1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218 | /**\file AdaptiveKDTree.cpp
*/
#include "moab/AdaptiveKDTree.hpp"
#include "moab/Interface.hpp"
#include "moab/GeomUtil.hpp"
#include "moab/Range.hpp"
#include "moab/ElemEvaluator.hpp"
#include "moab/CpuTimer.hpp"
#include "Internals.hpp"
#include "moab/Util.hpp"
#include <cmath>
#include <cassert>
#include <algorithm>
#include <limits>
#include <iostream>
#include <cstdio>
namespace moab
{
const char* AdaptiveKDTree::treeName = "AKDTree";
#define MB_AD_KD_TREE_DEFAULT_TAG_NAME
// If defined, use single tag for both axis and location of split plane
#define MB_AD_KD_TREE_USE_SINGLE_TAG
// No effect if MB_AD_KD_TREE_USE_SINGLE_TAG is not defined.
// If defined, store plane axis as double so tag has consistent
// type (doubles for both location and axis). If not defined,
// store struct Plane as opaque.
#define MB_AD_KD_TREE_USE_TWO_DOUBLE_TAG
AdaptiveKDTree::AdaptiveKDTree( Interface* iface )
: Tree( iface ), planeTag( 0 ), axisTag( 0 ), splitsPerDir( 3 ), planeSet( SUBDIVISION_SNAP ), spherical( false ),
radius( 1.0 )
{
boxTagName = treeName;
ErrorCode rval = init();
if( MB_SUCCESS != rval ) throw rval;
}
AdaptiveKDTree::AdaptiveKDTree( Interface* iface,
const Range& entities,
EntityHandle* tree_root_set,
FileOptions* opts )
: Tree( iface ), planeTag( 0 ), axisTag( 0 ), splitsPerDir( 3 ), planeSet( SUBDIVISION_SNAP ), spherical( false ),
radius( 1.0 )
{
boxTagName = treeName;
ErrorCode rval;
if( opts )
{
rval = parse_options( *opts );
if( MB_SUCCESS != rval ) throw rval;
}
rval = init();
if( MB_SUCCESS != rval ) throw rval;
rval = build_tree( entities, tree_root_set, opts );
if( MB_SUCCESS != rval ) throw rval;
}
AdaptiveKDTree::~AdaptiveKDTree()
{
if( !cleanUp ) return;
if( myRoot )
{
reset_tree();
myRoot = 0;
}
}
ErrorCode AdaptiveKDTree::build_tree( const Range& entities, EntityHandle* tree_root_set, FileOptions* options )
{
ErrorCode rval;
CpuTimer cp;
if( options )
{
rval = parse_options( *options );
if( MB_SUCCESS != rval ) return rval;
if( !options->all_seen() ) return MB_FAILURE;
}
// calculate bounding box of elements
BoundBox box;
rval = box.update( *moab(), entities, spherical, radius );
if( MB_SUCCESS != rval ) return rval;
// create tree root
EntityHandle tmp_root;
if( !tree_root_set ) tree_root_set = &tmp_root;
rval = create_root( box.bMin.array(), box.bMax.array(), *tree_root_set );
if( MB_SUCCESS != rval ) return rval;
rval = moab()->add_entities( *tree_root_set, entities );
if( MB_SUCCESS != rval ) return rval;
AdaptiveKDTreeIter iter;
iter.initialize( this, *tree_root_set, box.bMin.array(), box.bMax.array(), AdaptiveKDTreeIter::LEFT );
std::vector< double > tmp_data;
std::vector< EntityHandle > tmp_data2;
for( ;; )
{
int pcount;
rval = moab()->get_number_entities_by_handle( iter.handle(), pcount );
if( MB_SUCCESS != rval ) break;
const size_t p_count = pcount;
Range best_left, best_right, best_both;
Plane best_plane = { HUGE_VAL, -1 };
if( (int)p_count > maxPerLeaf && (int)iter.depth() < maxDepth )
{
switch( planeSet )
{
case AdaptiveKDTree::SUBDIVISION:
rval = best_subdivision_plane( splitsPerDir, iter, best_left, best_right, best_both, best_plane,
minWidth );
break;
case AdaptiveKDTree::SUBDIVISION_SNAP:
rval = best_subdivision_snap_plane( splitsPerDir, iter, best_left, best_right, best_both,
best_plane, tmp_data, minWidth );
break;
case AdaptiveKDTree::VERTEX_MEDIAN:
rval = best_vertex_median_plane( splitsPerDir, iter, best_left, best_right, best_both, best_plane,
tmp_data, minWidth );
break;
case AdaptiveKDTree::VERTEX_SAMPLE:
rval = best_vertex_sample_plane( splitsPerDir, iter, best_left, best_right, best_both, best_plane,
tmp_data, tmp_data2, minWidth );
break;
default:
rval = MB_FAILURE;
}
if( MB_SUCCESS != rval ) return rval;
}
if( best_plane.norm >= 0 )
{
best_left.merge( best_both );
best_right.merge( best_both );
rval = split_leaf( iter, best_plane, best_left, best_right );
if( MB_SUCCESS != rval ) return rval;
}
else
{
rval = iter.step();
if( MB_ENTITY_NOT_FOUND == rval )
{
rval = treeStats.compute_stats( mbImpl, myRoot );
treeStats.initTime = cp.time_elapsed();
return rval; // at end
}
else if( MB_SUCCESS != rval )
break;
}
}
reset_tree();
treeStats.reset();
return rval;
}
ErrorCode AdaptiveKDTree::parse_options( FileOptions& opts )
{
ErrorCode rval = parse_common_options( opts );
if( MB_SUCCESS != rval ) return rval;
// SPLITS_PER_DIR: number of candidate splits considered per direction; default = 3
int tmp_int;
rval = opts.get_int_option( "SPLITS_PER_DIR", tmp_int );
if( MB_SUCCESS == rval ) splitsPerDir = tmp_int;
// PLANE_SET: method used to decide split planes; see CandidatePlaneSet enum (below)
// for possible values; default = 1 (SUBDIVISION_SNAP)
rval = opts.get_int_option( "PLANE_SET", tmp_int );
if( MB_SUCCESS == rval && ( tmp_int < SUBDIVISION || tmp_int > VERTEX_SAMPLE ) )
return MB_FAILURE;
else if( MB_ENTITY_NOT_FOUND == rval )
planeSet = SUBDIVISION;
else
planeSet = (CandidatePlaneSet)( tmp_int );
rval = opts.get_toggle_option( "SPHERICAL", false, spherical );
if( MB_SUCCESS != rval ) spherical = false;
double tmp = 1.0;
rval = opts.get_real_option( "RADIUS", tmp );
if( MB_SUCCESS != rval )
radius = 1.0;
else
radius = tmp;
return MB_SUCCESS;
}
ErrorCode AdaptiveKDTree::make_tag( Interface* iface,
std::string name,
TagType storage,
DataType type,
int count,
void* default_val,
Tag& tag_handle,
std::vector< Tag >& created_tags )
{
ErrorCode rval =
iface->tag_get_handle( name.c_str(), count, type, tag_handle, MB_TAG_CREAT | storage, default_val );
if( MB_SUCCESS == rval )
{
if( std::find( created_tags.begin(), created_tags.end(), tag_handle ) == created_tags.end() )
created_tags.push_back( tag_handle );
}
else
{
while( !created_tags.empty() )
{
iface->tag_delete( created_tags.back() );
created_tags.pop_back();
}
planeTag = axisTag = (Tag)-1;
}
return rval;
}
ErrorCode AdaptiveKDTree::init()
{
std::vector< Tag > ctl;
#ifndef MB_AD_KD_TREE_USE_SINGLE_TAG
// create two tags, one for axis direction and one for axis coordinate
std::string n1( treeName ), n2( treeName );
n1 += "_coord";
n2 += "_norm";
ErrorCode rval = make_tag( moab(), n1, MB_TAG_DENSE, MB_TYPE_DOUBLE, 1, 0, planeTag, ctl );
if( MB_SUCCESS != rval ) return rval;
rval = make_tag( moab(), n2, MB_TAG_DENSE, MB_TYPE_INT, 1, 0, axisTag, ctl );
if( MB_SUCCESS != rval ) return rval;
#elif defined( MB_AD_KD_TREE_USE_TWO_DOUBLE_TAG )
// create tag to hold two doubles, one for location and one for axis
std::string double_tag_name = std::string( treeName ) + std::string( "_coord_norm" );
ErrorCode rval = make_tag( moab(), double_tag_name, MB_TAG_DENSE, MB_TYPE_DOUBLE, 2, 0, planeTag, ctl );
if( MB_SUCCESS != rval ) return rval;
#else
// create opaque tag to hold struct Plane
ErrorCode rval = make_tag( moab(), tagname, MB_TAG_DENSE, MB_TYPE_OPAQUE, sizeof( Plane ), 0, planeTag, ctl );
if( MB_SUCCESS != rval ) return rval;
#ifdef MOAB_HAVE_HDF5
// create a mesh tag holding the HDF5 type for a struct Plane
Tag type_tag;
std::string type_tag_name = "__hdf5_tag_type_";
type_tag_name += boxTagName;
rval = make_tag( moab(), type_tag_name, MB_TAG_MESH, MB_TYPE_OPAQUE, sizeof( hid_t ), 0, type_tag, ctl );
if( MB_SUCCESS != rval ) return rval;
// create HDF5 type object describing struct Plane
Plane p;
hid_t handle = H5Tcreate( H5T_COMPOUND, sizeof( Plane ) );
H5Tinsert( handle, "coord", &( p.coord ) - &p, H5T_NATIVE_DOUBLE );
H5Tinsert( handle, "norm", &( p.axis ) - &p, H5T_NATIVE_INT );
EntityHandle root = 0;
rval = mbImpl->tag_set_data( type_tag, &root, 1, &handle );
if( MB_SUCCESS != rval ) return rval;
