1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403 | #undef DEBUG
#undef TIME_DEBUG
#include <cstdarg>
#include <ctime>
#include <cstdlib>
#include <cstring>
#include <cassert>
#include <vector>
#include <set>
#include <map>
#include <utility>
#include <iostream>
#include <sstream>
#include <string>
#include "moab/Interface.hpp"
#include "Internals.hpp"
#include "MBTagConventions.hpp"
#include "MBParallelConventions.h"
#include "moab/ParallelComm.hpp"
#include "moab/CN.hpp"
#include "moab/Range.hpp"
#include "moab/CpuTimer.hpp"
#include "WriteHDF5Parallel.hpp"
#ifndef MOAB_HAVE_HDF5
#error Attempt to compile WriteHDF5Parallel with HDF5 support disabled
#endif
#include <H5Tpublic.h>
#include <H5Ppublic.h>
#include <H5FDmpi.h>
#include <H5FDmpio.h>
#include "mhdf.h"
#include "IODebugTrack.hpp"
#include "moab/FileOptions.hpp"
namespace
{
template < bool Condition >
struct STATIC_ASSERTION;
template <>
struct STATIC_ASSERTION< true >
{
};
} // namespace
#define PP_CAT_( a, b ) a##b
#define PP_CAT( a, b ) PP_CAT_( a, b )
#define STATIC_ASSERT( Condition ) \
enum \
{ \
PP_CAT( dummy, __LINE__ ) = sizeof( ::STATIC_ASSERTION< (bool)( Condition ) > ) \
}
namespace moab
{
#ifndef _WIN32 // problematic for windows
// Need an MPI type that we can put handles in
STATIC_ASSERT( sizeof( unsigned long ) >= sizeof( EntityHandle ) );
// Need an MPI type that we can put file IDs in
STATIC_ASSERT( sizeof( unsigned long ) >= sizeof( WriteHDF5::wid_t ) );
#endif
// This function doesn't do anything useful. It's just a nice
// place to set a break point to determine why the reader fails.
static inline ErrorCode error( ErrorCode rval )
{
return rval;
}
const char* mpi_err_str( int errorcode )
{
static char buffer[2048];
int len = sizeof( buffer );
MPI_Error_string( errorcode, buffer, &len );
buffer[std::min( (size_t)len, sizeof( buffer ) - 1 )] = '\0';
return buffer;
}
#define MPI_FAILURE_MSG( A ) \
"MPI Failure at " __FILE__ ":%d : (Code %d) %s\n", __LINE__, (int)( A ), mpi_err_str( ( A ) )
#define CHECK_MPI( A ) \
do \
{ \
if( MPI_SUCCESS != ( A ) ) \
{ \
MB_SET_ERR_CONT( "MPI Failure : (Code " << (int)( A ) << ") " << mpi_err_str( ( A ) ) ); \
dbgOut.printf( 1, MPI_FAILURE_MSG( ( A ) ) ); \
return error( MB_FAILURE ); \
} \
} while( false )
#define MB_FAILURE_MSG( A ) "MOAB_Failure at " __FILE__ ":%d : %s (%d)\n", __LINE__, ErrorCodeStr[( A )], (int)( A )
#define CHECK_MB( A ) \
do \
{ \
if( MB_SUCCESS != ( A ) ) \
{ \
MB_SET_ERR_CONT( "MOAB Failure : " << ErrorCodeStr[( A )] ); \
dbgOut.printf( 1, MB_FAILURE_MSG( ( A ) ) ); \
return error( A ); \
} \
} while( false )
#define HDF_FAILURE_MSG( A ) "MHDF Failure at " __FILE__ ":%d : %s\n", __LINE__, mhdf_message( &( A ) )
#define CHECK_HDF( A ) \
do \
{ \
if( mhdf_isError( &( A ) ) ) \
{ \
MB_SET_ERR_CONT( "MHDF Failure : " << mhdf_message( &( A ) ) ); \
dbgOut.printf( 1, HDF_FAILURE_MSG( ( A ) ) ); \
return error( MB_FAILURE ); \
} \
} while( false )
#define CHECK_HDFN( A ) \
do \
{ \
if( mhdf_isError( &( A ) ) ) \
{ \
MB_SET_ERR_CONT( "MHDF Failure : " << mhdf_message( &( A ) ) ); \
return error( MB_FAILURE ); \
} \
} while( false )
#ifdef VALGRIND
#include <valgrind/memcheck.h>
template < typename T >
inline void VALGRIND_MAKE_VEC_UNDEFINED( std::vector< T >& v )
{
if( v.size() )
{
}
(void)VALGRIND_MAKE_MEM_UNDEFINED( &v[0], v.size() * sizeof( T ) );
}
#else
#ifndef VALGRIND_CHECK_MEM_IS_DEFINED
#define VALGRIND_CHECK_MEM_IS_DEFINED( a, b ) ( (void)0 )
#endif
#ifndef VALGRIND_CHECK_MEM_IS_ADDRESSABLE
#define VALGRIND_CHECK_MEM_IS_ADDRESSABLE( a, b ) ( (void)0 )
#endif
#ifndef VALGRIND_MAKE_MEM_UNDEFINED
#define VALGRIND_MAKE_MEM_UNDEFINED( a, b ) ( (void)0 )
#endif
template < typename T >
inline void VALGRIND_MAKE_VEC_UNDEFINED( std::vector< T >& )
{
/* Nothing to do */
}
#endif
#ifndef NDEBUG
#define START_SERIAL \
for( unsigned _x = 0; _x < myPcomm->proc_config().proc_size(); ++_x ) \
{ \
MPI_Barrier( myPcomm->proc_config().proc_comm() ); \
if( _x != myPcomm->proc_config().proc_rank() ) continue
#define END_SERIAL \
} \
MPI_Barrier( myPcomm->proc_config().proc_comm() )
#else
#define START_SERIAL
#define END_SERIAL
#endif
static int my_Gatherv( void* sendbuf,
int sendcount,
MPI_Datatype sendtype,
std::vector< unsigned char >& recvbuf,
std::vector< int >& recvcounts,
int root,
MPI_Comm comm )
{
int nproc, rank, bytes, err;
MPI_Comm_size( comm, &nproc );
MPI_Comm_rank( comm, &rank );
MPI_Type_size( sendtype, &bytes );
recvcounts.resize( rank == root ? nproc : 0 );
err = MPI_Gather( &sendcount, 1, MPI_INT, &recvcounts[0], 1, MPI_INT, root, comm );
if( MPI_SUCCESS != err ) return err;
std::vector< int > disp( recvcounts.size() );
if( root == rank )
{
disp[0] = 0;
for( int i = 1; i < nproc; ++i )
disp[i] = disp[i - 1] + recvcounts[i - 1];
recvbuf.resize( bytes * ( disp.back() + recvcounts.back() ) );
}
return MPI_Gatherv( sendbuf, sendcount, sendtype, &recvbuf[0], &recvcounts[0], &disp[0], sendtype, root, comm );
}
static void print_type_sets( Interface* iFace, DebugOutput* str, Range& sets )
{
const unsigned VB = 2;
if( str->get_verbosity() < VB ) return;
Tag gid, did, bid, sid, nid;
gid = iFace->globalId_tag();
iFace->tag_get_handle( GEOM_DIMENSION_TAG_NAME, 1, MB_TYPE_INTEGER, did );
iFace->tag_get_handle( MATERIAL_SET_TAG_NAME, 1, MB_TYPE_INTEGER, bid );
iFace->tag_get_handle( DIRICHLET_SET_TAG_NAME, 1, MB_TYPE_INTEGER, nid );
iFace->tag_get_handle( NEUMANN_SET_TAG_NAME, 1, MB_TYPE_INTEGER, sid );
Range typesets[10];
const char* typenames[] = { "Block ", "Sideset ", "NodeSet", "Vertex", "Curve",
"Surface", "Volume", "Body", "Other" };
for( Range::iterator riter = sets.begin(); riter != sets.end(); ++riter )
{
unsigned dim, id; //, oldsize;
if( MB_SUCCESS == iFace->tag_get_data( bid, &*riter, 1, &id ) )
dim = 0;
else if( MB_SUCCESS == iFace->tag_get_data( sid, &*riter, 1, &id ) )
dim = 1;
else if( MB_SUCCESS == iFace->tag_get_data( nid, &*riter, 1, &id ) )
dim = 2;
else if( MB_SUCCESS == iFace->tag_get_data( did, &*riter, 1, &dim ) )
{
id = 0;
iFace->tag_get_data( gid, &*riter, 1, &id );
dim += 3;
}
else
{
id = *riter;
dim = 9;
}
// oldsize = typesets[dim].size();
typesets[dim].insert( id );
// assert(typesets[dim].size() - oldsize == 1);
}
for( int ii = 0; ii < 9; ++ii )
{
char tmp[64];
sprintf( tmp, "%s (%lu) ", typenames[ii], (unsigned long)typesets[ii].size() );
str->print( VB, tmp, typesets[ii] );
}
str->printf( VB, "Total: %lu\n", (unsigned long)sets.size() );
}
#define debug_barrier() debug_barrier_line( __LINE__ )
void WriteHDF5Parallel::debug_barrier_line( int lineno )
{
const unsigned threshold = 2;
static unsigned long count = 0;<--- The scope of the variable 'count' can be reduced. [+]The scope of the variable 'count' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
if( dbgOut.get_verbosity() >= threshold && myPcomm )
{
dbgOut.printf( threshold, "*********** Debug Barrier %lu (@%d)***********\n", ++count, lineno );
MPI_Barrier( myPcomm->proc_config().proc_comm() );
}
}
WriterIface* WriteHDF5Parallel::factory( Interface* iface )
{
return new WriteHDF5Parallel( iface );
}
WriteHDF5Parallel::WriteHDF5Parallel( Interface* iface )
: WriteHDF5( iface ), myPcomm( NULL ), pcommAllocated( false ), hslabOp( H5S_SELECT_OR )
{
}
WriteHDF5Parallel::~WriteHDF5Parallel()
{
if( pcommAllocated && myPcomm ) delete myPcomm;
}
// The parent WriteHDF5 class has ExportSet structs that are
// populated with the entities to be written, grouped by type
// (and for elements, connectivity length). This function:
// o determines which entities are to be written by a remote processor
// o removes those entities from the ExportSet structs in WriteMesh
// o passes them back in a Range
ErrorCode WriteHDF5Parallel::gather_interface_meshes( Range& nonowned )
{
ErrorCode result;
// START_SERIAL;
dbgOut.print( 3, "Pre-interface mesh:\n" );
dbgOut.print( 3, nodeSet.range );
for( std::list< ExportSet >::iterator eiter = exportList.begin(); eiter != exportList.end(); ++eiter )
dbgOut.print( 3, eiter->range );
dbgOut.print( 3, setSet.range );
// Move handles of non-owned entities from lists of entities
// that this processor will write to the 'nonowned' list.
