1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109 | /* *****************************************************************
MESQUITE -- The Mesh Quality Improvement Toolkit
Copyright 2010 Sandia National Laboratories. Developed at the
University of Wisconsin--Madison under SNL contract number
624796. The U.S. Government and the University of Wisconsin
retain certain rights to this software.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
(lgpl.txt) along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
(2010) [email protected]
***************************************************************** */
/** \file TUntangleMu.hpp
* \brief
* \author Jason Kraftcheck
*/
#ifndef MSQ_T_UNTANGLE_MU_HPP
#define MSQ_T_UNTANGLE_MU_HPP
#include "Mesquite.hpp"
#include "TMetric.hpp"
namespace MBMesquite
{
/**\brief Composite untangle metric
*
* This metric should be combined with TRel2DSize or TRel2DShapeSize
* to produce a concrete untangle metric.
*
* \f$ \mu^\prime(T) = \frac{1}{8}(|d| - d)^3 \f$
* \f$ d(T) = \sigma - \epsilon - \mu(T()) \f$
*
*/
class TUntangleMu : public TMetric
{
private:
TMetric* mBaseMetric;
double mConstant;
public:
TUntangleMu( TMetric* base, double sigma = 1.0 )<--- Class 'TUntangleMu' has a constructor with 1 argument that is not explicit. [+]Class 'TUntangleMu' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
: mBaseMetric( base ), mConstant( 0.99 * sigma ) /* default epsilon is 0.01*sigma */
{
}
TUntangleMu( TMetric* base, double sigma, double epsilon ) : mBaseMetric( base ), mConstant( sigma - epsilon ) {}
MESQUITE_EXPORT virtual ~TUntangleMu();
MESQUITE_EXPORT virtual std::string get_name() const;
MESQUITE_EXPORT virtual bool evaluate( const MsqMatrix< 2, 2 >& T, double& result, MsqError& err );
MESQUITE_EXPORT virtual bool evaluate_with_grad( const MsqMatrix< 2, 2 >& T,
double& result,
MsqMatrix< 2, 2 >& deriv_wrt_T,
MsqError& err );
MESQUITE_EXPORT virtual bool evaluate_with_hess( const MsqMatrix< 2, 2 >& T,
double& result,
MsqMatrix< 2, 2 >& deriv_wrt_T,
MsqMatrix< 2, 2 > second_wrt_T[3],
MsqError& err );
MESQUITE_EXPORT virtual bool evaluate( const MsqMatrix< 3, 3 >& T, double& result, MsqError& err );
MESQUITE_EXPORT virtual bool evaluate_with_grad( const MsqMatrix< 3, 3 >& T,
double& result,
MsqMatrix< 3, 3 >& deriv_wrt_T,
MsqError& err );
MESQUITE_EXPORT virtual bool evaluate_with_hess( const MsqMatrix< 3, 3 >& T,
double& result,
MsqMatrix< 3, 3 >& deriv_wrt_T,
MsqMatrix< 3, 3 > second_wrt_T[6],
MsqError& err );
private:
template < unsigned D >
inline bool eval( const MsqMatrix< D, D >& T, double& result, MsqError& err );
template < unsigned D >
inline bool grad( const MsqMatrix< D, D >& T, double& result, MsqMatrix< D, D >& first, MsqError& err );
template < unsigned D >
inline bool hess( const MsqMatrix< D, D >& T,
double& result,
MsqMatrix< D, D >& first,
MsqMatrix< D, D >* second,
MsqError& err );
};
} // namespace MBMesquite
#endif
|