#endif
#endif
return rval;
}
ErrorCode AdaptiveKDTree::get_split_plane( EntityHandle entity, Plane& plane )
{
#ifndef MB_AD_KD_TREE_USE_SINGLE_TAG
ErrorCode r1, r2;
r1 = moab()->tag_get_data( planeTag, &entity, 1, &plane.coord );
r2 = moab()->tag_get_data( axisTag, &entity, 1, &plane.norm );
return MB_SUCCESS == r1 ? r2 : r1;
#elif defined( MB_AD_KD_TREE_USE_TWO_DOUBLE_TAG )
double values[2];
ErrorCode rval = moab()->tag_get_data( planeTag, &entity, 1, values );
plane.coord = values[0];
plane.norm = (int)values[1];
return rval;
#else
return moab()->tag_get_data( planeTag, &entity, 1, &plane );
#endif
}
ErrorCode AdaptiveKDTree::set_split_plane( EntityHandle entity, const Plane& plane )
{
#ifndef MB_AD_KD_TREE_USE_SINGLE_TAG
ErrorCode r1, r2;
r1 = moab()->tag_set_data( planeTag, &entity, 1, &plane.coord );
r2 = moab()->tag_set_data( axisTag, &entity, 1, &plane.norm );
return MB_SUCCESS == r1 ? r2 : r1;
#elif defined( MB_AD_KD_TREE_USE_TWO_DOUBLE_TAG )
double values[2] = { plane.coord, static_cast< double >( plane.norm ) };
return moab()->tag_set_data( planeTag, &entity, 1, values );
#else
return moab()->tag_set_data( planeTag, &entity, 1, &plane );
#endif
}
ErrorCode AdaptiveKDTree::get_tree_iterator( EntityHandle root, AdaptiveKDTreeIter& iter )
{
double box[6];
ErrorCode rval = moab()->tag_get_data( boxTag, &root, 1, box );
if( MB_SUCCESS != rval ) return rval;
return get_sub_tree_iterator( root, box, box + 3, iter );
}
ErrorCode AdaptiveKDTree::get_last_iterator( EntityHandle root, AdaptiveKDTreeIter& iter )<--- The function 'get_last_iterator' is never used.
{
double box[6];
ErrorCode rval = moab()->tag_get_data( boxTag, &root, 1, box );
if( MB_SUCCESS != rval ) return rval;
return iter.initialize( this, root, box, box + 3, AdaptiveKDTreeIter::RIGHT );
}
ErrorCode AdaptiveKDTree::get_sub_tree_iterator( EntityHandle root,
const double min[3],
const double max[3],
AdaptiveKDTreeIter& result )
{
return result.initialize( this, root, min, max, AdaptiveKDTreeIter::LEFT );
}
ErrorCode AdaptiveKDTree::split_leaf( AdaptiveKDTreeIter& leaf, Plane plane, EntityHandle& left, EntityHandle& right )
{
ErrorCode rval;
rval = moab()->create_meshset( meshsetFlags, left );
if( MB_SUCCESS != rval ) return rval;
rval = moab()->create_meshset( meshsetFlags, right );
if( MB_SUCCESS != rval )
{
moab()->delete_entities( &left, 1 );
return rval;
}
if( MB_SUCCESS != set_split_plane( leaf.handle(), plane ) ||
MB_SUCCESS != moab()->add_child_meshset( leaf.handle(), left ) ||
MB_SUCCESS != moab()->add_child_meshset( leaf.handle(), right ) ||
MB_SUCCESS != leaf.step_to_first_leaf( AdaptiveKDTreeIter::LEFT ) )
{
EntityHandle children[] = { left, right };
moab()->delete_entities( children, 2 );
return MB_FAILURE;
}
return MB_SUCCESS;
}
ErrorCode AdaptiveKDTree::split_leaf( AdaptiveKDTreeIter& leaf, Plane plane )
{
EntityHandle left, right;
return split_leaf( leaf, plane, left, right );
}
ErrorCode AdaptiveKDTree::split_leaf( AdaptiveKDTreeIter& leaf,
Plane plane,
const Range& left_entities,
const Range& right_entities )
{
EntityHandle left, right, parent = leaf.handle();
ErrorCode rval = split_leaf( leaf, plane, left, right );
if( MB_SUCCESS != rval ) return rval;
if( MB_SUCCESS == moab()->add_entities( left, left_entities ) &&
MB_SUCCESS == moab()->add_entities( right, right_entities ) &&
MB_SUCCESS == moab()->clear_meshset( &parent, 1 ) )
return MB_SUCCESS;
moab()->remove_child_meshset( parent, left );
moab()->remove_child_meshset( parent, right );
EntityHandle children[] = { left, right };
moab()->delete_entities( children, 2 );
return MB_FAILURE;
}
ErrorCode AdaptiveKDTree::split_leaf( AdaptiveKDTreeIter& leaf,
Plane plane,
const std::vector< EntityHandle >& left_entities,
const std::vector< EntityHandle >& right_entities )
{
EntityHandle left, right, parent = leaf.handle();
ErrorCode rval = split_leaf( leaf, plane, left, right );
if( MB_SUCCESS != rval ) return rval;
if( MB_SUCCESS == moab()->add_entities( left, &left_entities[0], left_entities.size() ) &&
MB_SUCCESS == moab()->add_entities( right, &right_entities[0], right_entities.size() ) &&
MB_SUCCESS == moab()->clear_meshset( &parent, 1 ) )
return MB_SUCCESS;
moab()->remove_child_meshset( parent, left );
moab()->remove_child_meshset( parent, right );
EntityHandle children[] = { left, right };
moab()->delete_entities( children, 2 );
return MB_FAILURE;
}
ErrorCode AdaptiveKDTree::merge_leaf( AdaptiveKDTreeIter& iter )<--- The function 'merge_leaf' is never used.
{
ErrorCode rval;
if( iter.depth() == 1 ) // at root
return MB_FAILURE;
// Move iter to parent
AdaptiveKDTreeIter::StackObj node = iter.mStack.back();
iter.mStack.pop_back();
iter.childVect.clear();
rval = moab()->get_child_meshsets( iter.mStack.back().entity, iter.childVect );
if( MB_SUCCESS != rval ) return rval;
Plane plane;
rval = get_split_plane( iter.mStack.back().entity, plane );
if( MB_SUCCESS != rval ) return rval;
int child_idx = iter.childVect[0] == node.entity ? 0 : 1;
assert( iter.childVect[child_idx] == node.entity );
iter.mBox[1 - child_idx][plane.norm] = node.coord;
// Get all entities from children and put them in parent
EntityHandle parent = iter.handle();
moab()->remove_child_meshset( parent, iter.childVect[0] );
moab()->remove_child_meshset( parent, iter.childVect[1] );
std::vector< EntityHandle > stack( iter.childVect );
Range range;
while( !stack.empty() )
{
EntityHandle h = stack.back();
stack.pop_back();
range.clear();
rval = moab()->get_entities_by_handle( h, range );
if( MB_SUCCESS != rval ) return rval;
rval = moab()->add_entities( parent, range );
if( MB_SUCCESS != rval ) return rval;
iter.childVect.clear();
rval = moab()->get_child_meshsets( h, iter.childVect );MB_CHK_ERR( rval );
if( !iter.childVect.empty() )
{
moab()->remove_child_meshset( h, iter.childVect[0] );
moab()->remove_child_meshset( h, iter.childVect[1] );
stack.push_back( iter.childVect[0] );
stack.push_back( iter.childVect[1] );
}
rval = moab()->delete_entities( &h, 1 );
if( MB_SUCCESS != rval ) return rval;
}
return MB_SUCCESS;
}
ErrorCode AdaptiveKDTreeIter::initialize( AdaptiveKDTree* ttool,
EntityHandle root,
const double bmin[3],
const double bmax[3],
Direction direction )
{
mStack.clear();
treeTool = ttool;
mBox[BMIN][0] = bmin[0];
mBox[BMIN][1] = bmin[1];
mBox[BMIN][2] = bmin[2];
mBox[BMAX][0] = bmax[0];
mBox[BMAX][1] = bmax[1];
mBox[BMAX][2] = bmax[2];
mStack.push_back( StackObj( root, 0 ) );
return step_to_first_leaf( direction );
}
ErrorCode AdaptiveKDTreeIter::step_to_first_leaf( Direction direction )
{
ErrorCode rval;
AdaptiveKDTree::Plane plane;
const Direction opposite = static_cast< Direction >( 1 - direction );
for( ;; )
{
childVect.clear();
treeTool->treeStats.nodesVisited++; // not sure whether this is the visit or the push_back below
rval = treeTool->moab()->get_child_meshsets( mStack.back().entity, childVect );
if( MB_SUCCESS != rval ) return rval;
if( childVect.empty() )
{ // leaf
treeTool->treeStats.leavesVisited++;
break;
}
rval = treeTool->get_split_plane( mStack.back().entity, plane );
if( MB_SUCCESS != rval ) return rval;
mStack.push_back( StackObj( childVect[direction], mBox[opposite][plane.norm] ) );
mBox[opposite][plane.norm] = plane.coord;
}
return MB_SUCCESS;
}
ErrorCode AdaptiveKDTreeIter::step( Direction direction )
{
StackObj node, parent;
ErrorCode rval;
AdaptiveKDTree::Plane plane;
const Direction opposite = static_cast< Direction >( 1 - direction );
// If stack is empty, then either this iterator is uninitialized
// or we reached the end of the iteration (and return
// MB_ENTITY_NOT_FOUND) already.