nonowned.clear();
result = myPcomm->filter_pstatus( nodeSet.range, PSTATUS_NOT_OWNED, PSTATUS_AND, -1, &nonowned );
if( MB_SUCCESS != result ) return error( result );
nodeSet.range = subtract( nodeSet.range, nonowned );
for( std::list< ExportSet >::iterator eiter = exportList.begin(); eiter != exportList.end(); ++eiter )
{
Range tmpset;
result = myPcomm->filter_pstatus( eiter->range, PSTATUS_NOT_OWNED, PSTATUS_AND, -1, &tmpset );
if( MB_SUCCESS != result ) return error( result );
eiter->range = subtract( eiter->range, tmpset );
nonowned.merge( tmpset );
}
dbgOut.print( 3, "Post-interface mesh:\n" );
dbgOut.print( 3, nodeSet.range );
for( std::list< ExportSet >::iterator eiter = exportList.begin(); eiter != exportList.end(); ++eiter )
dbgOut.print( 3, eiter->range );
dbgOut.print( 3, setSet.range );
// END_SERIAL;
return MB_SUCCESS;
}
ErrorCode WriteHDF5Parallel::parallel_create_file( const char* filename,
bool overwrite,
const std::vector< std::string >& qa_records,
const FileOptions& opts,
const Tag* user_tag_list,
int user_tag_count,
int dimension,
double* times )
{
ErrorCode rval;
mhdf_Status status;
int pcomm_no = 0;
opts.get_int_option( "PARALLEL_COMM", pcomm_no );
myPcomm = ParallelComm::get_pcomm( iFace, pcomm_no );
if( 0 == myPcomm )
{
myPcomm = new ParallelComm( iFace, MPI_COMM_WORLD );
pcommAllocated = true;
}
MPI_Info info = MPI_INFO_NULL;
std::string cb_size;
rval = opts.get_str_option( "CB_BUFFER_SIZE", cb_size );
if( MB_SUCCESS == rval )
{
MPI_Info_create( &info );
MPI_Info_set( info, const_cast< char* >( "cb_buffer_size" ), const_cast< char* >( cb_size.c_str() ) );
}
dbgOut.set_rank( myPcomm->proc_config().proc_rank() );
dbgOut.limit_output_to_first_N_procs( 32 );
Range nonlocal;
debug_barrier();
dbgOut.tprint( 1, "Gathering interface meshes\n" );
rval = gather_interface_meshes( nonlocal );
if( MB_SUCCESS != rval ) return error( rval );
/**************** Get tag names for sets likely to be shared ***********/
// debug_barrier();
// dbgOut.tprint(1, "Getting shared entity sets\n");
// rval = get_sharedset_tags();
// if (MB_SUCCESS != rval) return error(rval);
/**************** Create actual file and write meta info ***************/
debug_barrier();
if( myPcomm->proc_config().proc_rank() == 0 )
{
dbgOut.tprintf( 1, "Creating file: %s\n", filename );
// Create the file
const char* type_names[MBMAXTYPE];
memset( type_names, 0, MBMAXTYPE * sizeof( char* ) );
for( EntityType i = MBEDGE; i < MBENTITYSET; ++i )
type_names[i] = CN::EntityTypeName( i );
dbgOut.tprint( 1, "call mhdf_createFile\n" );
filePtr = mhdf_createFile( filename, overwrite, type_names, MBMAXTYPE, id_type, &status );
if( !filePtr )
{
MB_SET_ERR( MB_FAILURE, mhdf_message( &status ) );
}
dbgOut.tprint( 1, "call write_qa\n" );
rval = write_qa( qa_records );
if( MB_SUCCESS != rval ) return error( rval );
}
/**************** Create node coordinate table ***************/
CpuTimer timer;
debug_barrier();
dbgOut.tprint( 1, "creating node table\n" );
topState.start( "creating node table" );
rval = create_node_table( dimension );
topState.end( rval );
if( MB_SUCCESS != rval ) return error( rval );
if( times ) times[CREATE_NODE_TIME] = timer.time_elapsed();
/**************** Create element tables ***************/
debug_barrier();
dbgOut.tprint( 1, "negotiating element types\n" );
topState.start( "negotiating element types" );
rval = negotiate_type_list();
topState.end( rval );
if( MB_SUCCESS != rval ) return error( rval );
if( times ) times[NEGOTIATE_TYPES_TIME] = timer.time_elapsed();
dbgOut.tprint( 1, "creating element table\n" );
topState.start( "creating element tables" );
rval = create_element_tables();
topState.end( rval );
if( MB_SUCCESS != rval ) return error( rval );
if( times ) times[CREATE_ELEM_TIME] = timer.time_elapsed();
/*************** Exchange file IDs *****************/
debug_barrier();
dbgOut.tprint( 1, "communicating file ids\n" );
topState.start( "communicating file ids" );
rval = exchange_file_ids( nonlocal );
topState.end( rval );
if( MB_SUCCESS != rval ) return error( rval );
if( times ) times[FILEID_EXCHANGE_TIME] = timer.time_elapsed();
/**************** Create meshset tables *********************/
debug_barrier();
dbgOut.tprint( 1, "creating meshset table\n" );
topState.start( "creating meshset tables" );
rval = create_meshset_tables( times );
topState.end( rval );
if( MB_SUCCESS != rval ) return error( rval );
if( times ) times[CREATE_SET_TIME] = timer.time_elapsed();
/**************** Create adjacency tables *********************/
debug_barrier();
dbgOut.tprint( 1, "creating adjacency table\n" );
topState.start( "creating adjacency tables" );
rval = create_adjacency_tables();
topState.end( rval );
if( MB_SUCCESS != rval ) return error( rval );
if( times ) times[CREATE_ADJ_TIME] = timer.time_elapsed();
/**************** Create tag data *********************/
debug_barrier();
dbgOut.tprint( 1, "creating tag tables\n" );
topState.start( "creating tag tables" );
rval = gather_tags( user_tag_list, user_tag_count );
if( MB_SUCCESS != rval ) return error( rval );
rval = create_tag_tables();
topState.end( rval );
if( MB_SUCCESS != rval ) return error( rval );
if( times ) times[CREATE_TAG_TIME] = timer.time_elapsed();
/************** Close serial file and reopen parallel *****************/
if( 0 == myPcomm->proc_config().proc_rank() ) mhdf_closeFile( filePtr, &status );
MPI_Barrier( myPcomm->proc_config().proc_comm() );
dbgOut.tprint( 1, "(re)opening file in parallel mode\n" );
unsigned long junk;
hid_t hdf_opt = H5Pcreate( H5P_FILE_ACCESS );
H5Pset_fapl_mpio( hdf_opt, myPcomm->proc_config().proc_comm(), info );
filePtr = mhdf_openFileWithOpt( filename, 1, &junk, id_type, hdf_opt, &status );
H5Pclose( hdf_opt );
if( !filePtr )
{
MB_SET_ERR( MB_FAILURE, mhdf_message( &status ) );
}
if( collectiveIO )
{
dbgOut.print( 1, "USING COLLECTIVE IO\n" );
writeProp = H5Pcreate( H5P_DATASET_XFER );
H5Pset_dxpl_mpio( writeProp, H5FD_MPIO_COLLECTIVE );
}
/* Test if we can use H5S_APPEND when selecting hyperslabs */
if( MB_SUCCESS != opts.get_null_option( "HYPERSLAB_OR" ) &&
( MB_SUCCESS == opts.get_null_option( "HYPERSLAB_APPEND" ) || HDF5_can_append_hyperslabs() ) )
{
dbgOut.print( 1, "HDF5 library supports H5Sselect_hyperlsab with H5S_SELECT_APPEND\n" );
hslabOp = H5S_SELECT_APPEND;
}
dbgOut.tprint( 1, "Exiting parallel_create_file\n" );
return MB_SUCCESS;
}
class TagNameCompare
{
Interface* iFace;
std::string name1, name2;
public:
TagNameCompare( Interface* iface ) : iFace( iface ) {}<--- Class 'TagNameCompare' has a constructor with 1 argument that is not explicit. [+]Class 'TagNameCompare' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
bool operator()( const WriteHDF5::TagDesc& t1, const WriteHDF5::TagDesc& t2 );
};
bool TagNameCompare::operator()( const WriteHDF5::TagDesc& t1, const WriteHDF5::TagDesc& t2 )
{
iFace->tag_get_name( t1.tag_id, name1 );
iFace->tag_get_name( t2.tag_id, name2 );
return name1 < name2;
}
struct serial_tag_data
{
TagType storage;
DataType type;
int size;
int name_len;
int def_val_len;
char name[sizeof( unsigned long )];
static size_t pad( size_t len )
{
if( len % sizeof( unsigned long ) )
return len + sizeof( unsigned long ) - len % sizeof( unsigned long );
else
return len;
}
static size_t def_val_bytes( int def_val_len, DataType type )
{
switch( type )
{
case MB_TYPE_BIT:
return def_val_len ? 1 : 0;
case MB_TYPE_OPAQUE:
return def_val_len;
case MB_TYPE_INTEGER:
return def_val_len * sizeof( int );
case MB_TYPE_DOUBLE:
return def_val_len * sizeof( double );
case MB_TYPE_HANDLE:
return def_val_len * sizeof( EntityHandle );
}
return 0;
}
static size_t len( int name_len, int def_val_len, DataType type )
{
return sizeof( serial_tag_data ) + pad( name_len + def_val_bytes( def_val_len, type ) ) -
sizeof( unsigned long );
}
size_t len() const
{
return len( name_len, def_val_len, type );
}
void* default_value()
{
return def_val_len ? name + name_len : 0;
}
const void* default_value() const
{
return const_cast< serial_tag_data* >( this )->default_value();
}
void set_default_value( const void* val )
{
memcpy( default_value(), val, def_val_bytes( def_val_len, type ) );
}
};
ErrorCode WriteHDF5Parallel::append_serial_tag_data( std::vector< unsigned char >& buffer,
const WriteHDF5::TagDesc& tag )
{
ErrorCode rval;
std::string name;
rval = iFace->tag_get_name( tag.tag_id, name );
if( MB_SUCCESS != rval ) return error( rval );
// Get name length, including space for null char
size_t name_len = name.size() + 1;
if( name_len == 1 ) return MB_SUCCESS; // Skip tags with no name
DataType data_type;
rval = iFace->tag_get_data_type( tag.tag_id, data_type );
if( MB_SUCCESS != rval ) return error( rval );
// Get default value
int def_val_len;
const void* def_val;
if( MB_SUCCESS != iFace->tag_get_default_value( tag.tag_id, def_val, def_val_len ) )
{
def_val_len = 0;
def_val = 0;
}
// Allocate struct within buffer
size_t init_size = buffer.size();
buffer.resize( init_size + serial_tag_data::len( name_len, def_val_len, data_type ) );
serial_tag_data* ptr = reinterpret_cast< serial_tag_data* >( &buffer[init_size] );
// Populate struct
rval = iFace->tag_get_type( tag.tag_id, ptr->storage );
if( MB_SUCCESS != rval ) return error( rval );
ptr->type = data_type;
rval = iFace->tag_get_length( tag.tag_id, ptr->size );
if( MB_VARIABLE_DATA_LENGTH == rval )
ptr->size = MB_VARIABLE_LENGTH;
else if( MB_SUCCESS != rval )
return error( rval );
ptr->name_len = name_len;
Range range;
memset( ptr->name, 0, ptr->name_len );
memcpy( ptr->name, name.data(), name.size() );
ptr->def_val_len = def_val_len;
ptr->set_default_value( def_val );
return MB_SUCCESS;
}
ErrorCode WriteHDF5Parallel::check_serial_tag_data( const std::vector< unsigned char >& buffer,
std::vector< TagDesc* >* missing,
std::vector< TagDesc* >* newlist )
{
ErrorCode rval;
// Use 'write_sparse' field as a 'visited' mark
std::list< TagDesc >::iterator tag_iter;
if( missing )
for( tag_iter = tagList.begin(); tag_iter != tagList.end(); ++tag_iter )
tag_iter->write_sparse = true;
// Use a set as a temporary for what will ultimately go in
// newlist because we need to pass back newlist in the order
// of the tagList member.
std::set< TagDesc* > newset;
// Iterate over data from, updating the local list of tags.
