest_grad - mGS[i] );
}
else
{
/* the lines don't intersect - it's not under consideration*/
alpha_i = 0;
}
if( ( alpha_i > minStepSize ) && ( fabs( alpha_i ) < fabs( mAlpha ) ) )
{
mAlpha = fabs( alpha_i );
MSQ_PRINT( 3 )( "Setting alpha %lu %g\n", (unsigned long)i, alpha_i );
}
if( ( alpha_i > 0 ) && ( alpha_i < min_positive_value ) )
{
min_positive_value = alpha_i;
}
}
}
if( ( mAlpha == HUGE_VAL ) && ( min_positive_value != HUGE_VAL ) )
{
mAlpha = min_positive_value;
}
/* if it never gets set, set it to the default */
if( mAlpha == HUGE_VAL )
{
mAlpha = maxAlpha;
MSQ_PRINT( 3 )( "Setting alpha to the maximum step length\n" );
}
MSQ_PRINT( 3 )( " The initial step size: %f\n", mAlpha );
// FUNCTION_TIMER_END();
}
void NonSmoothDescent::print_active_set( const ActiveSet& active_set, const std::vector< double >& func )
{
if( active_set.active_ind.empty() ) MSQ_DBGOUT( 3 ) << "No active values\n";
/* print the active set */
for( size_t i = 0; i < active_set.active_ind.size(); i++ )
{
MSQ_PRINT( 3 )
( "Active value %lu: %f \n", (unsigned long)i + 1, func[active_set.active_ind[i]] );
}
}
void NonSmoothDescent::init_opt( PatchData& pd, MsqError& err )
{
qmHandles.clear();
currentQM->get_evaluations( pd, qmHandles, true, err );MSQ_ERRRTN( err );
MSQ_PRINT( 2 )( "\nInitializing Optimization \n" );
/* for the purposes of initialization will be set to zero after */
optStatus = MSQ_NO_STATUS;
mSteepest = 0;
mAlpha = 0;
maxAlpha = 0;
MSQ_PRINT( 3 )( " Initialized Constants \n" );
pdgInd[0] = pdgInd[1] = pdgInd[2] = -1;
mPDG = Matrix3D( 0.0 );
MSQ_PRINT( 3 )( " Initialized search and PDG \n" );
mFunction.clear();
mFunction.resize( qmHandles.size(), 0.0 );
testFunction.clear();
testFunction.resize( qmHandles.size(), 0.0 );
originalFunction.clear();
originalFunction.resize( qmHandles.size(), 0.0 );
mGradient.clear();
mGradient.resize( qmHandles.size(), Vector3D( 0.0 ) );
mGS.resize( qmHandles.size() );
MSQ_PRINT( 3 )( " Initialized function/gradient \n" );
mG.resize( qmHandles.size() );
mG.fill( -1 );
MSQ_PRINT( 3 )( " Initialized G\n" );
prevActiveValues.clear();
prevActiveValues.reserve( 32 );
MSQ_PRINT( 3 )( " Initialized prevActiveValues\n" );
}
void NonSmoothDescent::init_max_step_length( PatchData& pd, MsqError& err )
{
size_t i, j;
double max_diff = 0;
double diff = 0;<--- Variable 'diff' is assigned a value that is never used.
MSQ_PRINT( 2 )( "In init_max_step_length\n" );
/* check that the input data is correct */
if( pd.num_elements() == 0 )
{
MSQ_SETERR( err )( "Num incident vtx = 0\n", MsqError::INVALID_MESH );
return;
}
/* find the maximum distance between two incident vertex locations */
const MsqVertex* coords = pd.get_vertex_array( err );
for( i = 0; i < pd.num_nodes() - 1; i++ )
{
for( j = i; j < pd.num_nodes(); j++ )
{
diff = ( coords[i] - coords[j] ).length_squared();
if( max_diff < diff ) max_diff = diff;
}
}
max_diff = sqrt( max_diff );
if( max_diff == 0 )
{
MSQ_SETERR( err )
( "Maximum distance between incident vertices = 0\n", MsqError::INVALID_MESH );
return;
}
maxAlpha = max_diff / 100;
MSQ_PRINT( 3 )( " Maximum step is %g\n", maxAlpha );
}
} // namespace MBMesquite
|