if( mStack.empty() ) return MB_FAILURE;
// Pop the current node from the stack.
// The stack should then contain the parent of the current node.
// If the stack is empty after this pop, then we've reached the end.
node = mStack.back();
mStack.pop_back();
treeTool->treeStats.nodesVisited++;
if( mStack.empty() ) treeTool->treeStats.leavesVisited++;
while( !mStack.empty() )
{
// Get data for parent entity
parent = mStack.back();
childVect.clear();
rval = treeTool->moab()->get_child_meshsets( parent.entity, childVect );
if( MB_SUCCESS != rval ) return rval;
rval = treeTool->get_split_plane( parent.entity, plane );
if( MB_SUCCESS != rval ) return rval;
// If we're at the left child
if( childVect[opposite] == node.entity )
{
// change from box of left child to box of parent
mBox[direction][plane.norm] = node.coord;
// push right child on stack
node.entity = childVect[direction];
treeTool->treeStats.nodesVisited++; // changed node
node.coord = mBox[opposite][plane.norm];
mStack.push_back( node );
// change from box of parent to box of right child
mBox[opposite][plane.norm] = plane.coord;
// descend to left-most leaf of the right child
return step_to_first_leaf( opposite );
}
// The current node is the right child of the parent,
// continue up the tree.
assert( childVect[direction] == node.entity );
mBox[opposite][plane.norm] = node.coord;
node = parent;
treeTool->treeStats.nodesVisited++;
mStack.pop_back();
}
return MB_ENTITY_NOT_FOUND;
}
ErrorCode AdaptiveKDTreeIter::get_neighbors( AdaptiveKDTree::Axis norm,<--- The function 'get_neighbors' is never used.
bool neg,
std::vector< AdaptiveKDTreeIter >& results,
double epsilon ) const
{
StackObj node, parent;
ErrorCode rval;
AdaptiveKDTree::Plane plane;
int child_idx;<--- The scope of the variable 'child_idx' can be reduced. [+]The scope of the variable 'child_idx' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
// Find tree node at which the specified side of the box
// for this node was created.
AdaptiveKDTreeIter iter( *this ); // temporary iterator (don't modify *this)
node = iter.mStack.back();
iter.mStack.pop_back();
for( ;; )
{
// reached the root - original node was on boundary (no neighbors)
if( iter.mStack.empty() ) return MB_SUCCESS;
// get parent node data
parent = iter.mStack.back();
iter.childVect.clear();
rval = treeTool->moab()->get_child_meshsets( parent.entity, iter.childVect );
if( MB_SUCCESS != rval ) return rval;
rval = treeTool->get_split_plane( parent.entity, plane );
if( MB_SUCCESS != rval ) return rval;
child_idx = iter.childVect[0] == node.entity ? 0 : 1;
assert( iter.childVect[child_idx] == node.entity );
// if we found the split plane for the desired side
// push neighbor on stack and stop
if( plane.norm == norm && (int)neg == child_idx )
{
// change from box of previous child to box of parent
iter.mBox[1 - child_idx][plane.norm] = node.coord;
// push other child of parent onto stack
node.entity = iter.childVect[1 - child_idx];
node.coord = iter.mBox[child_idx][plane.norm];
iter.mStack.push_back( node );
// change from parent box to box of new child
iter.mBox[child_idx][plane.norm] = plane.coord;
break;
}
// continue up the tree
iter.mBox[1 - child_idx][plane.norm] = node.coord;
node = parent;
iter.mStack.pop_back();
}
// now move down tree, searching for adjacent boxes
std::vector< AdaptiveKDTreeIter > list;
// loop over all potential paths to neighbors (until list is empty)
for( ;; )
{
// follow a single path to a leaf, append any other potential
// paths to neighbors to 'list'
node = iter.mStack.back();
for( ;; )
{
iter.childVect.clear();
rval = treeTool->moab()->get_child_meshsets( node.entity, iter.childVect );
if( MB_SUCCESS != rval ) return rval;
// if leaf
if( iter.childVect.empty() )
{
results.push_back( iter );
break;
}
rval = treeTool->get_split_plane( node.entity, plane );
if( MB_SUCCESS != rval ) return rval;
// if split parallel to side
if( plane.norm == norm )
{
// continue with whichever child is on the correct side of the split
node.entity = iter.childVect[neg];
node.coord = iter.mBox[1 - neg][plane.norm];
iter.mStack.push_back( node );
iter.mBox[1 - neg][plane.norm] = plane.coord;
}
// if left child is adjacent
else if( this->mBox[BMIN][plane.norm] - plane.coord <= epsilon )
{
// if right child is also adjacent, add to list
if( plane.coord - this->mBox[BMAX][plane.norm] <= epsilon )
{
list.push_back( iter );
list.back().mStack.push_back( StackObj( iter.childVect[1], iter.mBox[BMIN][plane.norm] ) );
list.back().mBox[BMIN][plane.norm] = plane.coord;
}
// continue with left child
node.entity = iter.childVect[0];
node.coord = iter.mBox[BMAX][plane.norm];
iter.mStack.push_back( node );
iter.mBox[BMAX][plane.norm] = plane.coord;
}
// right child is adjacent
else
{
// if left child is not adjacent, right must be or something
// is really messed up.
assert( plane.coord - this->mBox[BMAX][plane.norm] <= epsilon );
// continue with left child
node.entity = iter.childVect[1];
node.coord = iter.mBox[BMIN][plane.norm];
iter.mStack.push_back( node );
iter.mBox[BMIN][plane.norm] = plane.coord;
}
}
if( list.empty() ) break;
iter = list.back();
list.pop_back();
}
return MB_SUCCESS;
}
ErrorCode AdaptiveKDTreeIter::sibling_side( AdaptiveKDTree::Axis& axis_out, bool& neg_out ) const<--- The function 'sibling_side' is never used.
{
if( mStack.size() < 2 ) // at tree root
return MB_ENTITY_NOT_FOUND;
EntityHandle parent = mStack[mStack.size() - 2].entity;
AdaptiveKDTree::Plane plane;
ErrorCode rval = tool()->get_split_plane( parent, plane );
if( MB_SUCCESS != rval ) return MB_FAILURE;
childVect.clear();
rval = tool()->moab()->get_child_meshsets( parent, childVect );
if( MB_SUCCESS != rval || childVect.size() != 2 ) return MB_FAILURE;
axis_out = static_cast< AdaptiveKDTree::Axis >( plane.norm );
neg_out = ( childVect[1] == handle() );
assert( childVect[neg_out] == handle() );
return MB_SUCCESS;
}
ErrorCode AdaptiveKDTreeIter::get_parent_split_plane( AdaptiveKDTree::Plane& plane ) const<--- The function 'get_parent_split_plane' is never used.
{
if( mStack.size() < 2 ) // at tree root
return MB_ENTITY_NOT_FOUND;
EntityHandle parent = mStack[mStack.size() - 2].entity;
return tool()->get_split_plane( parent, plane );
}
bool AdaptiveKDTreeIter::is_sibling( const AdaptiveKDTreeIter& other_leaf ) const<--- The function 'is_sibling' is never used.