// Be careful to keep tagList sorted such that in the end all
// procs have the same list in the same order.
std::vector< unsigned char >::const_iterator diter = buffer.begin();
tag_iter = tagList.begin();
while( diter < buffer.end() )
{
// Get struct from buffer
const serial_tag_data* ptr = reinterpret_cast< const serial_tag_data* >( &*diter );
// Find local struct for tag
std::string name( ptr->name );
std::string n;
iFace->tag_get_name( tag_iter->tag_id, n ); // Second time we've called, so shouldn't fail
if( n > name )
{
tag_iter = tagList.begin(); // New proc, start search from beginning
}
iFace->tag_get_name( tag_iter->tag_id, n );
while( n < name )
{
++tag_iter;
if( tag_iter == tagList.end() ) break;
iFace->tag_get_name( tag_iter->tag_id, n );
}
if( tag_iter == tagList.end() || n != name )
{ // New tag
TagDesc newtag;
if( ptr->size == MB_VARIABLE_LENGTH )
rval = iFace->tag_get_handle( name.c_str(), ptr->def_val_len, ptr->type, newtag.tag_id,
MB_TAG_VARLEN | MB_TAG_CREAT | ptr->storage, ptr->default_value() );
else
rval = iFace->tag_get_handle( name.c_str(), ptr->size, ptr->type, newtag.tag_id,
MB_TAG_CREAT | ptr->storage, ptr->default_value() );
if( MB_SUCCESS != rval ) return error( rval );
newtag.sparse_offset = 0;
newtag.var_data_offset = 0;
newtag.write_sparse = false;
newtag.max_num_ents = 0;
newtag.max_num_vals = 0;
tag_iter = tagList.insert( tag_iter, newtag );
if( newlist ) newset.insert( &*tag_iter );
}
else
{ // Check that tag is as expected
DataType type;
iFace->tag_get_data_type( tag_iter->tag_id, type );
if( type != ptr->type )
{
MB_SET_ERR( MB_FAILURE, "Processes have inconsistent data type for tag \"" << name << "\"" );
}
int size;
iFace->tag_get_length( tag_iter->tag_id, size );
if( size != ptr->size )
{
MB_SET_ERR( MB_FAILURE, "Processes have inconsistent size for tag \"" << name << "\"" );
}
tag_iter->write_sparse = false;
}
// Step to next variable-length struct.
diter += ptr->len();
}
// Now pass back any local tags that weren't in the buffer
if( missing )
{
for( tag_iter = tagList.begin(); tag_iter != tagList.end(); ++tag_iter )
{
if( tag_iter->write_sparse )
{
tag_iter->write_sparse = false;
missing->push_back( &*tag_iter );
}
}
}
// Be careful to populate newlist in the same, sorted, order as tagList
if( newlist )
{
for( tag_iter = tagList.begin(); tag_iter != tagList.end(); ++tag_iter )
if( newset.find( &*tag_iter ) != newset.end() ) newlist->push_back( &*tag_iter );
}
return MB_SUCCESS;
}
static void set_bit( int position, unsigned char* bytes )
{
int byte = position / 8;
int bit = position % 8;
bytes[byte] |= ( ( (unsigned char)1 ) << bit );
}
static bool get_bit( int position, const unsigned char* bytes )
{
int byte = position / 8;
int bit = position % 8;
return 0 != ( bytes[byte] & ( ( (unsigned char)1 ) << bit ) );
}
ErrorCode WriteHDF5Parallel::create_tag_tables()
{
std::list< TagDesc >::iterator tag_iter;
ErrorCode rval;
int err;
const int rank = myPcomm->proc_config().proc_rank();
const MPI_Comm comm = myPcomm->proc_config().proc_comm();
subState.start( "negotiating tag list" );
dbgOut.tprint( 1, "communicating tag metadata\n" );
dbgOut.printf( 2, "Exchanging tag data for %d tags.\n", (int)tagList.size() );
// Sort tagList contents in alphabetical order by tag name
tagList.sort( TagNameCompare( iFace ) );
// Negotiate total list of tags to write
// Build concatenated list of all tag data
std::vector< unsigned char > tag_buffer;
for( tag_iter = tagList.begin(); tag_iter != tagList.end(); ++tag_iter )
{
rval = append_serial_tag_data( tag_buffer, *tag_iter );
CHECK_MB( rval );
}
// Broadcast list from root to all other procs
unsigned long size = tag_buffer.size();
err = MPI_Bcast( &size, 1, MPI_UNSIGNED_LONG, 0, comm );
CHECK_MPI( err );
tag_buffer.resize( size );
err = MPI_Bcast( &tag_buffer[0], size, MPI_UNSIGNED_CHAR, 0, comm );
CHECK_MPI( err );
// Update local tag list
std::vector< TagDesc* > missing;
rval = check_serial_tag_data( tag_buffer, &missing, 0 );
CHECK_MB( rval );
// Check if we're done (0->done, 1->more, 2+->error)
int code, lcode = ( MB_SUCCESS != rval ) ? rval + 2 : missing.empty() ? 0 : 1;
err = MPI_Allreduce( &lcode, &code, 1, MPI_INT, MPI_MAX, comm );
CHECK_MPI( err );
if( code > 1 )
{
MB_SET_ERR_CONT( "Inconsistent tag definitions between procs" );
return error( (ErrorCode)( code - 2 ) );
}
// If not done...
if( code )
{
dbgOut.print( 1, "Not all procs had same tag definitions, negotiating...\n" );
// Get tags defined on this proc but not on root proc
tag_buffer.clear();
for( size_t i = 0; i < missing.size(); ++i )
{
rval = append_serial_tag_data( tag_buffer, *missing[i] );
CHECK_MB( rval );
}
// Gather extra tag definitions on root processor
std::vector< int > junk; // don't care how many from each proc
assert( rank || tag_buffer.empty() ); // must be empty on root
err = my_Gatherv( &tag_buffer[0], tag_buffer.size(), MPI_UNSIGNED_CHAR, tag_buffer, junk, 0, comm );
CHECK_MPI( err );
// Process serialized tag descriptions on root, and
rval = MB_SUCCESS;
if( 0 == rank )
{
// Process serialized tag descriptions on root, and
std::vector< TagDesc* > newlist;
rval = check_serial_tag_data( tag_buffer, 0, &newlist );
tag_buffer.clear();
// re-serialize a unique list of new tag definitions
for( size_t i = 0; MB_SUCCESS == rval && i != newlist.size(); ++i )
{
rval = append_serial_tag_data( tag_buffer, *newlist[i] );
CHECK_MB( rval );
}
}
// Broadcast any new tag definitions from root to other procs
long this_size = tag_buffer.size();
if( MB_SUCCESS != rval ) this_size = -rval;
err = MPI_Bcast( &this_size, 1, MPI_LONG, 0, comm );
CHECK_MPI( err );
if( this_size < 0 )
{
MB_SET_ERR_CONT( "Inconsistent tag definitions between procs" );
return error( (ErrorCode)-this_size );
}
tag_buffer.resize( this_size );
err = MPI_Bcast( &tag_buffer[0], this_size, MPI_UNSIGNED_CHAR, 0, comm );
CHECK_MPI( err );
// Process new tag definitions
rval = check_serial_tag_data( tag_buffer, 0, 0 );
CHECK_MB( rval );
}
subState.end();
subState.start( "negotiate which element/tag combinations are dense" );
// Figure out for which tag/element combinations we can
// write dense tag data.
// Construct a table of bits,
// where each row of the table corresponds to a tag
// and each column to an element group.
// Two extra, because first is nodes and last is sets.
// (n+7)/8 is ceil(n/8)
const int bytes_per_tag = ( exportList.size() + 9 ) / 8;
std::vector< unsigned char > data( bytes_per_tag * tagList.size(), 0 );
std::vector< unsigned char > recv( data.size(), 0 );
unsigned char* iter = &data[0];<--- Access out of bounds
if( writeTagDense && !data.empty() )<--- Assuming that condition 'data.empty()' is not redundant
{
for( tag_iter = tagList.begin(); tag_iter != tagList.end(); ++tag_iter, iter += bytes_per_tag )
{
Range tagged;
rval = get_sparse_tagged_entities( *tag_iter, tagged );
CHECK_MB( rval );
int s;
if( MB_VARIABLE_DATA_LENGTH == iFace->tag_get_length( tag_iter->tag_id, s ) ) continue;
std::string n;
iFace->tag_get_name( tag_iter->tag_id,
n ); // Second time we've called, so shouldn't fail
// Check if we want to write this tag in dense format even if not
// all of the entities have a tag value. The criterion of this
// is that the tag be dense, have a default value, and have at
// least 2/3 of the entities tagged.
bool prefer_dense = false;
TagType type;
rval = iFace->tag_get_type( tag_iter->tag_id, type );
CHECK_MB( rval );
if( MB_TAG_DENSE == type )
{
const void* defval = 0;
rval = iFace->tag_get_default_value( tag_iter->tag_id, defval, s );
if( MB_SUCCESS == rval ) prefer_dense = true;
}
int i = 0;
if( check_dense_format_tag( nodeSet, tagged, prefer_dense ) )
{
set_bit( i, iter );
dbgOut.printf( 2, "Can write dense data for \"%s\"/Nodes\n", n.c_str() );
}
std::list< ExportSet >::const_iterator ex_iter = exportList.begin();
for( ++i; ex_iter != exportList.end(); ++i, ++ex_iter )
{
// when writing in parallel, on some partitions, some of these element ranges might
// be empty so do not turn this tag as sparse, just because of that, leave it dense,
// if we prefer dense
if( ( prefer_dense && ex_iter->range.empty() ) ||
check_dense_format_tag( *ex_iter, tagged, prefer_dense ) )
{
set_bit( i, iter );
dbgOut.printf( 2, "Can write dense data for \"%s\"/%s\n", n.c_str(), ex_iter->name() );
}
}
if( check_dense_format_tag( setSet, tagged, prefer_dense ) )
{
set_bit( i, iter );
dbgOut.printf( 2, "Can write dense data for \"%s\"/Sets\n", n.c_str() );
}
}
// Do bit-wise AND of list over all processors (only write dense format
// if all proccesses want dense format for this group of entities).
err = MPI_Allreduce( &data[0], &recv[0], data.size(), MPI_UNSIGNED_CHAR, MPI_BAND,
myPcomm->proc_config().proc_comm() );
CHECK_MPI( err );
} // if (writeTagDense)
// Store initial counts for sparse-formatted tag data.
