1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
/* *****************************************************************
    MESQUITE -- The Mesh Quality Improvement Toolkit

    Copyright 2004 Sandia Corporation and Argonne National
    Laboratory.  Under the terms of Contract DE-AC04-94AL85000
    with Sandia Corporation, the U.S. Government retains certain
    rights in this software.

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.

    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public License
    (lgpl.txt) along with this library; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

    [email protected], [email protected], [email protected],
    [email protected], [email protected], [email protected]

  ***************************************************************** */
/*!
  \file   ConditionNumberQualityMetric.cpp
  \brief

  \author Michael Brewer
  \date   2002-06-9
*/
#include <vector>
#include "ConditionNumberQualityMetric.hpp"
#include <cmath>
#include "Vector3D.hpp"
#include "ConditionNumberFunctions.hpp"

using namespace MBMesquite;

ConditionNumberQualityMetric::ConditionNumberQualityMetric() : AveragingQM( QualityMetric::LINEAR ) {}

std::string ConditionNumberQualityMetric::get_name() const
{
    return "Condition Number";
}

int ConditionNumberQualityMetric::get_negate_flag() const
{
    return 1;
}

bool ConditionNumberQualityMetric::evaluate( PatchData& pd, size_t handle, double& fval, MsqError& err )
{
    const MsqMeshEntity* const element = &pd.element_by_index( handle );
    bool return_flag;
    double met_vals[MSQ_MAX_NUM_VERT_PER_ENT];
    fval              = MSQ_MAX_CAP;
    const size_t* v_i = element->get_vertex_index_array();
    // only 3 temp_vec will be sent to cond-num calculator, but the
    // additional vector3Ds may be needed during the calculations
    Vector3D temp_vec[6];
    const MsqVertex* vertices = pd.get_vertex_array( err );
    EntityTopology type       = element->get_element_type();
    switch( type )
    {
        case TRIANGLE:
            temp_vec[0] = vertices[v_i[1]] - vertices[v_i[0]];
            temp_vec[2] = vertices[v_i[2]] - vertices[v_i[0]];
            // make relative to equilateral
            temp_vec[1] = ( ( 2 * temp_vec[2] ) - temp_vec[0] ) * MSQ_SQRT_THREE_INV;
            return_flag = condition_number_2d( temp_vec, handle, pd, fval, err );
            MSQ_ERRZERO( err );
            return return_flag;
        case QUADRILATERAL:
            temp_vec[0] = vertices[v_i[1]] - vertices[v_i[0]];
            temp_vec[1] = vertices[v_i[3]] - vertices[v_i[0]];
            return_flag = condition_number_2d( temp_vec, handle, pd, met_vals[0], err );
            MSQ_ERRZERO( err );
            if( !return_flag ) return return_flag;
            temp_vec[0] = vertices[v_i[2]] - vertices[v_i[1]];
            temp_vec[1] = vertices[v_i[0]] - vertices[v_i[1]];
            return_flag = condition_number_2d( temp_vec, handle, pd, met_vals[1], err );
            MSQ_ERRZERO( err );
            if( !return_flag ) return return_flag;
            temp_vec[0] = vertices[v_i[3]] - vertices[v_i[2]];
            temp_vec[1] = vertices[v_i[1]] - vertices[v_i[2]];
            return_flag = condition_number_2d( temp_vec, handle, pd, met_vals[2], err );
            MSQ_ERRZERO( err );
            if( !return_flag ) return return_flag;
            temp_vec[0] = vertices[v_i[0]] - vertices[v_i[3]];
            temp_vec[1] = vertices[v_i[2]] - vertices[v_i[3]];
            return_flag = condition_number_2d( temp_vec, handle, pd, met_vals[3], err );
            MSQ_ERRZERO( err );
            fval = average_metrics( met_vals, 4, err );
            return return_flag;
        case TETRAHEDRON:
            temp_vec[0] = vertices[v_i[1]] - vertices[v_i[0]];
            temp_vec[3] = vertices[v_i[2]] - vertices[v_i[0]];
            temp_vec[4] = vertices[v_i[3]] - vertices[v_i[0]];
            // transform to equilateral tet
            temp_vec[1] = ( ( 2 * temp_vec[3] ) - temp_vec[0] ) / MSQ_SQRT_THREE;
            temp_vec[2] = ( ( 3 * temp_vec[4] ) - temp_vec[0] - temp_vec[3] ) / ( MSQ_SQRT_THREE * MSQ_SQRT_TWO );
            return_flag = condition_number_3d( temp_vec, pd, fval, err );
            MSQ_ERRZERO( err );
            return return_flag;