{
const size_t s = mStack.size();
return ( s > 1 ) && ( s == other_leaf.mStack.size() ) &&
( other_leaf.mStack[s - 2].entity == mStack[s - 2].entity ) && other_leaf.handle() != handle();
}
bool AdaptiveKDTreeIter::is_sibling( EntityHandle other_leaf ) const
{
if( mStack.size() < 2 || other_leaf == handle() ) return false;
EntityHandle parent = mStack[mStack.size() - 2].entity;
childVect.clear();
ErrorCode rval = tool()->moab()->get_child_meshsets( parent, childVect );
if( MB_SUCCESS != rval || childVect.size() != 2 )
{
assert( false );
return false;
}
return childVect[0] == other_leaf || childVect[1] == other_leaf;
}
bool AdaptiveKDTreeIter::sibling_is_forward() const<--- The function 'sibling_is_forward' is never used.
{
if( mStack.size() < 2 ) // if root
return false;
EntityHandle parent = mStack[mStack.size() - 2].entity;
childVect.clear();
ErrorCode rval = tool()->moab()->get_child_meshsets( parent, childVect );
if( MB_SUCCESS != rval || childVect.size() != 2 )
{
assert( false );
return false;
}
return childVect[0] == handle();
}
bool AdaptiveKDTreeIter::intersect_ray( const double ray_point[3],
const double ray_vect[3],
double& t_enter,
double& t_exit ) const
{
treeTool->treeStats.traversalLeafObjectTests++;
return GeomUtil::ray_box_intersect( CartVect( box_min() ), CartVect( box_max() ), CartVect( ray_point ),
CartVect( ray_vect ), t_enter, t_exit );
}
ErrorCode AdaptiveKDTree::intersect_children_with_elems( const Range& elems,
AdaptiveKDTree::Plane plane,
double eps,
CartVect box_min,
CartVect box_max,
Range& left_tris,
Range& right_tris,
Range& both_tris,
double& metric_value )
{
left_tris.clear();
right_tris.clear();
both_tris.clear();
CartVect coords[16];
// get extents of boxes for left and right sides
BoundBox left_box( box_min, box_max ), right_box( box_min, box_max );
right_box.bMin = box_min;
left_box.bMax = box_max;
right_box.bMin[plane.norm] = left_box.bMax[plane.norm] = plane.coord;
const CartVect left_cen = 0.5 * ( left_box.bMax + box_min );
const CartVect left_dim = 0.5 * ( left_box.bMax - box_min );
const CartVect right_cen = 0.5 * ( box_max + right_box.bMin );
const CartVect right_dim = 0.5 * ( box_max - right_box.bMin );
const CartVect dim = box_max - box_min;
const double max_tol = std::max( dim[0], std::max( dim[1], dim[2] ) ) / 10;
// test each entity
ErrorCode rval;
int count, count2;
const EntityHandle *conn, *conn2;
const Range::const_iterator elem_begin = elems.lower_bound( MBEDGE );
const Range::const_iterator poly_begin = elems.lower_bound( MBPOLYHEDRON, elem_begin );
const Range::const_iterator set_begin = elems.lower_bound( MBENTITYSET, poly_begin );
Range::iterator left_ins = left_tris.begin();
Range::iterator right_ins = right_tris.begin();
Range::iterator both_ins = both_tris.begin();
Range::const_iterator i;
// vertices
for( i = elems.begin(); i != elem_begin; ++i )
{
tree_stats().constructLeafObjectTests++;
rval = moab()->get_coords( &*i, 1, coords[0].array() );
if( MB_SUCCESS != rval ) return rval;
bool lo = false, ro = false;
if( coords[0][plane.norm] <= plane.coord ) lo = true;
if( coords[0][plane.norm] >= plane.coord ) ro = true;
if( lo && ro )
both_ins = both_tris.insert( both_ins, *i, *i );
else if( lo )
left_ins = left_tris.insert( left_ins, *i, *i );
else // if (ro)
right_ins = right_tris.insert( right_ins, *i, *i );
}
// non-polyhedron elements
std::vector< EntityHandle > dum_vector;
for( i = elem_begin; i != poly_begin; ++i )
{
tree_stats().constructLeafObjectTests++;
rval = moab()->get_connectivity( *i, conn, count, true, &dum_vector );
if( MB_SUCCESS != rval ) return rval;
if( count > (int)( sizeof( coords ) / sizeof( coords[0] ) ) ) return MB_FAILURE;
rval = moab()->get_coords( &conn[0], count, coords[0].array() );
if( MB_SUCCESS != rval ) return rval;
bool lo = false, ro = false;
for( int j = 0; j < count; ++j )
{
if( coords[j][plane.norm] <= plane.coord ) lo = true;
if( coords[j][plane.norm] >= plane.coord ) ro = true;
}
// Triangle must be in at least one leaf. If test against plane
// identified that leaf, then we're done. If triangle is on both
// sides of plane, do more precise test to ensure that it is really
// in both.
// BoundBox box;
// box.update(*moab(), *i);
if( lo && ro )
{
double tol = eps;
lo = ro = false;
while( !lo && !ro && tol <= max_tol )
{
tree_stats().boxElemTests += 2;
lo = GeomUtil::box_elem_overlap( coords, TYPE_FROM_HANDLE( *i ), left_cen, left_dim + CartVect( tol ),
count );
ro = GeomUtil::box_elem_overlap( coords, TYPE_FROM_HANDLE( *i ), right_cen, right_dim + CartVect( tol ),
count );
tol *= 10.0;
}
}
if( lo && ro )
both_ins = both_tris.insert( both_ins, *i, *i );
else if( lo )
left_ins = left_tris.insert( left_ins, *i, *i );
else if( ro )
right_ins = right_tris.insert( right_ins, *i, *i );
}
// polyhedra
for( i = poly_begin; i != set_begin; ++i )
{
tree_stats().constructLeafObjectTests++;
rval = moab()->get_connectivity( *i, conn, count, true );
if( MB_SUCCESS != rval ) return rval;
// just check the bounding box of the polyhedron
bool lo = false, ro = false;
for( int j = 0; j < count; ++j )
{
rval = moab()->get_connectivity( conn[j], conn2, count2, true );
if( MB_SUCCESS != rval ) return rval;
for( int k = 0; k < count2; ++k )
{
rval = moab()->get_coords( conn2 + k, 1, coords[0].array() );
if( MB_SUCCESS != rval ) return rval;
if( coords[0][plane.norm] <= plane.coord ) lo = true;
if( coords[0][plane.norm] >= plane.coord ) ro = true;
}
}
if( lo && ro )
both_ins = both_tris.insert( both_ins, *i, *i );
else if( lo )
left_ins = left_tris.insert( left_ins, *i, *i );
else if( ro )
right_ins = right_tris.insert( right_ins, *i, *i );
}
// sets
BoundBox tbox;
for( i = set_begin; i != elems.end(); ++i )
{
tree_stats().constructLeafObjectTests++;
rval = tbox.update( *moab(), *i, spherical, radius );
if( MB_SUCCESS != rval ) return rval;
bool lo = false, ro = false;
if( tbox.bMin[plane.norm] <= plane.coord ) lo = true;
if( tbox.bMax[plane.norm] >= plane.coord ) ro = true;
if( lo && ro )
both_ins = both_tris.insert( both_ins, *i, *i );
else if( lo )
left_ins = left_tris.insert( left_ins, *i, *i );
else // if (ro)
right_ins = right_tris.insert( right_ins, *i, *i );
}
CartVect box_dim = box_max - box_min;
double area_left = left_dim[0] * left_dim[1] + left_dim[1] * left_dim[2] + left_dim[2] * left_dim[0];
double area_right = right_dim[0] * right_dim[1] + right_dim[1] * right_dim[2] + right_dim[2] * right_dim[0];
double area_both = box_dim[0] * box_dim[1] + box_dim[1] * box_dim[2] + box_dim[2] * box_dim[0];
metric_value = ( area_left * left_tris.size() + area_right * right_tris.size() ) / area_both + both_tris.size();
return MB_SUCCESS;
}
ErrorCode AdaptiveKDTree::best_subdivision_plane( int num_planes,
const AdaptiveKDTreeIter& iter,
Range& best_left,
Range& best_right,
Range& best_both,
AdaptiveKDTree::Plane& best_plane,
double eps )
{
double metric_val = std::numeric_limits< unsigned >::max();
ErrorCode r;
const CartVect box_min( iter.box_min() );
const CartVect box_max( iter.box_max() );
const CartVect diff( box_max - box_min );
Range entities;
r = iter.tool()->moab()->get_entities_by_handle( iter.handle(), entities );
if( MB_SUCCESS != r ) return r;
const size_t p_count = entities.size();
for( int axis = 0; axis < 3; ++axis )
{
int plane_count = num_planes;
if( ( num_planes + 1 ) * eps >= diff[axis] ) plane_count = (int)( diff[axis] / eps ) - 1;
for( int p = 1; p <= plane_count; ++p )
{
AdaptiveKDTree::Plane plane = { box_min[axis] + ( p / ( 1.0 + plane_count ) ) * diff[axis], axis };
Range left, right, both;
double val;
r = intersect_children_with_elems( entities, plane, eps, box_min, box_max, left, right, both, val );
if( MB_SUCCESS != r ) return r;
const size_t sdiff = p_count - both.size();
if( left.size() == sdiff || right.size() == sdiff ) continue;
if( val >= metric_val ) continue;
metric_val = val;
best_plane = plane;
best_left.swap( left );
best_right.swap( right );
best_both.swap( both );
}
}
return MB_SUCCESS;
}
ErrorCode AdaptiveKDTree::best_subdivision_snap_plane( int num_planes,
const AdaptiveKDTreeIter& iter,
Range& best_left,
Range& best_right,
Range& best_both,
AdaptiveKDTree::Plane& best_plane,
std::vector< double >& tmp_data,
double eps )
{
double metric_val = std::numeric_limits< unsigned >::max();
ErrorCode r;
// const CartVect tol(eps*diff);
Range entities, vertices;
r = iter.tool()->moab()->get_entities_by_handle( iter.handle(), entities );
if( MB_SUCCESS != r ) return r;
const size_t p_count = entities.size();
r = iter.tool()->moab()->get_adjacencies( entities, 0, false, vertices, Interface::UNION );
if( MB_SUCCESS != r ) return r;
unsigned int nverts = vertices.size();
tmp_data.resize( 3 * nverts );
r = iter.tool()->moab()->get_coords( vertices, &tmp_data[0], &tmp_data[nverts], &tmp_data[2 * nverts] );
if( MB_SUCCESS != r ) return r;
// calculate bounding box of vertices
// decide based on the actual box the splitting plane
// do not decide based on iterator box.