// The total number of values to send and receive will be the number of
// tags plus the number of var-len tags because we need to negotiate
// offsets into two different tables for the var-len tags.
std::vector< long > counts;
// Record dense tag/element combinations
iter = &recv[0];
const unsigned char* iter2 = &data[0];
for( tag_iter = tagList.begin(); tag_iter != tagList.end();
++tag_iter, iter += bytes_per_tag, iter2 += bytes_per_tag )
{
Range tagged;
rval = get_sparse_tagged_entities( *tag_iter, tagged );
CHECK_MB( rval );
std::string n;
iFace->tag_get_name( tag_iter->tag_id, n ); // Second time we've called, so shouldn't fail
int i = 0;
if( get_bit( i, iter ) )
{
assert( get_bit( i, iter2 ) );
tag_iter->dense_list.push_back( nodeSet );
tagged -= nodeSet.range;
dbgOut.printf( 2, "Will write dense data for \"%s\"/Nodes\n", n.c_str() );
}
std::list< ExportSet >::const_iterator ex_iter = exportList.begin();
for( ++i; ex_iter != exportList.end(); ++i, ++ex_iter )
{
if( get_bit( i, iter ) )
{
assert( get_bit( i, iter2 ) );
tag_iter->dense_list.push_back( *ex_iter );
dbgOut.printf( 2, "WIll write dense data for \"%s\"/%s\n", n.c_str(), ex_iter->name() );
tagged -= ex_iter->range;
}
}
if( get_bit( i, iter ) )
{
assert( get_bit( i, iter2 ) );
tag_iter->dense_list.push_back( setSet );
dbgOut.printf( 2, "Will write dense data for \"%s\"/Sets\n", n.c_str() );
tagged -= setSet.range;
}
counts.push_back( tagged.size() );
int s;
if( MB_VARIABLE_DATA_LENGTH == iFace->tag_get_length( tag_iter->tag_id, s ) )
{
unsigned long data_len;
rval = get_tag_data_length( *tag_iter, tagged, data_len );
CHECK_MB( rval );
counts.push_back( data_len );
}
}
subState.end();
subState.start( "Negotiate offsets for sparse tag info" );
std::vector< long > offsets( counts.size() ), maxima( counts.size() ), totals( counts.size() );
rval = create_dataset( counts.size(), &counts[0], &offsets[0], &maxima[0], &totals[0] );
CHECK_MB( rval );
// Copy values into local structs and if root then create tables
size_t idx = 0;
for( tag_iter = tagList.begin(); tag_iter != tagList.end(); ++tag_iter, ++idx )
{
assert( idx < counts.size() );
tag_iter->sparse_offset = offsets[idx];
tag_iter->max_num_ents = maxima[idx];
tag_iter->write_sparse = ( 0 != totals[idx] );
int s;
if( MB_VARIABLE_DATA_LENGTH == iFace->tag_get_length( tag_iter->tag_id, s ) )
{
++idx;
assert( idx < counts.size() );
tag_iter->var_data_offset = offsets[idx];
tag_iter->max_num_vals = maxima[idx];
}
else
{
tag_iter->var_data_offset = 0;
tag_iter->max_num_vals = 0;
}
}
subState.end();
// Create tag tables on root process
if( 0 == myPcomm->proc_config().proc_rank() )
{
size_t iidx = 0;
for( tag_iter = tagList.begin(); tag_iter != tagList.end(); ++tag_iter, ++iidx )
{
assert( iidx < totals.size() );
unsigned long num_ents = totals[iidx];
unsigned long num_val = 0;
int s;
if( MB_VARIABLE_DATA_LENGTH == iFace->tag_get_length( tag_iter->tag_id, s ) )
{
++iidx;
assert( iidx < totals.size() );
num_val = totals[iidx];
}
dbgOut.printf( 2, "Writing tag description for tag 0x%lx with %lu values\n",
(unsigned long)tag_iter->tag_id, num_val ? num_val : num_ents );
rval = create_tag( *tag_iter, num_ents, num_val );
if( MB_SUCCESS != rval ) return error( rval );
}
}
if( dbgOut.get_verbosity() > 1 )
{
dbgOut.printf( 2, "Tags: %12s %8s %8s %8s %8s %8s\n", "Name", "Count", "Offset", "Var Off", "Max Ent",
"Handle" );
for( tag_iter = tagList.begin(); tag_iter != tagList.end(); ++tag_iter )
{
std::string name;
iFace->tag_get_name( tag_iter->tag_id, name );
size_t this_size;
get_num_sparse_tagged_entities( *tag_iter, this_size );
dbgOut.printf( 2, "%18s %8lu %8lu %8lu %8lu 0x%7lx\n", name.c_str(), (unsigned long)this_size,
(unsigned long)tag_iter->sparse_offset, (unsigned long)tag_iter->var_data_offset,
(unsigned long)tag_iter->max_num_ents, (unsigned long)tag_iter->tag_id );
}
}
return MB_SUCCESS;
}
struct DatasetVals
{
long start_id;
long max_count;
long total;
};
STATIC_ASSERT( ( sizeof( DatasetVals ) == 3 * sizeof( long ) ) );
ErrorCode WriteHDF5Parallel::create_dataset( int num_datasets,
const long* num_owned,
long* offsets_out,
long* max_proc_entities,
long* total_entities,
const DataSetCreator& creator,
ExportSet* groups[],
wid_t* first_ids_out )
{
int result;
ErrorCode rval;
const unsigned rank = myPcomm->proc_config().proc_rank();
const unsigned nproc = myPcomm->proc_config().proc_size();
const MPI_Comm comm = myPcomm->proc_config().proc_comm();
// Gather entity counts for each processor on root
std::vector< long > counts( rank ? 0 : nproc * num_datasets );
(void)VALGRIND_CHECK_MEM_IS_DEFINED( &num_owned, sizeof( long ) );
result = MPI_Gather( const_cast< long* >( num_owned ), num_datasets, MPI_LONG, &counts[0], num_datasets, MPI_LONG,
0, comm );
CHECK_MPI( result );
// Create node data in file
DatasetVals zero_val = { 0, 0, 0 };
std::vector< DatasetVals > cumulative( num_datasets, zero_val );
if( rank == 0 )
{
for( unsigned i = 0; i < nproc; i++ )
{
const long* proc_data = &counts[i * num_datasets];
for( int index = 0; index < num_datasets; ++index )
{
cumulative[index].total += proc_data[index];
if( proc_data[index] > cumulative[index].max_count ) cumulative[index].max_count = proc_data[index];
}
}
for( int index = 0; index < num_datasets; ++index )
{
if( cumulative[index].total )
{
rval = creator( this, cumulative[index].total, groups ? groups[index] : 0, cumulative[index].start_id );
CHECK_MB( rval );
}
else
{
cumulative[index].start_id = -1;
}
}
}
// Send id offset to every proc
result = MPI_Bcast( (void*)&cumulative[0], 3 * num_datasets, MPI_LONG, 0, comm );
CHECK_MPI( result );
for( int index = 0; index < num_datasets; ++index )
{
if( first_ids_out ) first_ids_out[index] = (wid_t)cumulative[index].start_id;
max_proc_entities[index] = cumulative[index].max_count;
total_entities[index] = cumulative[index].total;
}
// Convert array of per-process counts to per-process offsets
if( rank == 0 )<--- First condition
{
// Initialize prev_size with data sizes for root process
std::vector< long > prev_size( counts.begin(), counts.begin() + num_datasets );
// Root process gets offset zero
std::fill( counts.begin(), counts.begin() + num_datasets, 0L );
// For each proc other than this one (root)
for( unsigned i = 1; i < nproc; ++i )
{
// Get pointer to offsets for previous process in list
long* prev_data = &counts[( i - 1 ) * num_datasets];
// Get pointer to offsets for this process in list
long* proc_data = &counts[i * num_datasets];
// For each data set
for( int j = 0; j < num_datasets; ++j )
{
// Get size of data in dataset from process i
long mysize = proc_data[j];
// Offset for process i is offset of previous process plus
// number of values previous process will write
proc_data[j] = prev_data[j] + prev_size[j];
// Store my size, as it is no longer available in 'counts'
prev_size[j] = mysize;
}
}
}
// Send each proc it's offset in the table
if( rank == 0 )<--- Second condition
{
(void)VALGRIND_CHECK_MEM_IS_DEFINED( &counts[0], num_datasets * nproc * sizeof( long ) );
}
result = MPI_Scatter( &counts[0], num_datasets, MPI_LONG, offsets_out, num_datasets, MPI_LONG, 0, comm );
CHECK_MPI( result );
return MB_SUCCESS;
}
ErrorCode WriteHDF5Parallel::create_node_table( int dimension )
{
nodeSet.num_nodes = dimension; // Put it here so NodeSetCreator can access it
struct NodeSetCreator : public DataSetCreator
{
ErrorCode operator()( WriteHDF5* file, long count, const ExportSet* group, long& start_id ) const
{
mhdf_Status status;
hid_t handle = mhdf_createNodeCoords( file->file_ptr(), group->num_nodes, count, &start_id, &status );
CHECK_HDFN( status );
mhdf_closeData( file->file_ptr(), handle, &status );
CHECK_HDFN( status );
return MB_SUCCESS;
}
};
const long count = nodeSet.range.size();
ExportSet* array[] = { &nodeSet };
ErrorCode rval = create_dataset( 1, &count, &nodeSet.offset, &nodeSet.max_num_ents, &nodeSet.total_num_ents,
NodeSetCreator(), array, &nodeSet.first_id );
CHECK_MB( rval );
return assign_ids( nodeSet.range, nodeSet.first_id + nodeSet.offset );
}
struct elemtype
{
int mbtype;
int numnode;
elemtype( int vals[2] ) : mbtype( vals[0] ), numnode( vals[1] ) {}<--- Struct 'elemtype' has a constructor with 1 argument that is not explicit. [+]Struct 'elemtype' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
elemtype( int t, int n ) : mbtype( t ), numnode( n ) {}
bool operator==( const elemtype& other ) const
{
return mbtype == other.mbtype && ( mbtype == MBENTITYSET || numnode == other.numnode );
}
bool operator<( const elemtype& other ) const
{
if( mbtype > other.mbtype ) return false;
return mbtype < other.mbtype || ( mbtype != MBENTITYSET && numnode < other.numnode );
}
bool operator!=( const elemtype& other ) const
{
return !this->operator==( other );
}
};
ErrorCode WriteHDF5Parallel::negotiate_type_list()
{
int result;
const MPI_Comm comm = myPcomm->proc_config().proc_comm();
exportList.sort();
int num_types = exportList.size();
// Get list of types on this processor
typedef std::vector< std::pair< int, int > > typelist;
typelist my_types( num_types );
(void)VALGRIND_MAKE_VEC_UNDEFINED( my_types );
typelist::iterator viter = my_types.begin();
for( std::list< ExportSet >::iterator eiter = exportList.begin(); eiter != exportList.end(); ++eiter )
{
viter->first = eiter->type;
viter->second = eiter->num_nodes;
++viter;
}
dbgOut.print( 2, "Local Element Types:\n" );
for( viter = my_types.begin(); viter != my_types.end(); ++viter )
{
int type = viter->first;
int count = viter->second;
dbgOut.printf( 2, " %s : %d\n", CN::EntityTypeName( (EntityType)type ), count );
}
// Broadcast number of types from root to all nodes
int num_types0 = num_types;
result = MPI_Bcast( &num_types0, 1, MPI_INT, 0, comm );
CHECK_MPI( result );
// Broadcast type list from root to all nodes
typelist root_types( num_types0 );
if( 0 == myPcomm->proc_config().proc_rank() ) root_types = my_types;
result = MPI_Bcast( (void*)&root_types[0], 2 * num_types0, MPI_INT, 0, comm );
CHECK_MPI( result );
// Build local list of any types that root did not know about
typelist non_root_types;
viter = root_types.begin();
for( typelist::iterator iter = my_types.begin(); iter != my_types.end(); ++iter )
{
if( viter == root_types.end() || *viter != *iter )
non_root_types.push_back( *iter );
else
++viter;
}
// Determine if any process had types not defined on the root
int non_root_count = non_root_types.size();
int not_done;
result = MPI_Allreduce( &non_root_count, ¬_done, 1, MPI_INT, MPI_LOR, comm );
CHECK_MPI( result );
if( not_done )
{
// Get number of types each processor has that root does not
std::vector< int > counts( myPcomm->proc_config().proc_size() );
int two_count = 2 * non_root_count;
result = MPI_Gather( &two_count, 1, MPI_INT, &counts[0], 1, MPI_INT, 0, comm );
CHECK_MPI( result );
// Get list of types from each processor
std::vector< int > displs( myPcomm->proc_config().proc_size() + 1 );
(void)VALGRIND_MAKE_VEC_UNDEFINED( displs );
displs[0] = 0;
for( unsigned long i = 1; i <= myPcomm->proc_config().proc_size(); ++i )
displs[i] = displs[i - 1] + counts[i - 1];
int total = displs[myPcomm->proc_config().proc_size()];
typelist alltypes( total / 2 );
(void)VALGRIND_MAKE_VEC_UNDEFINED( alltypes );
(void)VALGRIND_CHECK_MEM_IS_DEFINED( &non_root_types[0], non_root_types.size() * sizeof( int ) );
result = MPI_Gatherv( (void*)&non_root_types[0], 2 * non_root_count, MPI_INT, (int*)&alltypes[0], &counts[0],
&displs[0], MPI_INT, 0, comm );
CHECK_MPI( result );
// Merge type lists.