        case HEXAHEDRON:
            // transform to v_i[0]
            temp_vec[0] = vertices[v_i[1]] - vertices[v_i[0]];
            temp_vec[1] = vertices[v_i[3]] - vertices[v_i[0]];
            temp_vec[2] = vertices[v_i[4]] - vertices[v_i[0]];
            return_flag = condition_number_3d( temp_vec, pd, met_vals[0], err );
            MSQ_ERRZERO( err );
            if( !return_flag ) return return_flag;
            temp_vec[0] = vertices[v_i[2]] - vertices[v_i[1]];
            temp_vec[1] = vertices[v_i[0]] - vertices[v_i[1]];
            temp_vec[2] = vertices[v_i[5]] - vertices[v_i[1]];
            return_flag = condition_number_3d( temp_vec, pd, met_vals[1], err );
            MSQ_ERRZERO( err );
            if( !return_flag ) return return_flag;
            temp_vec[0] = vertices[v_i[3]] - vertices[v_i[2]];
            temp_vec[1] = vertices[v_i[1]] - vertices[v_i[2]];
            temp_vec[2] = vertices[v_i[6]] - vertices[v_i[2]];
            return_flag = condition_number_3d( temp_vec, pd, met_vals[2], err );
            MSQ_ERRZERO( err );
            if( !return_flag ) return return_flag;
            temp_vec[0] = vertices[v_i[0]] - vertices[v_i[3]];
            temp_vec[1] = vertices[v_i[2]] - vertices[v_i[3]];
            temp_vec[2] = vertices[v_i[7]] - vertices[v_i[3]];
            return_flag = condition_number_3d( temp_vec, pd, met_vals[3], err );
            MSQ_ERRZERO( err );
            if( !return_flag ) return return_flag;
            temp_vec[0] = vertices[v_i[7]] - vertices[v_i[4]];
            temp_vec[1] = vertices[v_i[5]] - vertices[v_i[4]];
            temp_vec[2] = vertices[v_i[0]] - vertices[v_i[4]];
            return_flag = condition_number_3d( temp_vec, pd, met_vals[4], err );
            MSQ_ERRZERO( err );
            if( !return_flag ) return return_flag;
            temp_vec[0] = vertices[v_i[4]] - vertices[v_i[5]];
            temp_vec[1] = vertices[v_i[6]] - vertices[v_i[5]];
            temp_vec[2] = vertices[v_i[1]] - vertices[v_i[5]];
            return_flag = condition_number_3d( temp_vec, pd, met_vals[5], err );
            MSQ_ERRZERO( err );
            if( !return_flag ) return return_flag;
            temp_vec[0] = vertices[v_i[5]] - vertices[v_i[6]];
            temp_vec[1] = vertices[v_i[7]] - vertices[v_i[6]];
            temp_vec[2] = vertices[v_i[2]] - vertices[v_i[6]];
            return_flag = condition_number_3d( temp_vec, pd, met_vals[6], err );
            MSQ_ERRZERO( err );
            if( !return_flag ) return return_flag;
            temp_vec[0] = vertices[v_i[6]] - vertices[v_i[7]];
            temp_vec[1] = vertices[v_i[4]] - vertices[v_i[7]];
            temp_vec[2] = vertices[v_i[3]] - vertices[v_i[7]];
            return_flag = condition_number_3d( temp_vec, pd, met_vals[7], err );
            MSQ_ERRZERO( err );
            fval = average_metrics( met_vals, 8, err );
            MSQ_ERRZERO( err );
            return return_flag;

        case PYRAMID: {
            unsigned num_adj;
            const unsigned* adj_idx;
            return_flag = true;
            for( size_t j = 0; j < 4; ++j )  // skip fifth vertex (apex)
            {
                adj_idx = TopologyInfo::adjacent_vertices( type, j, num_adj );
                assert( num_adj == 3 );

                temp_vec[0] = vertices[v_i[adj_idx[0]]] - vertices[v_i[j]];
                temp_vec[1] = vertices[v_i[adj_idx[1]]] - vertices[v_i[j]];
                // calculate last vect map to right tetrahedron
                temp_vec[3] = vertices[v_i[adj_idx[2]]] - vertices[v_i[adj_idx[0]]];
                temp_vec[4] = vertices[v_i[adj_idx[2]]] - vertices[v_i[adj_idx[1]]];
                temp_vec[2] = 0.5 * ( temp_vec[3] + temp_vec[4] );

                return_flag = return_flag && condition_number_3d( temp_vec, pd, met_vals[j], err );
            }
            fval = average_metrics( met_vals, 4, err );
            MSQ_ERRZERO( err );
            return return_flag;
        }

        case PRISM: {
            unsigned num_adj;
            const unsigned* adj_idx;
            return_flag = true;
            for( size_t j = 0; j < 6; ++j )
            {
                adj_idx = TopologyInfo::adjacent_vertices( type, j, num_adj );
                assert( num_adj == 3 );

                temp_vec[0] = vertices[v_i[adj_idx[0]]] - vertices[v_i[j]];
                temp_vec[1] = vertices[v_i[adj_idx[1]]] - vertices[v_i[j]];
                temp_vec[2] = vertices[v_i[adj_idx[2]]] - vertices[v_i[j]];
                // map to right tetrahedron
                temp_vec[1] += vertices[v_i[adj_idx[1]]];
                temp_vec[1] -= vertices[v_i[adj_idx[0]]];
                temp_vec[1] *= MSQ_SQRT_THREE_INV;

                return_flag = return_flag && condition_number_3d( temp_vec, pd, met_vals[j], err );
            }
            fval = average_metrics( met_vals, 6, err );
            MSQ_ERRZERO( err );
            return return_flag;
        }

        default:
            MSQ_SETERR( err )
            ( MsqError::UNSUPPORTED_ELEMENT, "Unsupported cell type (%d) for Condition Number quality metric.", type );

            fval = MSQ_MAX_CAP;
            return false;
    }  // end switch over element type
    return false;
}