// it could be too big
// BoundBox box;
// r = box.update(*moab(), vertices);
CartVect box_min;
CartVect box_max;
for( int dir = 0; dir < 3; dir++ )
{
double amin = tmp_data[dir * nverts];
double amax = amin;
double* p = &tmp_data[dir * nverts + 1];
for( unsigned int i = 1; i < nverts; i++ )
{
if( *p < amin ) amin = *p;
if( *p > amax ) amax = *p;
p++;
}
box_min[dir] = amin;
box_max[dir] = amax;
}
CartVect diff( box_max - box_min );
for( int axis = 0; axis < 3; ++axis )
{
int plane_count = num_planes;
// if num_planes results in width < eps, reset the plane count
if( ( num_planes + 1 ) * eps >= diff[axis] ) plane_count = (int)( diff[axis] / eps ) - 1;
for( int p = 1; p <= plane_count; ++p )
{
// coord of this plane on axis
double coord = box_min[axis] + ( p / ( 1.0 + plane_count ) ) * diff[axis];
// find closest vertex coordinate to this plane position
unsigned int istrt = axis * nverts;
double closest_coord = tmp_data[istrt];
for( unsigned i = 1; i < nverts; ++i )
if( fabs( coord - tmp_data[istrt + i] ) < fabs( coord - closest_coord ) )
closest_coord = tmp_data[istrt + i];
if( closest_coord - box_min[axis] <= eps || box_max[axis] - closest_coord <= eps ) continue;
// seprate elems into left/right/both, and compute separating metric
AdaptiveKDTree::Plane plane = { closest_coord, axis };
Range left, right, both;
double val;
r = intersect_children_with_elems( entities, plane, eps, box_min, box_max, left, right, both, val );
if( MB_SUCCESS != r ) return r;
const size_t d = p_count - both.size();
if( left.size() == d || right.size() == d ) continue;
if( val >= metric_val ) continue;
metric_val = val;
best_plane = plane;
best_left.swap( left );
best_right.swap( right );
best_both.swap( both );
}
}
return MB_SUCCESS;
}
ErrorCode AdaptiveKDTree::best_vertex_median_plane( int num_planes,
const AdaptiveKDTreeIter& iter,
Range& best_left,
Range& best_right,
Range& best_both,
AdaptiveKDTree::Plane& best_plane,
std::vector< double >& coords,
double eps )
{
double metric_val = std::numeric_limits< unsigned >::max();
ErrorCode r;
const CartVect box_min( iter.box_min() );
const CartVect box_max( iter.box_max() );
Range entities, vertices;
r = iter.tool()->moab()->get_entities_by_handle( iter.handle(), entities );
if( MB_SUCCESS != r ) return r;
const size_t p_count = entities.size();
r = iter.tool()->moab()->get_adjacencies( entities, 0, false, vertices, Interface::UNION );
if( MB_SUCCESS != r ) return r;
coords.resize( vertices.size() );
for( int axis = 0; axis < 3; ++axis )
{
if( box_max[axis] - box_min[axis] <= 2 * eps ) continue;
double* ptrs[] = { 0, 0, 0 };
ptrs[axis] = &coords[0];
r = iter.tool()->moab()->get_coords( vertices, ptrs[0], ptrs[1], ptrs[2] );
if( MB_SUCCESS != r ) return r;
std::sort( coords.begin(), coords.end() );
std::vector< double >::iterator citer;
citer = std::upper_bound( coords.begin(), coords.end(), box_min[axis] + eps );
const size_t count = std::upper_bound( citer, coords.end(), box_max[axis] - eps ) - citer;
size_t step;
int np = num_planes;
if( count < 2 * (size_t)num_planes )
{
step = 1;
np = count - 1;
}
else
{
step = count / ( num_planes + 1 );
}
for( int p = 1; p <= np; ++p )
{
citer += step;
AdaptiveKDTree::Plane plane = { *citer, axis };
Range left, right, both;
double val;
r = intersect_children_with_elems( entities, plane, eps, box_min, box_max, left, right, both, val );
if( MB_SUCCESS != r ) return r;
const size_t diff = p_count - both.size();
if( left.size() == diff || right.size() == diff ) continue;
if( val >= metric_val ) continue;
metric_val = val;
best_plane = plane;
best_left.swap( left );
best_right.swap( right );
best_both.swap( both );
}
}
return MB_SUCCESS;
}
ErrorCode AdaptiveKDTree::best_vertex_sample_plane( int num_planes,
const AdaptiveKDTreeIter& iter,
Range& best_left,
Range& best_right,
Range& best_both,
AdaptiveKDTree::Plane& best_plane,
std::vector< double >& coords,
std::vector< EntityHandle >& indices,
double eps )
{
const size_t random_elem_threshold = 20 * num_planes;
double metric_val = std::numeric_limits< unsigned >::max();
ErrorCode r;
const CartVect box_min( iter.box_min() );
const CartVect box_max( iter.box_max() );
Range entities, vertices;
r = iter.tool()->moab()->get_entities_by_handle( iter.handle(), entities );
if( MB_SUCCESS != r ) return r;
// We are selecting random vertex coordinates to use for candidate split
// planes. So if element list is large, begin by selecting random elements.