// Prefer O(n) insertions with O(ln n) search time because
// we expect data from a potentially large number of processes,
// but with a small total number of element types.
if( 0 == myPcomm->proc_config().proc_rank() )
{
for( viter = alltypes.begin(); viter != alltypes.end(); ++viter )
{
typelist::iterator titer = std::lower_bound( my_types.begin(), my_types.end(), *viter );
if( titer == my_types.end() || *titer != *viter ) my_types.insert( titer, *viter );
}
dbgOut.print( 2, "Global Element Types:\n" );
for( viter = my_types.begin(); viter != my_types.end(); ++viter )
dbgOut.printf( 2, " %s : %d\n", CN::EntityTypeName( (EntityType)viter->first ), viter->second );
}
// Send total number of types to each processor
total = my_types.size();
result = MPI_Bcast( &total, 1, MPI_INT, 0, comm );
CHECK_MPI( result );
// Send list of types to each processor
my_types.resize( total );
result = MPI_Bcast( (void*)&my_types[0], 2 * total, MPI_INT, 0, comm );
CHECK_MPI( result );
}
else
{
// Special case: if root had types but some subset of procs did not
// have those types, but there are no types that the root doesn't
// know about then we still need to update processes that are missing
// types.
my_types.swap( root_types );
}
// Insert missing types into exportList, with an empty
// range of entities to export.
std::list< ExportSet >::iterator ex_iter = exportList.begin();
for( viter = my_types.begin(); viter != my_types.end(); ++viter )
{
while( ex_iter != exportList.end() && *ex_iter < *viter )
++ex_iter;
if( ex_iter == exportList.end() || !( *ex_iter == *viter ) )
{
ExportSet insert;
insert.type = (EntityType)viter->first;
insert.num_nodes = viter->second;
insert.first_id = 0;
insert.offset = 0;
insert.adj_offset = 0;
ex_iter = exportList.insert( ex_iter, insert );
}
}
return MB_SUCCESS;
}
ErrorCode WriteHDF5Parallel::create_element_tables()
{
struct ElemSetCreator : public DataSetCreator
{
ErrorCode operator()( WriteHDF5* file, long size, const ExportSet* ex, long& start_id ) const
{
return file->create_elem_table( *ex, size, start_id );
}
};
const int numtypes = exportList.size();
std::vector< ExportSet* > groups( numtypes );
std::vector< long > counts( numtypes ), offsets( numtypes ), max_ents( numtypes ), total_ents( numtypes );
std::vector< wid_t > start_ids( numtypes );
size_t idx = 0;
std::list< ExportSet >::iterator ex_iter;
for( ex_iter = exportList.begin(); ex_iter != exportList.end(); ++ex_iter, ++idx )
{
groups[idx] = &*ex_iter;
counts[idx] = ex_iter->range.size();
}
ErrorCode rval = create_dataset( numtypes, &counts[0], &offsets[0], &max_ents[0], &total_ents[0], ElemSetCreator(),
&groups[0], &start_ids[0] );
CHECK_MB( rval );
for( idx = 0, ex_iter = exportList.begin(); ex_iter != exportList.end(); ++ex_iter, ++idx )
{
ex_iter->first_id = start_ids[idx];
ex_iter->offset = offsets[idx];
ex_iter->max_num_ents = max_ents[idx];
ex_iter->total_num_ents = total_ents[idx];
rval = assign_ids( ex_iter->range, ex_iter->first_id + ex_iter->offset );
CHECK_MB( rval );
}
return MB_SUCCESS;
}
ErrorCode WriteHDF5Parallel::create_adjacency_tables()
{
struct AdjSetCreator : public DataSetCreator
{
ErrorCode operator()( WriteHDF5* file, long size, const ExportSet* ex, long& start_id ) const
{
mhdf_Status status;
hid_t handle = mhdf_createAdjacency( file->file_ptr(), ex->name(), size, &status );
CHECK_HDFN( status );
mhdf_closeData( file->file_ptr(), handle, &status );
CHECK_HDFN( status );
start_id = -1;
return MB_SUCCESS;
}
};
std::vector< ExportSet* > groups;
#ifdef WRITE_NODE_ADJACENCIES
groups.push_back( &nodeSet );
#endif
for( std::list< ExportSet >::iterator ex_iter = exportList.begin(); ex_iter != exportList.end(); ++ex_iter )
groups.push_back( &*ex_iter );
ErrorCode rval;
const int numtypes = groups.size();
std::vector< long > counts( numtypes );
std::vector< long > offsets( numtypes );
std::vector< long > max_ents( numtypes );
std::vector< long > totals( numtypes );
for( int i = 0; i < numtypes; ++i )
{
wid_t count;
rval = count_adjacencies( groups[i]->range, count );
CHECK_MB( rval );
counts[i] = count;
}
rval = create_dataset( numtypes, &counts[0], &offsets[0], &max_ents[0], &totals[0], AdjSetCreator(), &groups[0] );
CHECK_MB( rval );
// Cppcheck warning (false positive): variable groups is assigned a value that is never used
for( int i = 0; i < numtypes; ++i )
{
groups[i]->max_num_adjs = max_ents[i];
groups[i]->adj_offset = offsets[i];
}
return MB_SUCCESS;
}
const unsigned SSVB = 3;
void WriteHDF5Parallel::print_set_sharing_data( const Range& range, const char* label, Tag idt )
{
dbgOut.printf( SSVB, "set\tid\towner\t%-*s\tfid\tshared\n", (int)( sizeof( EntityHandle ) * 2 ), "handle" );
for( Range::iterator it = range.begin(); it != range.end(); ++it )
{
int id;
iFace->tag_get_data( idt, &*it, 1, &id );
EntityHandle handle = 0;
unsigned owner = 0;
wid_t file_id = 0;
myPcomm->get_entityset_owner( *it, owner, &handle );
if( !idMap.find( *it, file_id ) ) file_id = 0;
dbgOut.printf( SSVB, "%s\t%d\t%u\t%lx\t%lu\t", label, id, owner, (unsigned long)handle,
(unsigned long)file_id );
std::vector< unsigned > procs;
myPcomm->get_entityset_procs( *it, procs );
if( procs.empty() )
dbgOut.print( SSVB, "<none>\n" );
else
{
for( unsigned i = 0; i < procs.size() - 1; ++i )
dbgOut.printf( SSVB, "%u,", procs[i] );
dbgOut.printf( SSVB, "%u\n", procs.back() );
}
}
}
void WriteHDF5Parallel::print_shared_sets()
{
const char* tag_names[][2] = { { MATERIAL_SET_TAG_NAME, "block" },
{ DIRICHLET_SET_TAG_NAME, "nodeset" },
{ NEUMANN_SET_TAG_NAME, "sideset" },
{ 0, 0 } };
for( int i = 0; tag_names[i][0]; ++i )
{
Tag tag;
if( MB_SUCCESS != iFace->tag_get_handle( tag_names[i][0], 1, MB_TYPE_INTEGER, tag ) ) continue;
Range tagged;
iFace->get_entities_by_type_and_tag( 0, MBENTITYSET, &tag, 0, 1, tagged );
print_set_sharing_data( tagged, tag_names[i][1], tag );
}
Tag geom, id;
if( MB_SUCCESS != iFace->tag_get_handle( GEOM_DIMENSION_TAG_NAME, 1, MB_TYPE_INTEGER, geom ) ) return;
id = iFace->globalId_tag();
const char* geom_names[] = { "vertex", "curve", "surface", "volume" };
for( int d = 0; d <= 3; ++d )
{
Range tagged;
const void* vals[] = { &d };
iFace->get_entities_by_type_and_tag( 0, MBENTITYSET, &geom, vals, 1, tagged );
print_set_sharing_data( tagged, geom_names[d], id );
}
}
ErrorCode WriteHDF5Parallel::communicate_shared_set_ids( const Range& owned, const Range& remote )
{
ErrorCode rval;
int mperr;
const int TAG = 0xD0E;
// const unsigned rank = myPcomm->proc_config().proc_rank();
const MPI_Comm comm = myPcomm->proc_config().proc_comm();
dbgOut.tprint( 1, "COMMUNICATING SHARED SET IDS\n" );
dbgOut.print( 6, "Owned, shared sets: ", owned );
// Post receive buffers for all procs for which we share sets
std::vector< unsigned > procs;
rval = myPcomm->get_entityset_owners( procs );
CHECK_MB( rval );
std::vector< unsigned >::iterator it = std::find( procs.begin(), procs.end(), myPcomm->proc_config().proc_rank() );
if( it != procs.end() ) procs.erase( it );
std::vector< MPI_Request > recv_req( procs.size(), MPI_REQUEST_NULL );
std::vector< std::vector< unsigned long > > recv_buf( procs.size() );
size_t recv_count = 0;
for( size_t i = 0; i < procs.size(); ++i )
{
Range tmp;
rval = myPcomm->get_owned_sets( procs[i], tmp );
CHECK_MB( rval );
size_t count =
intersect( tmp, remote ).size(); // Necessary because we might not be writing all of the database
if( count )
{
dbgOut.printf( 6, "Sets owned by proc %u (remote handles): ", procs[i] );
if( dbgOut.get_verbosity() >= 6 )
{
Range remote_handles;
tmp = intersect( tmp, remote );
for( Range::iterator j = tmp.begin(); j != tmp.end(); ++j )
{
unsigned r;
EntityHandle h;
myPcomm->get_entityset_owner( *j, r, &h );
assert( r == procs[i] );
remote_handles.insert( h );
}
dbgOut.print( 6, remote_handles );
}
recv_count++;
recv_buf[i].resize( 2 * count + 1 );
dbgOut.printf( 5, "Posting receive buffer of size %lu for proc %u (%lu of %lu owned sets)\n",
(unsigned long)recv_buf[i].size(), procs[i], count, tmp.size() );
mperr =
MPI_Irecv( &recv_buf[i][0], recv_buf[i].size(), MPI_UNSIGNED_LONG, procs[i], TAG, comm, &recv_req[i] );
CHECK_MPI( mperr );
}
}
// Send set ids to all procs with which we share them
// First build per-process lists of sets for which we need to send data
std::map< unsigned, Range > send_sets;
std::vector< unsigned > set_procs;
for( Range::reverse_iterator i = owned.rbegin(); i != owned.rend(); ++i )
{
set_procs.clear();
rval = myPcomm->get_entityset_procs( *i, set_procs );
CHECK_MB( rval );
for( size_t j = 0; j < set_procs.size(); ++j )
if( set_procs[j] != myPcomm->proc_config().proc_rank() ) send_sets[set_procs[j]].insert( *i );
}
assert( send_sets.find( myPcomm->proc_config().proc_rank() ) == send_sets.end() );<--- Assert statement calls a function which may have desired side effects: 'proc_config'. [+]Non-pure function: 'proc_config' is called inside assert statement. Assert statements are removed from release builds so the code inside assert statement is not executed. If the code is needed also in release builds, this is a bug.