const size_t p_count = entities.size();
coords.resize( 3 * num_planes );
if( p_count < random_elem_threshold )
{
r = iter.tool()->moab()->get_adjacencies( entities, 0, false, vertices, Interface::UNION );
if( MB_SUCCESS != r ) return r;
}
else
{
indices.resize( random_elem_threshold );
const int num_rand = p_count / RAND_MAX + 1;
for( size_t j = 0; j < random_elem_threshold; ++j )
{
size_t rnd = rand();
for( int i = num_rand; i > 1; --i )
rnd *= rand();
rnd %= p_count;
indices[j] = entities[rnd];
}
r = iter.tool()->moab()->get_adjacencies( &indices[0], random_elem_threshold, 0, false, vertices,
Interface::UNION );
if( MB_SUCCESS != r ) return r;
}
coords.resize( vertices.size() );
for( int axis = 0; axis < 3; ++axis )
{
if( box_max[axis] - box_min[axis] <= 2 * eps ) continue;
double* ptrs[] = { 0, 0, 0 };
ptrs[axis] = &coords[0];
r = iter.tool()->moab()->get_coords( vertices, ptrs[0], ptrs[1], ptrs[2] );
if( MB_SUCCESS != r ) return r;
size_t num_valid_coords = 0;
for( size_t i = 0; i < coords.size(); ++i )
if( coords[i] > box_min[axis] + eps && coords[i] < box_max[axis] - eps ) ++num_valid_coords;
if( 2 * (size_t)num_planes > num_valid_coords )
{
indices.clear();
for( size_t i = 0; i < coords.size(); ++i )
if( coords[i] > box_min[axis] + eps && coords[i] < box_max[axis] - eps ) indices.push_back( i );
}
else
{
indices.resize( num_planes );
// make sure random indices are sufficient to cover entire range
const int num_rand = coords.size() / RAND_MAX + 1;
for( int j = 0; j < num_planes; ++j )
{
size_t rnd;
do
{
rnd = rand();
for( int i = num_rand; i > 1; --i )
rnd *= rand();
rnd %= coords.size();
} while( coords[rnd] <= box_min[axis] + eps || coords[rnd] >= box_max[axis] - eps );
indices[j] = rnd;
}
}
for( unsigned p = 0; p < indices.size(); ++p )
{
AdaptiveKDTree::Plane plane = { coords[indices[p]], axis };
Range left, right, both;
double val;
r = intersect_children_with_elems( entities, plane, eps, box_min, box_max, left, right, both, val );
if( MB_SUCCESS != r ) return r;
const size_t diff = p_count - both.size();
if( left.size() == diff || right.size() == diff ) continue;
if( val >= metric_val ) continue;
metric_val = val;
best_plane = plane;
best_left.swap( left );
best_right.swap( right );
best_both.swap( both );
}
}
return MB_SUCCESS;
}
ErrorCode AdaptiveKDTree::point_search( const double* point,
EntityHandle& leaf_out,
const double iter_tol,
const double inside_tol,
bool* multiple_leaves,
EntityHandle* start_node,
CartVect* params )
{
std::vector< EntityHandle > children;
Plane plane;
treeStats.numTraversals++;
leaf_out = 0;
BoundBox box;
// kdtrees never have multiple leaves containing a pt
if( multiple_leaves ) *multiple_leaves = false;
EntityHandle node = ( start_node ? *start_node : myRoot );
treeStats.nodesVisited++;
ErrorCode rval = get_bounding_box( box, &node );
if( MB_SUCCESS != rval ) return rval;
if( !box.contains_point( point, iter_tol ) ) return MB_SUCCESS;
rval = moab()->get_child_meshsets( node, children );
if( MB_SUCCESS != rval ) return rval;
while( !children.empty() )
{
treeStats.nodesVisited++;
rval = get_split_plane( node, plane );
if( MB_SUCCESS != rval ) return rval;
const double d = point[plane.norm] - plane.coord;
node = children[( d > 0.0 )];
children.clear();
rval = moab()->get_child_meshsets( node, children );
if( MB_SUCCESS != rval ) return rval;
}
treeStats.leavesVisited++;
if( myEval && params )
{
rval = myEval->find_containing_entity( node, point, iter_tol, inside_tol, leaf_out, params->array(),
&treeStats.traversalLeafObjectTests );
if( MB_SUCCESS != rval ) return rval;
}
else
leaf_out = node;
return MB_SUCCESS;
}
ErrorCode AdaptiveKDTree::point_search( const double* point,
AdaptiveKDTreeIter& leaf_it,
const double iter_tol,
const double /*inside_tol*/,
bool* multiple_leaves,
EntityHandle* start_node )
{
ErrorCode rval;
treeStats.numTraversals++;
// kdtrees never have multiple leaves containing a pt
if( multiple_leaves ) *multiple_leaves = false;
leaf_it.mBox[0] = boundBox.bMin;
leaf_it.mBox[1] = boundBox.bMax;
// test that point is inside tree
if( !boundBox.contains_point( point, iter_tol ) )
{
treeStats.nodesVisited++;
return MB_ENTITY_NOT_FOUND;
}
// initialize iterator at tree root
leaf_it.treeTool = this;
leaf_it.mStack.clear();
leaf_it.mStack.push_back( AdaptiveKDTreeIter::StackObj( ( start_node ? *start_node : myRoot ), 0 ) );
// loop until we reach a leaf
AdaptiveKDTree::Plane plane;
for( ;; )
{
treeStats.nodesVisited++;
// get children
leaf_it.childVect.clear();
rval = moab()->get_child_meshsets( leaf_it.handle(), leaf_it.childVect );
if( MB_SUCCESS != rval ) return rval;
// if no children, then at leaf (done)
if( leaf_it.childVect.empty() )
{
treeStats.leavesVisited++;
break;
}
// get split plane
rval = get_split_plane( leaf_it.handle(), plane );
if( MB_SUCCESS != rval ) return rval;
// step iterator to appropriate child
// idx: 0->left, 1->right
const int idx = ( point[plane.norm] > plane.coord );
leaf_it.mStack.push_back(
AdaptiveKDTreeIter::StackObj( leaf_it.childVect[idx], leaf_it.mBox[1 - idx][plane.norm] ) );
leaf_it.mBox[1 - idx][plane.norm] = plane.coord;
}
return MB_SUCCESS;
}
struct NodeDistance
{
EntityHandle handle;
CartVect dist; // from_point - closest_point_on_box
};
ErrorCode AdaptiveKDTree::distance_search( const double from_point[3],
const double distance,
std::vector< EntityHandle >& result_list,
const double iter_tol,
const double inside_tol,
std::vector< double >* result_dists,
std::vector< CartVect >* result_params,
EntityHandle* tree_root )
{
treeStats.numTraversals++;
const double dist_sqr = distance * distance;
const CartVect from( from_point );
std::vector< NodeDistance > list,
result_list_nodes; // list of subtrees to traverse, and results
// pre-allocate space for default max tree depth
list.reserve( maxDepth );
// misc temporary values
Plane plane;
NodeDistance node;
ErrorCode rval;
std::vector< EntityHandle > children;
// Get distance from input position to bounding box of tree
// (zero if inside box)
BoundBox box;
rval = get_bounding_box( box );
if( MB_SUCCESS == rval && !box.contains_point( from_point, iter_tol ) )
{
treeStats.nodesVisited++;
return MB_SUCCESS;
}
// if bounding box is not available (e.g. not starting from true root)
// just start with zero. Less efficient, but will work.
node.dist = CartVect( 0.0 );
if( MB_SUCCESS == rval )
{
for( int i = 0; i < 3; ++i )
{
if( from_point[i] < box.bMin[i] )
node.dist[i] = box.bMin[i] - from_point[i];
else if( from_point[i] > box.bMax[i] )
node.dist[i] = from_point[i] - box.bMax[i];
}
if( node.dist % node.dist > dist_sqr )
{
treeStats.nodesVisited++;
return MB_SUCCESS;
}
}
// begin with root in list
node.handle = ( tree_root ? *tree_root : myRoot );
list.push_back( node );
while( !list.empty() )
{
node = list.back();
list.pop_back();
treeStats.nodesVisited++;
// If leaf node, test contained triangles
children.clear();
rval = moab()->get_child_meshsets( node.handle, children );
if( children.empty() )
{
treeStats.leavesVisited++;
if( myEval && result_params )
{
EntityHandle ent;
CartVect params;
rval = myEval->find_containing_entity( node.handle, from_point, iter_tol, inside_tol, ent,
params.array(), &treeStats.traversalLeafObjectTests );
if( MB_SUCCESS != rval )
return rval;
else if( ent )
{
result_list.push_back( ent );
result_params->push_back( params );
if( result_dists ) result_dists->push_back( 0.0 );
}
}
else
{
result_list_nodes.push_back( node );
continue;
}
}
// If not leaf node, add children to working list
rval = get_split_plane( node.handle, plane );
if( MB_SUCCESS != rval ) return rval;
const double d = from[plane.norm] - plane.coord;
// right of plane?
if( d > 0 )
{
node.handle = children[1];
list.push_back( node );
// if the split plane is close to the input point, add
// the left child also (we'll check the exact distance
/// when we pop it from the list.)
if( d <= distance )
{
node.dist[plane.norm] = d;
if( node.dist % node.dist <= dist_sqr )
{
node.handle = children[0];
list.push_back( node );
}
}
}
// left of plane
else
{
node.handle = children[0];
list.push_back( node );
// if the split plane is close to the input point, add
// the right child also (we'll check the exact distance
/// when we pop it from the list.)
if( -d <= distance )
{
node.dist[plane.norm] = -d;
if( node.dist % node.dist <= dist_sqr )
{
node.handle = children[1];
list.push_back( node );
}
}
}
}
if( myEval && result_params ) return MB_SUCCESS;
// separate loops to avoid if test inside loop
result_list.reserve( result_list_nodes.size() );
for( std::vector< NodeDistance >::iterator vit = result_list_nodes.begin(); vit != result_list_nodes.end(); ++vit )
result_list.push_back( ( *vit ).handle );
if( result_dists && distance > 0.0 )
{
result_dists->reserve( result_list_nodes.size() );
for( std::vector< NodeDistance >::iterator vit = result_list_nodes.begin(); vit != result_list_nodes.end();
++vit )
result_dists->push_back( ( *vit ).dist.length() );
}
return MB_SUCCESS;
}
static ErrorCode closest_to_triangles( Interface* moab,
const Range& tris,
const CartVect& from,
double& shortest_dist_sqr,
CartVect& closest_pt,
EntityHandle& closest_tri )
{
ErrorCode rval;
CartVect pos, diff, verts[3];
const EntityHandle* conn = NULL;
int len = 0;
for( Range::iterator i = tris.begin(); i != tris.end(); ++i )
{
rval = moab->get_connectivity( *i, conn, len );
if( MB_SUCCESS != rval ) return rval;
rval = moab->get_coords( conn, 3, verts[0].array() );
if( MB_SUCCESS != rval ) return rval;
GeomUtil::closest_location_on_tri( from, verts, pos );
diff = pos - from;
double dist_sqr = diff % diff;
if( dist_sqr < shortest_dist_sqr )
{
// new closest location
shortest_dist_sqr = dist_sqr;
closest_pt = pos;
closest_tri = *i;
}
}
return MB_SUCCESS;
}
static ErrorCode closest_to_triangles( Interface* moab,
EntityHandle set_handle,
const CartVect& from,
double& shortest_dist_sqr,
CartVect& closest_pt,
EntityHandle& closest_tri )
{
ErrorCode rval;
Range tris;
rval = moab->get_entities_by_type( set_handle, MBTRI, tris );
if( MB_SUCCESS != rval ) return rval;
return closest_to_triangles( moab, tris, from, shortest_dist_sqr, closest_pt, closest_tri );
}
ErrorCode AdaptiveKDTree::find_close_triangle( EntityHandle root,
const double from[3],
double pt[3],
EntityHandle& triangle )
{
ErrorCode rval;
Range tris;
Plane split;
std::vector< EntityHandle > stack;
std::vector< EntityHandle > children( 2 );
stack.reserve( 30 );
assert( root );
stack.push_back( root );
while( !stack.empty() )
{
EntityHandle node = stack.back();
stack.pop_back();
for( ;; )
{ // loop until we find a leaf
children.clear();
rval = moab()->get_child_meshsets( node, children );
if( MB_SUCCESS != rval ) return rval;
// loop termination criterion
if( children.empty() ) break;
// if not a leaf, get split plane
rval = get_split_plane( node, split );
if( MB_SUCCESS != rval ) return rval;
// continue down the side that contains the point,
// and push the other side onto the stack in case
// we need to check it later.