// Now send the data
std::vector< std::vector< unsigned long > > send_buf( send_sets.size() );
std::vector< MPI_Request > send_req( send_sets.size() );
std::map< unsigned, Range >::iterator si = send_sets.begin();
for( size_t i = 0; si != send_sets.end(); ++si, ++i )
{
dbgOut.printf( 6, "Sending data for shared sets to proc %u: ", si->first );
dbgOut.print( 6, si->second );
send_buf[i].reserve( 2 * si->second.size() + 1 );
send_buf[i].push_back( si->second.size() );
for( Range::iterator j = si->second.begin(); j != si->second.end(); ++j )
{
send_buf[i].push_back( *j );
send_buf[i].push_back( idMap.find( *j ) );
}
dbgOut.printf( 5, "Sending buffer of size %lu to proc %u (%lu of %lu owned sets)\n",
(unsigned long)send_buf[i].size(), si->first, si->second.size(), owned.size() );
mperr = MPI_Isend( &send_buf[i][0], send_buf[i].size(), MPI_UNSIGNED_LONG, si->first, TAG, comm, &send_req[i] );<--- mperr is assigned
}
// Process received data
MPI_Status status;
int idx;
while( recv_count-- )
{
mperr = MPI_Waitany( recv_req.size(), &recv_req[0], &idx, &status );
CHECK_MPI( mperr );
assert( (unsigned)status.MPI_SOURCE == procs[idx] );
assert( 2 * recv_buf[idx].front() + 1 == recv_buf[idx].size() );
const size_t n = std::min< size_t >( recv_buf[idx].front(), ( recv_buf[idx].size() - 1 ) / 2 );
dbgOut.printf( 5, "Received buffer of size %lu from proc %d\n", (unsigned long)( 2 * n + 1 ),
(int)status.MPI_SOURCE );
for( size_t i = 0; i < n; ++i )
{
EntityHandle handle = 0;
rval = myPcomm->get_entityset_local_handle( procs[idx], recv_buf[idx][2 * i + 1], handle );
CHECK_MB( rval );
assert( handle != 0 );
if( !idMap.insert( handle, recv_buf[idx][2 * i + 2], 1 ).second )
error( MB_FAILURE ); // Conflicting IDs??????
}
recv_req[idx] = MPI_REQUEST_NULL;
}
assert( MPI_SUCCESS == MPI_Waitany( recv_req.size(), &recv_req[0], &idx, &status ) &&
MPI_UNDEFINED == idx ); // Check that we got them all
// Wait for all sends to complete before we release send
// buffers (implicitly releases when we return from this function)
std::vector< MPI_Status > stats( send_req.size() );
mperr = MPI_Waitall( send_req.size(), &send_req[0], &stats[0] );<--- mperr is overwritten
CHECK_MPI( mperr );
if( dbgOut.get_verbosity() >= SSVB ) print_shared_sets();
return MB_SUCCESS;
}
// void get_global_ids(Interface* iFace, const unsigned long* ptr,
// size_t len, unsigned flags,
// std::vector<int>& ids)
//{
// Tag idtag;
// iFace->tag_get_handle(GLOBAL_ID_TAG_NAME, 1, MB_TYPE_INTEGER, idtag);
// for (size_t i = 0; i < len; ++i) {
// if (flags & MESHSET_ORDERED) {
// int tmp;
// iFace->tag_get_data(idtag, ptr + i, 1, &tmp);
// ids.push_back(tmp);
// continue;
// }
//
// EntityHandle s = ptr[i];
// EntityHandle e = ptr[++i];
// for (; s <= e; ++s) {
// int tmp;
// iFace->tag_get_data(idtag, &s, 1, &tmp);
// ids.push_back(tmp);
// }
// }
//}
ErrorCode WriteHDF5Parallel::pack_set( Range::const_iterator it, unsigned long* buffer, size_t buffer_size )
{
ErrorCode rval;
const EntityHandle* ptr;
int len;
unsigned char flags;
std::vector< wid_t > tmp;
size_t newlen;
// Buffer must always contain at least flags and desired sizes
assert( buffer_size >= 4 );
buffer_size -= 4;
Range::const_iterator nd = it;
++nd;
rval = writeUtil->get_entity_list_pointers( it, nd, &ptr, WriteUtilIface::CONTENTS, &len, &flags );
CHECK_MB( rval );
// Tag mattag;
// iFace->tag_get_handle(MATERIAL_SET_TAG_NAME, 1, MB_TYPE_INTEGER, mattag);
// int block;
// if (MB_SUCCESS != iFace->tag_get_data(mattag, &*it, 1, &block))
// block = 0;
//
// if (block) {
// std::vector<int> ids;
// get_global_ids(iFace, ptr, len, flags, ids);
//}
if( len && !( flags & MESHSET_ORDERED ) )
{
tmp.clear();
bool blocked = false;
assert( ( 0 == len % 2 ) );
rval = range_to_blocked_list( ptr, len / 2, tmp, blocked );
CHECK_MB( rval );
if( blocked ) flags |= mhdf_SET_RANGE_BIT;
}
else
{
tmp.resize( len );
rval = vector_to_id_list( ptr, len, &tmp[0], newlen, true );
CHECK_MB( rval );
tmp.resize( newlen );
}
buffer[0] = flags;
buffer[1] = tmp.size();
if( tmp.size() <= buffer_size ) std::copy( tmp.begin(), tmp.end(), buffer + 4 );
rval = writeUtil->get_entity_list_pointers( it, nd, &ptr, WriteUtilIface::CHILDREN, &len );
CHECK_MB( rval );
tmp.resize( len );
rval = vector_to_id_list( ptr, len, &tmp[0], newlen, true );<--- rval is assigned
tmp.resize( newlen );
buffer[2] = tmp.size();
if( tmp.size() <= buffer_size - buffer[1] ) std::copy( tmp.begin(), tmp.end(), buffer + 4 + buffer[1] );
rval = writeUtil->get_entity_list_pointers( it, nd, &ptr, WriteUtilIface::PARENTS, &len );<--- rval is overwritten
CHECK_MB( rval );
tmp.resize( len );
rval = vector_to_id_list( ptr, len, &tmp[0], newlen, true );<--- Variable 'rval' is assigned a value that is never used.
tmp.resize( newlen );
buffer[3] = tmp.size();
if( tmp.size() <= buffer_size - buffer[1] - buffer[2] )
std::copy( tmp.begin(), tmp.end(), buffer + 4 + buffer[1] + buffer[2] );
return MB_SUCCESS;
}
template < typename TYPE >
static void convert_to_ranged_ids( const TYPE* buffer, size_t len, std::vector< WriteHDF5::wid_t >& result )
{
if( !len )
{
result.clear();
return;
}
result.resize( len * 2 );
Range tmp;
for( size_t i = 0; i < len; i++ )
tmp.insert( (EntityHandle)buffer[i] );
result.resize( tmp.psize() * 2 );
int j = 0;
for( Range::const_pair_iterator pit = tmp.const_pair_begin(); pit != tmp.const_pair_end(); ++pit, j++ )
{
result[2 * j] = pit->first;
result[2 * j + 1] = pit->second - pit->first + 1;
}
}
static void merge_ranged_ids( const unsigned long* range_list, size_t len, std::vector< WriteHDF5::wid_t >& result )
{
typedef WriteHDF5::wid_t wid_t;
assert( 0 == len % 2 );
assert( 0 == result.size() % 2 );
STATIC_ASSERT( sizeof( std::pair< wid_t, wid_t > ) == 2 * sizeof( wid_t ) );
result.insert( result.end(), range_list, range_list + len );
size_t plen = result.size() / 2;
Range tmp;
for( size_t i = 0; i < plen; i++ )
{
EntityHandle starth = (EntityHandle)result[2 * i];
EntityHandle endh = (EntityHandle)result[2 * i] + (wid_t)result[2 * i + 1] - 1; // id + count - 1
tmp.insert( starth, endh );
}
// Now convert back to std::vector<WriteHDF5::wid_t>, compressed range format
result.resize( tmp.psize() * 2 );
int j = 0;
for( Range::const_pair_iterator pit = tmp.const_pair_begin(); pit != tmp.const_pair_end(); ++pit, j++ )
{
result[2 * j] = pit->first;
result[2 * j + 1] = pit->second - pit->first + 1;
}
}
static void merge_vector_ids( const unsigned long* list, size_t len, std::vector< WriteHDF5::wid_t >& result )
{
result.insert( result.end(), list, list + len );
}
ErrorCode WriteHDF5Parallel::unpack_set( EntityHandle set, const unsigned long* buffer, size_t buffer_size )
{
// Use local variables for readability
assert( buffer_size >= 4 );
assert( buffer[1] + buffer[2] + buffer[3] <= buffer_size );
const unsigned long flags = buffer[0];
unsigned long num_content = buffer[1];
const unsigned long num_child = buffer[2];
const unsigned long num_parent = buffer[3];
const unsigned long* contents = buffer + 4;
const unsigned long* children = contents + num_content;
const unsigned long* parents = children + num_child;
SpecialSetData* data = find_set_data( set );
assert( NULL != data );
if( NULL == data ) return MB_FAILURE;
// Tag mattag;
// iFace->tag_get_handle(MATERIAL_SET_TAG_NAME, 1, MB_TYPE_INTEGER, mattag);
// int block;
// if (MB_SUCCESS != iFace->tag_get_data(mattag, &set, 1, &block))
// block = 0;
// If either the current data or the new data is in ranged format,
// then change the other to ranged format if it isn't already
// in both cases when they differ, the data will end up "compressed range"
std::vector< wid_t > tmp;
if( ( flags & mhdf_SET_RANGE_BIT ) != ( data->setFlags & mhdf_SET_RANGE_BIT ) )
{
if( flags & mhdf_SET_RANGE_BIT )
{
tmp = data->contentIds;
convert_to_ranged_ids( &tmp[0], tmp.size(), data->contentIds );
data->setFlags |= mhdf_SET_RANGE_BIT;
}
else
{
tmp.clear();
convert_to_ranged_ids( contents, num_content, tmp );
num_content = tmp.size();
if( sizeof( wid_t ) < sizeof( long ) )
{
size_t old_size = tmp.size();
tmp.resize( sizeof( long ) * old_size / sizeof( wid_t ) );
unsigned long* array = reinterpret_cast< unsigned long* >( &tmp[0] );
for( long i = ( (long)old_size ) - 1; i >= 0; --i )
array[i] = tmp[i];
contents = array;<--- contents is assigned
}
else if( sizeof( wid_t ) > sizeof( long ) )
{
unsigned long* array = reinterpret_cast< unsigned long* >( &tmp[0] );
std::copy( tmp.begin(), tmp.end(), array );
}
contents = reinterpret_cast< unsigned long* >( &tmp[0] );<--- contents is overwritten
}
}
if( data->setFlags & mhdf_SET_RANGE_BIT )
merge_ranged_ids( contents, num_content, data->contentIds );
else
merge_vector_ids( contents, num_content, data->contentIds );
merge_vector_ids( children, num_child, data->childIds );
merge_vector_ids( parents, num_parent, data->parentIds );
return MB_SUCCESS;
}
ErrorCode WriteHDF5Parallel::communicate_shared_set_data( const Range& owned, const Range& remote )
{
ErrorCode rval;
int mperr;
const unsigned rank = myPcomm->proc_config().proc_rank();
const MPI_Comm comm = myPcomm->proc_config().proc_comm();
dbgOut.tprintf( 1, "COMMUNICATING SHARED SET DATA (%lu owned & %lu remote)\n", (unsigned long)owned.size(),
(unsigned long)remote.size() );
// Calculate the total number of messages to be in transit (send and receive)
size_t nummess = 0;
std::vector< unsigned > procs;
;
Range shared( owned );
shared.merge( remote );
for( Range::iterator i = shared.begin(); i != shared.end(); ++i )
{
procs.clear();
rval = myPcomm->get_entityset_procs( *i, procs );
CHECK_MB( rval );
nummess += procs.size();
}
// Choose a receive buffer size. We need 4*sizeof(long) minimum,
// but that is almost useless so use 16*sizeof(long) as the minimum
// instead. Choose an upper limit such that we don't exceed 32 MB
// of allocated memory (unless we absolutely must to meet the minimum.)
// Also, don't initially choose buffers larger than 128*sizeof(long).
const size_t MAX_BUFFER_MEM = 32 * 1024 * 1024 / sizeof( long );
// const size_t INIT_BUFFER_SIZE = 128;
const size_t INIT_BUFFER_SIZE = 1024;
const size_t MIN_BUFFER_SIZE = 16;
size_t init_buff_size = INIT_BUFFER_SIZE;
if( init_buff_size * nummess > MAX_BUFFER_MEM ) init_buff_size = MAX_BUFFER_MEM / nummess;
if( init_buff_size < MIN_BUFFER_SIZE ) init_buff_size = MIN_BUFFER_SIZE;
dbgOut.printf( 2, "Using buffer size of %lu for an expected message count of %lu\n", (unsigned long)init_buff_size,
(unsigned long)nummess );
// Count number of recvs
size_t numrecv = 0;
for( Range::iterator i = owned.begin(); i != owned.end(); ++i )
{
procs.clear();
rval = myPcomm->get_entityset_procs( *i, procs );
CHECK_MB( rval );
numrecv += procs.size();
if( std::find( procs.begin(), procs.end(), rank ) != procs.end() ) --numrecv;
}
// Post receive buffers for all owned sets for all sharing procs
std::vector< MPI_Request > recv_req( numrecv, MPI_REQUEST_NULL );
std::vector< MPI_Request > lrecv_req( numrecv, MPI_REQUEST_NULL );
std::vector< std::vector< unsigned long > > recv_buf( numrecv, std::vector< unsigned long >( init_buff_size ) );
int idx = 0;
for( Range::iterator i = owned.begin(); i != owned.end(); ++i )
{
procs.clear();
rval = myPcomm->get_entityset_procs( *i, procs );
CHECK_MB( rval );
for( size_t j = 0; j < procs.size(); ++j )
{
if( procs[j] == rank ) continue;
int tag = ID_FROM_HANDLE( *i );
if( *i != CREATE_HANDLE( MBENTITYSET, tag ) )
{
#ifndef NDEBUG
abort();
#endif
CHECK_MB( MB_FAILURE );
}
dbgOut.printf( 5, "Posting buffer to receive set %d from proc %u\n", tag, procs[j] );
mperr =
MPI_Irecv( &recv_buf[idx][0], init_buff_size, MPI_UNSIGNED_LONG, procs[j], tag, comm, &recv_req[idx] );
CHECK_MPI( mperr );
++idx;
}
}
assert( (size_t)idx == numrecv );
// Now send set data for all remote sets that I know about
std::vector< MPI_Request > send_req( remote.size() );
std::vector< std::vector< unsigned long > > send_buf( remote.size() );
idx = 0;
for( Range::iterator i = remote.begin(); i != remote.end(); ++i, ++idx )
{
send_buf[idx].resize( init_buff_size );
rval = pack_set( i, &send_buf[idx][0], init_buff_size );
CHECK_MB( rval );
EntityHandle remote_handle;
unsigned owner;
rval = myPcomm->get_entityset_owner( *i, owner, &remote_handle );
CHECK_MB( rval );
int tag = ID_FROM_HANDLE( remote_handle );
assert( remote_handle == CREATE_HANDLE( MBENTITYSET, tag ) );
dbgOut.printf( 5, "Sending %lu values for set %d to proc %u\n",
send_buf[idx][1] + send_buf[idx][2] + send_buf[idx][3] + 4, tag, owner );
mperr = MPI_Isend( &send_buf[idx][0], init_buff_size, MPI_UNSIGNED_LONG, owner, tag, comm, &send_req[idx] );
CHECK_MPI( mperr );
}
// Tag mattag;
// iFace->tag_get_handle(MATERIAL_SET_TAG_NAME, 1, MB_TYPE_INTEGER, mattag);
// Now initialize local data for managing contents of owned, shared sets
assert( specialSets.empty() );
specialSets.clear();
specialSets.reserve( owned.size() );
for( Range::iterator i = owned.begin(); i != owned.end(); ++i )
{
// int block;
// if (MB_SUCCESS != iFace->tag_get_data(mattag, &*i, 1, &block))
// block = 0;
// std::vector<int> ids;
SpecialSetData data;
data.setHandle = *i;
rval = iFace->get_meshset_options( *i, data.setFlags );
CHECK_MB( rval );
specialSets.push_back( data );
std::vector< EntityHandle > list;
if( data.setFlags & MESHSET_ORDERED )
{
list.clear();
rval = iFace->get_entities_by_handle( *i, list );
CHECK_MB( rval );
rval = vector_to_id_list( list, specialSets.back().contentIds, true );
CHECK_MB( rval );
// if (block)
// get_global_ids(iFace, &list[0], list.size(), MESHSET_ORDERED, ids);
}
else
{
Range range;
rval = iFace->get_entities_by_handle( *i, range );
CHECK_MB( rval );
bool ranged;
rval = range_to_blocked_list( range, specialSets.back().contentIds, ranged );<--- rval is assigned
if( ranged ) specialSets.back().setFlags |= mhdf_SET_RANGE_BIT;
// if (block) {
// std::vector<EntityHandle> tmp;
// for (Range::const_pair_iterator pi = range.const_pair_begin(); pi !=
// range.const_pair_end(); ++pi) {
// tmp.push_back(pi->first);
// tmp.push_back(pi->second);
// }
// get_global_ids(iFace, &tmp[0], tmp.size(), ranged ? 0 : MESHSET_ORDERED, ids);
//}
}
list.clear();
rval = iFace->get_parent_meshsets( *i, list );<--- rval is overwritten
CHECK_MB( rval );
rval = vector_to_id_list( list, specialSets.back().parentIds, true );
CHECK_MB( rval );
rval = iFace->get_child_meshsets( *i, list );
CHECK_MB( rval );
rval = vector_to_id_list( list, specialSets.back().childIds, true );
CHECK_MB( rval );
}
// Process received buffers, repost larger buffers where necessary
size_t remaining = numrecv;
numrecv = 0;
while( remaining-- )
{
std::vector< unsigned long > dead;
MPI_Status status;
mperr = MPI_Waitany( recv_req.size(), &recv_req[0], &idx, &status );
CHECK_MPI( mperr );
EntityHandle handle = CREATE_HANDLE( MBENTITYSET, status.MPI_TAG );
std::vector< unsigned long >& buff = recv_buf[idx];
size_t size = buff[1] + buff[2] + buff[3] + 4;
dbgOut.printf( 5, "Received %lu values for set %d from proc %d\n", (unsigned long)size, status.MPI_TAG,
status.MPI_SOURCE );
if( size <= init_buff_size )
{
rval = unpack_set( handle, &buff[0], init_buff_size );
CHECK_MB( rval );
dead.swap( buff ); // Release memory
}
else
{
// Data was too big for init_buff_size
// repost with larger buffer
buff.resize( size );
dbgOut.printf( 5, "Re-Posting buffer to receive set %d from proc %d with size %lu\n", status.MPI_TAG,
status.MPI_SOURCE, (unsigned long)size );
mperr = MPI_Irecv( &buff[0], size, MPI_UNSIGNED_LONG, status.MPI_SOURCE, status.MPI_TAG, comm,
&lrecv_req[idx] );
CHECK_MPI( mperr );
++numrecv;
}
recv_req[idx] = MPI_REQUEST_NULL;
}
// Wait for sends to complete
MPI_Waitall( send_req.size(), &send_req[0], MPI_STATUSES_IGNORE );
// Re-send sets that didn't fit initial buffer size
idx = 0;
for( Range::iterator i = remote.begin(); i != remote.end(); ++i, ++idx )
{
std::vector< unsigned long >& buff = send_buf[idx];
size_t size = buff[1] + buff[2] + buff[3] + 4;
if( size <= init_buff_size ) continue;
buff.resize( size );
rval = pack_set( i, &buff[0], size );
CHECK_MB( rval );
EntityHandle remote_handle;
unsigned owner;
rval = myPcomm->get_entityset_owner( *i, owner, &remote_handle );
CHECK_MB( rval );
int tag = ID_FROM_HANDLE( remote_handle );
assert( remote_handle == CREATE_HANDLE( MBENTITYSET, tag ) );
dbgOut.printf( 5, "Sending %lu values for set %d to proc %u\n", (unsigned long)size, tag, owner );
mperr = MPI_Isend( &buff[0], size, MPI_UNSIGNED_LONG, owner, tag, comm, &send_req[idx] );
CHECK_MPI( mperr );
}
// Process received buffers
remaining = numrecv;
while( remaining-- )
{
std::vector< unsigned long > dead;
MPI_Status status;
mperr = MPI_Waitany( lrecv_req.size(), &lrecv_req[0], &idx, &status );
CHECK_MPI( mperr );
EntityHandle handle = CREATE_HANDLE( MBENTITYSET, status.MPI_TAG );
std::vector< unsigned long >& buff = recv_buf[idx];
dbgOut.printf( 5, "Received %lu values for set %d from proc %d\n", 4 + buff[1] + buff[2] + buff[3],
status.MPI_TAG, status.MPI_SOURCE );
rval = unpack_set( handle, &buff[0], buff.size() );
CHECK_MB( rval );
dead.swap( buff ); // Release memory
lrecv_req[idx] = MPI_REQUEST_NULL;
}
// Wait for sends to complete
MPI_Waitall( send_req.size(), &send_req[0], MPI_STATUSES_IGNORE );
return MB_SUCCESS;
}
ErrorCode WriteHDF5Parallel::create_meshset_tables( double* times )
{
Range::const_iterator riter;
const unsigned rank = myPcomm->proc_config().proc_rank();
START_SERIAL;
print_type_sets( iFace, &dbgOut, setSet.range );
END_SERIAL;
CpuTimer timer;
// Remove remote sets from setSets
Range shared, owned, remote;
ErrorCode rval = myPcomm->get_shared_sets( shared );
CHECK_MB( rval );
shared = intersect( shared, setSet.range );
rval = myPcomm->get_owned_sets( rank, owned );
CHECK_MB( rval );
owned = intersect( owned, setSet.range );
remote = subtract( shared, owned );
setSet.range = subtract( setSet.range, remote );
// Create set meta table
struct SetDescCreator : public DataSetCreator
{
ErrorCode operator()( WriteHDF5* writer, long size, const ExportSet*, long& start_id ) const
{
return writer->create_set_meta( size, start_id );
}
};
long count = setSet.range.size();
rval = create_dataset( 1, &count, &setSet.offset, &setSet.max_num_ents, &setSet.total_num_ents, SetDescCreator(),
NULL, &setSet.first_id );
CHECK_MB( rval );
writeSets = setSet.max_num_ents > 0;
rval = assign_ids( setSet.range, setSet.first_id + setSet.offset );
CHECK_MB( rval );
if( times ) times[SET_OFFSET_TIME] = timer.time_elapsed();
// Exchange file IDS for sets between all procs
rval = communicate_shared_set_ids( owned, remote );
CHECK_MB( rval );
if( times ) times[SHARED_SET_IDS] = timer.time_elapsed();
// Communicate remote set contents, children, etc.