int rs = split.right_side( from );
node = children[rs];
stack.push_back( children[1 - rs] );
}
// We should now be at a leaf.
// If it has some triangles, we're done.
// If not, continue searching for another leaf.
tris.clear();
rval = moab()->get_entities_by_type( node, MBTRI, tris );<--- Variable 'rval' is assigned a value that is never used.
if( !tris.empty() )
{
double dist_sqr = HUGE_VAL;
CartVect point( pt );
rval = closest_to_triangles( moab(), tris, CartVect( from ), dist_sqr, point, triangle );
point.get( pt );
return rval;
}
}
// If we got here, then we traversed the entire tree
// and all the leaves were empty.
return MB_ENTITY_NOT_FOUND;
}
/** Find the triangles in a set that are closer to the input
* position than any triangles in the 'closest_tris' list.
*
* closest_tris is assumed to contain a list of triangles for
* which the first is the closest known triangle to the input
* position and the first entry in 'closest_pts' is the closest
* location on that triangle. Any other values in the lists must
* be other triangles for which the closest point is within the
* input tolerance of the closest closest point. This function
* will update the lists as appropriate if any closer triangles
* or triangles within the tolerance of the current closest location
* are found. The first entry is maintained as the closest of the
* list of triangles.
*/
/*
static ErrorCode closest_to_triangles( Interface* moab,
EntityHandle set_handle,
double tolerance,
const CartVect& from,
std::vector<EntityHandle>& closest_tris,
std::vector<CartVect>& closest_pts )
{
ErrorCode rval;
Range tris;
CartVect pos, diff, verts[3];
const EntityHandle* conn;
int len;
double shortest_dist_sqr = HUGE_VAL;
if (!closest_pts.empty()) {
diff = from - closest_pts.front();
shortest_dist_sqr = diff % diff;
}
rval = moab->get_entities_by_type( set_handle, MBTRI, tris );
if (MB_SUCCESS != rval)
return rval;
for (Range::iterator i = tris.begin(); i != tris.end(); ++i) {
rval = moab->get_connectivity( *i, conn, len );
if (MB_SUCCESS != rval)
return rval;
rval = moab->get_coords( conn, 3, verts[0].array() );
if (MB_SUCCESS != rval)
return rval;
GeomUtil::closest_location_on_tri( from, verts, pos );
diff = pos - from;
double dist_sqr = diff % diff;
if (dist_sqr < shortest_dist_sqr) {
// new closest location
shortest_dist_sqr = dist_sqr;
if (closest_pts.empty()) {
closest_tris.push_back( *i );
closest_pts.push_back( pos );
}
// if have a previous closest location
else {
// if previous closest is more than 2*tolerance away
// from new closest, then nothing in the list can
// be within tolerance of new closest point.
diff = pos - closest_pts.front();
dist_sqr = diff % diff;
if (dist_sqr > 4.0 * tolerance * tolerance) {
closest_tris.clear();
closest_pts.clear();
closest_tris.push_back( *i );
closest_pts.push_back( pos );
}
// otherwise need to remove any triangles that are
// not within tolerance of the new closest point.
else {
unsigned r = 0, w = 0;
for (r = 0; r < closest_pts.size(); ++r) {
diff = pos - closest_pts[r];
if (diff % diff <= tolerance*tolerance) {
closest_pts[w] = closest_pts[r];
closest_tris[w] = closest_tris[r];
++w;
}
}
closest_pts.resize( w + 1 );
closest_tris.resize( w + 1 );
// always put the closest one in the front
if (w > 0) {
closest_pts.back() = closest_pts.front();
closest_tris.back() = closest_tris.front();
}
closest_pts.front() = pos;
closest_tris.front() = *i;
}
}
}
else {
// If within tolerance of old closest triangle,
// add this one to the list.
diff = closest_pts.front() - pos;
if (diff % diff <= tolerance*tolerance) {
closest_pts.push_back( pos );
closest_tris.push_back( *i );
}
}
}
return MB_SUCCESS;
}
*/
ErrorCode AdaptiveKDTree::closest_triangle( EntityHandle tree_root,
const double from_coords[3],
double closest_point_out[3],
EntityHandle& triangle_out )
{
ErrorCode rval;
double shortest_dist_sqr = HUGE_VAL;
std::vector< EntityHandle > leaves;
const CartVect from( from_coords );
CartVect closest_pt;
// Find the leaf containing the input point
// This search does not take into account any bounding box for the
// tree, so it always returns one leaf.
assert( tree_root );
rval = find_close_triangle( tree_root, from_coords, closest_pt.array(), triangle_out );
if( MB_SUCCESS != rval ) return rval;
// Find any other leaves for which the bounding box is within
// the same distance from the input point as the current closest
// point is.
CartVect diff = closest_pt - from;
rval = distance_search( from_coords, sqrt( diff % diff ), leaves, 1.0e-10, 1.0e-6, NULL, NULL, &tree_root );
if( MB_SUCCESS != rval ) return rval;
// Check any close leaves to see if they contain triangles that
// are as close to or closer than the current closest triangle(s).
for( unsigned i = 0; i < leaves.size(); ++i )
{
rval = closest_to_triangles( moab(), leaves[i], from, shortest_dist_sqr, closest_pt, triangle_out );
if( MB_SUCCESS != rval ) return rval;
}
// pass back resulting position
closest_pt.get( closest_point_out );
return MB_SUCCESS;
}
ErrorCode AdaptiveKDTree::sphere_intersect_triangles( EntityHandle tree_root,
const double center[3],
double rad,
std::vector< EntityHandle >& triangles )
{
ErrorCode rval;
std::vector< EntityHandle > leaves;
const CartVect from( center );
CartVect closest_pt;
const EntityHandle* conn;
CartVect coords[3];
int conn_len;
// get leaves of tree that intersect sphere
assert( tree_root );
rval = distance_search( center, rad, leaves, 1.0e-10, 1.0e-6, NULL, NULL, &tree_root );
if( MB_SUCCESS != rval ) return rval;
// search each leaf for triangles intersecting sphere
for( unsigned i = 0; i < leaves.size(); ++i )
{
Range tris;
rval = moab()->get_entities_by_type( leaves[i], MBTRI, tris );
if( MB_SUCCESS != rval ) return rval;
for( Range::iterator j = tris.begin(); j != tris.end(); ++j )
{
rval = moab()->get_connectivity( *j, conn, conn_len );
if( MB_SUCCESS != rval ) return rval;
rval = moab()->get_coords( conn, 3, coords[0].array() );
if( MB_SUCCESS != rval ) return rval;
GeomUtil::closest_location_on_tri( from, coords, closest_pt );
closest_pt -= from;
if( ( closest_pt % closest_pt ) <= ( rad * rad ) ) triangles.push_back( *j );
}
}
// remove duplicates from triangle list
std::sort( triangles.begin(), triangles.end() );
triangles.erase( std::unique( triangles.begin(), triangles.end() ), triangles.end() );
return MB_SUCCESS;
}
struct NodeSeg
{
NodeSeg( EntityHandle h, double b, double e ) : handle( h ), beg( b ), end( e ) {}
EntityHandle handle;
double beg, end;
};
ErrorCode AdaptiveKDTree::ray_intersect_triangles( EntityHandle root,
const double tol,
const double ray_dir_in[3],
const double ray_pt_in[3],
std::vector< EntityHandle >& tris_out,
std::vector< double >& dists_out,
int max_ints,
double ray_end )
{
ErrorCode rval;
double ray_beg = 0.0;
if( ray_end < 0.0 ) ray_end = HUGE_VAL;
// if root has bounding box, trim ray to that box
CartVect tvec( tol );
BoundBox box;
const CartVect ray_pt( ray_pt_in ), ray_dir( ray_dir_in );
rval = get_bounding_box( box );
if( MB_SUCCESS == rval )
{
if( !GeomUtil::segment_box_intersect( box.bMin - tvec, box.bMax + tvec, ray_pt, ray_dir, ray_beg, ray_end ) )
return MB_SUCCESS; // ray misses entire tree.