rval = communicate_shared_set_data( owned, remote );
CHECK_MB( rval );
if( times ) times[SHARED_SET_CONTENTS] = timer.time_elapsed();
// Communicate counts for owned sets
long data_counts[3]; // { #contents, #children, #parents }
rval = count_set_size( setSet.range, data_counts[0], data_counts[1], data_counts[2] );
CHECK_MB( rval );
if( times ) times[SET_OFFSET_TIME] += timer.time_elapsed();
long offsets[3], max_counts[3], totals[3];
rval = create_dataset( 3, data_counts, offsets, max_counts, totals );
CHECK_MB( rval );
// Create the datasets
if( 0 == myPcomm->proc_config().proc_rank() )
{
rval = create_set_tables( totals[0], totals[1], totals[2] );
CHECK_MB( rval );
}
// Store communicated global data
setContentsOffset = offsets[0];
setChildrenOffset = offsets[1];
setParentsOffset = offsets[2];
maxNumSetContents = max_counts[0];
maxNumSetChildren = max_counts[1];
maxNumSetParents = max_counts[2];
writeSetContents = totals[0] > 0;
writeSetChildren = totals[1] > 0;
writeSetParents = totals[2] > 0;
dbgOut.printf( 2, "set contents: %ld local, %ld global, offset = %ld\n", data_counts[0], totals[0], offsets[0] );
dbgOut.printf( 2, "set children: %ld local, %ld global, offset = %ld\n", data_counts[1], totals[1], offsets[1] );
dbgOut.printf( 2, "set parents: %ld local, %ld global, offset = %ld\n", data_counts[2], totals[2], offsets[2] );
return MB_SUCCESS;
}
void WriteHDF5Parallel::remove_remote_entities( EntityHandle relative, Range& range )
{
Range result;
result.merge( intersect( range, nodeSet.range ) );
result.merge( intersect( range, setSet.range ) );
for( std::list< ExportSet >::iterator eiter = exportList.begin(); eiter != exportList.end(); ++eiter )
result.merge( intersect( range, eiter->range ) );
// result.merge(intersect(range, myParallelSets));
Range sets;
int junk;
sets.merge( Range::lower_bound( range.begin(), range.end(), CREATE_HANDLE( MBENTITYSET, 0, junk ) ), range.end() );
remove_remote_sets( relative, sets );
result.merge( sets );
range.swap( result );
}
void WriteHDF5Parallel::remove_remote_sets( EntityHandle /* relative */, Range& range )
{
Range result( intersect( range, setSet.range ) );
// Store the non-intersecting entities separately if needed
// Range remaining(subtract(range, result));
range.swap( result );
}
void WriteHDF5Parallel::remove_remote_entities( EntityHandle relative, std::vector< EntityHandle >& vect )
{
Range intrsct;
for( std::vector< EntityHandle >::const_iterator iter = vect.begin(); iter != vect.end(); ++iter )
intrsct.insert( *iter );
remove_remote_entities( relative, intrsct );
unsigned int read, write;
for( read = write = 0; read < vect.size(); ++read )
{
if( intrsct.find( vect[read] ) != intrsct.end() )
{
if( read != write ) vect[write] = vect[read];
++write;
}
}
if( write != vect.size() ) vect.resize( write );
}
void WriteHDF5Parallel::remove_remote_sets( EntityHandle relative, std::vector< EntityHandle >& vect )
{
Range intrsct;
for( std::vector< EntityHandle >::const_iterator iter = vect.begin(); iter != vect.end(); ++iter )
intrsct.insert( *iter );
remove_remote_sets( relative, intrsct );
unsigned int read, write;
for( read = write = 0; read < vect.size(); ++read )
{
if( intrsct.find( vect[read] ) != intrsct.end() )
{
if( read != write ) vect[write] = vect[read];
++write;
}
}
if( write != vect.size() ) vect.resize( write );
}
ErrorCode WriteHDF5Parallel::exchange_file_ids( const Range& nonlocal )
{
ErrorCode rval;
// For each entity owned on the interface, write its file id to
// a tag. The sets of entities to be written should already contain
// only owned entities so by intersecting with them we not only
// filter by entities to be written, but also restrict to entities
// owned by the proc
// Get list of interface entities
Range imesh, tmp;
for( std::list< ExportSet >::reverse_iterator i = exportList.rbegin(); i != exportList.rend(); ++i )
{
tmp.clear();
rval = myPcomm->filter_pstatus( i->range, PSTATUS_SHARED, PSTATUS_AND, -1, &tmp );
if( MB_SUCCESS != rval ) return error( rval );
imesh.merge( tmp );
}
tmp.clear();
rval = myPcomm->filter_pstatus( nodeSet.range, PSTATUS_SHARED, PSTATUS_AND, -1, &tmp );
if( MB_SUCCESS != rval ) return error( rval );
imesh.merge( tmp );
// Create tag to store file IDs
EntityHandle default_val = 0;
Tag file_id_tag = 0;
rval = iFace->tag_get_handle( "__hdf5_ll_fileid", 1, MB_TYPE_HANDLE, file_id_tag, MB_TAG_DENSE | MB_TAG_CREAT,
&default_val );
if( MB_SUCCESS != rval ) return error( rval );
// Copy file IDs into tag
std::vector< EntityHandle > file_id_vect( imesh.size() );
Range::const_iterator i;
std::vector< EntityHandle >::iterator j = file_id_vect.begin();
for( i = imesh.begin(); i != imesh.end(); ++i, ++j )
{
*j = idMap.find( *i );
if( !*j )
{
iFace->tag_delete( file_id_tag );
return error( MB_FAILURE );
}
}
rval = iFace->tag_set_data( file_id_tag, imesh, &file_id_vect[0] );
if( MB_SUCCESS != rval )
{
iFace->tag_delete( file_id_tag );
return error( rval );
}
// Do communication
rval = myPcomm->exchange_tags( file_id_tag, imesh );
if( MB_SUCCESS != rval )
{
iFace->tag_delete( file_id_tag );
return error( rval );
}
// Copy file IDs from tag into idMap for remote entities
file_id_vect.resize( nonlocal.size() );
rval = iFace->tag_get_data( file_id_tag, nonlocal, &file_id_vect[0] );
if( MB_SUCCESS != rval )
{
iFace->tag_delete( file_id_tag );
return error( rval );
}
j = file_id_vect.begin();
for( i = nonlocal.begin(); i != nonlocal.end(); ++i, ++j )
{
if( *j == 0 )
{
int owner = -1;
myPcomm->get_owner( *i, owner );
const char* name = CN::EntityTypeName( TYPE_FROM_HANDLE( *i ) );
int id = ID_FROM_HANDLE( *i );
MB_SET_ERR_CONT( "Process " << myPcomm->proc_config().proc_rank()
<< " did not receive valid id handle for shared " << name << " " << id
<< " owned by process " << owner );
dbgOut.printf( 1,
"Did not receive valid remote id for "
"shared %s %d owned by process %d",
name, id, owner );
iFace->tag_delete( file_id_tag );
return error( MB_FAILURE );
}
else
{
if( !idMap.insert( *i, *j, 1 ).second )
{
iFace->tag_delete( file_id_tag );
return error( MB_FAILURE );
}
}
}
#ifndef NDEBUG
// Check that writer is correct with regards to which entities
// that it owns by verifying that the file ids that we thought
// we were sending where not received instead
file_id_vect.resize( imesh.size() );
rval = iFace->tag_get_data( file_id_tag, imesh, &file_id_vect[0] );
if( MB_SUCCESS != rval )
{
iFace->tag_delete( file_id_tag );
return error( rval );
}
int invalid_count = 0;
j = file_id_vect.begin();
for( i = imesh.begin(); i != imesh.end(); ++i, ++j )
{
EntityHandle h = idMap.find( *i );
if( *j != h )
{
++invalid_count;
dbgOut.printf( 1, "Conflicting ownership for %s %ld\n", CN::EntityTypeName( TYPE_FROM_HANDLE( *i ) ),
(long)ID_FROM_HANDLE( *i ) );
}
}
if( invalid_count )
{
iFace->tag_delete( file_id_tag );
MB_SET_ERR( MB_FAILURE, invalid_count << " entities with conflicting ownership found by process "
<< myPcomm->proc_config().proc_rank()
<< ". This will result in duplicate entities written to file" );
}
#endif
return iFace->tag_delete( file_id_tag );
}
void WriteHDF5Parallel::print_times( const double* times ) const
{
if( !myPcomm )
{
WriteHDF5::print_times( times );
}
else
{
double recv[NUM_TIMES];
MPI_Reduce( (void*)times, recv, NUM_TIMES, MPI_DOUBLE, MPI_MAX, 0, myPcomm->proc_config().proc_comm() );
if( 0 == myPcomm->proc_config().proc_rank() ) WriteHDF5::print_times( recv );
}
}
} // namespace moab
|