}
Range tris;
Range::iterator iter;
CartVect tri_coords[3];
const EntityHandle* tri_conn;
int conn_len;
double tri_t;
Plane plane;
std::vector< EntityHandle > children;
std::vector< NodeSeg > list;
NodeSeg seg( root, ray_beg, ray_end );
list.push_back( seg );
while( !list.empty() )
{
seg = list.back();
list.pop_back();
// If we are limited to a certain number of intersections
// (max_ints != 0), then ray_end will contain the distance
// to the furthest intersection we have so far. If the
// tree node is further than that, skip it.
if( seg.beg > ray_end ) continue;
// Check if at a leaf
children.clear();
rval = moab()->get_child_meshsets( seg.handle, children );
if( MB_SUCCESS != rval ) return rval;
if( children.empty() )
{ // leaf
tris.clear();
rval = moab()->get_entities_by_type( seg.handle, MBTRI, tris );
if( MB_SUCCESS != rval ) return rval;
for( iter = tris.begin(); iter != tris.end(); ++iter )
{
rval = moab()->get_connectivity( *iter, tri_conn, conn_len );
if( MB_SUCCESS != rval ) return rval;
rval = moab()->get_coords( tri_conn, 3, tri_coords[0].array() );
if( MB_SUCCESS != rval ) return rval;
if( GeomUtil::ray_tri_intersect( tri_coords, ray_pt, ray_dir, tri_t, &ray_end ) )
{
if( !max_ints )
{
if( std::find( tris_out.begin(), tris_out.end(), *iter ) == tris_out.end() )
{
tris_out.push_back( *iter );
dists_out.push_back( tri_t );
}
}
else if( tri_t < ray_end )
{
if( std::find( tris_out.begin(), tris_out.end(), *iter ) == tris_out.end() )
{
if( tris_out.size() < (unsigned)max_ints )
{
tris_out.resize( tris_out.size() + 1 );
dists_out.resize( dists_out.size() + 1 );
}
int w = tris_out.size() - 1;
for( ; w > 0 && tri_t < dists_out[w - 1]; --w )
{
tris_out[w] = tris_out[w - 1];
dists_out[w] = dists_out[w - 1];
}
tris_out[w] = *iter;
dists_out[w] = tri_t;
if( tris_out.size() >= (unsigned)max_ints )
// when we have already reached the max intx points, we cans safely
// reset ray_end, because we will accept new points only "closer"
// than the last one
ray_end = dists_out.back();
}
}
}
}
continue;
}
rval = get_split_plane( seg.handle, plane );
if( MB_SUCCESS != rval ) return rval;
// Consider two planes that are the split plane +/- the tolerance.
// Calculate the segment parameter at which the line segment intersects
// the true plane, and also the difference between that value and the
// intersection with either of the +/- tol planes.
const double inv_dir = 1.0 / ray_dir[plane.norm]; // only do division once
const double t = ( plane.coord - ray_pt[plane.norm] ) * inv_dir; // intersection with plane
const double diff = tol * inv_dir; // t adjustment for +tol plane
// const double t0 = t - diff; // intersection with -tol plane
// const double t1 = t + diff; // intersection with +tol plane
// The index of the child tree node (0 or 1) that is on the
// side of the plane to which the ray direction points. That is,
// if the ray direction is opposite the plane normal, the index
// of the child corresponding to the side beneath the plane. If
// the ray direction is the same as the plane normal, the index
// of the child corresponding to the side above the plane.
const int fwd_child = ( ray_dir[plane.norm] > 0.0 );
// Note: we maintain seg.beg <= seg.end at all times, so assume that here.
// If segment is parallel to plane
if( !Util::is_finite( t ) )
{
if( ray_pt[plane.norm] - tol <= plane.coord ) list.push_back( NodeSeg( children[0], seg.beg, seg.end ) );
if( ray_pt[plane.norm] + tol >= plane.coord ) list.push_back( NodeSeg( children[1], seg.beg, seg.end ) );
}
// If segment is entirely to one side of plane such that the
// intersection with the split plane is past the end of the segment
else if( seg.end + diff < t )
{
// If segment direction is opposite that of plane normal, then
// being past the end of the segment means that we are to the
// right (or above) the plane and what the right child (index == 1).
// Otherwise we want the left child (index == 0);
list.push_back( NodeSeg( children[1 - fwd_child], seg.beg, seg.end ) );
}
// If the segment is entirely to one side of the plane such that
// the intersection with the split plane is before the start of the
// segment
else if( seg.beg - diff > t )
{
// If segment direction is opposite that of plane normal, then
// being before the start of the segment means that we are to the
// left (or below) the plane and what the left child (index == 0).
// Otherwise we want the right child (index == 1);
list.push_back( NodeSeg( children[fwd_child], seg.beg, seg.end ) );
}
// Otherwise we must intersect the plane.
// Note: be careful not to grow the segment if t is slightly
// outside the current segment, as doing so would effectively
// increase the tolerance as we descend the tree.
else if( t <= seg.beg )
{
list.push_back( NodeSeg( children[1 - fwd_child], seg.beg, seg.beg ) );
list.push_back( NodeSeg( children[fwd_child], seg.beg, seg.end ) );
}
else if( t >= seg.end )
{
list.push_back( NodeSeg( children[1 - fwd_child], seg.beg, seg.end ) );
list.push_back( NodeSeg( children[fwd_child], seg.end, seg.end ) );
}
else
{
list.push_back( NodeSeg( children[1 - fwd_child], seg.beg, t ) );
list.push_back( NodeSeg( children[fwd_child], t, seg.end ) );
}
}
return MB_SUCCESS;
}
ErrorCode AdaptiveKDTree::compute_depth( EntityHandle root, unsigned int& min_depth, unsigned int& max_depth )
{
AdaptiveKDTreeIter iter;
get_tree_iterator( root, iter );
iter.step_to_first_leaf( AdaptiveKDTreeIter::LEFT );
min_depth = max_depth = iter.depth();
int num_of_elements = 0, max, min;
moab()->get_number_entities_by_handle( iter.handle(), num_of_elements );
max = min = num_of_elements;
int k = 0;
while( MB_SUCCESS == iter.step() )
{
int temp = 0;
moab()->get_number_entities_by_handle( iter.handle(), temp );
max = std::max( max, temp );
min = std::min( min, temp );
if( iter.depth() > max_depth )
max_depth = iter.depth();
else if( iter.depth() < min_depth )
min_depth = iter.depth();
++k;
}
return MB_SUCCESS;
}
ErrorCode AdaptiveKDTree::get_info( EntityHandle root, double bmin[3], double bmax[3], unsigned int& dep )
{
BoundBox box;
ErrorCode result = get_bounding_box( box, &root );
if( MB_SUCCESS != result ) return result;
box.bMin.get( bmin );
box.bMax.get( bmax );
unsigned min_depth;
return compute_depth( root, min_depth, dep );
}
static std::string mem_to_string( unsigned long mem )
{
char unit[3] = "B";
if( mem > 9 * 1024 )
{
mem = ( mem + 512 ) / 1024;
strcpy( unit, "kB" );
}
if( mem > 9 * 1024 )
{
mem = ( mem + 512 ) / 1024;
strcpy( unit, "MB" );
}
if( mem > 9 * 1024 )
{
mem = ( mem + 512 ) / 1024;
strcpy( unit, "GB" );
}
char buffer[256];
sprintf( buffer, "%lu %s", mem, unit );
return buffer;
}
template < typename T >
struct SimpleStat
{
T min, max, sum, sqr;
size_t count;
SimpleStat();
void add( T value );
double avg() const
{
return (double)sum / count;
}
double rms() const
{
return sqrt( (double)sqr / count );
}
double dev() const
{
return ( count > 1
? sqrt( ( count * (double)sqr - (double)sum * (double)sum ) / ( (double)count * ( count - 1 ) ) )
: 0.0 );
}
};
template < typename T >
SimpleStat< T >::SimpleStat()
: min( std::numeric_limits< T >::max() ), max( std::numeric_limits< T >::min() ), sum( 0 ), sqr( 0 ), count( 0 )
{
}
template < typename T >
void SimpleStat< T >::add( T value )
{
if( value < min ) min = value;
if( value > max ) max = value;
sum += value;
sqr += value * value;
++count;
}
ErrorCode AdaptiveKDTree::print()
{
Range range;
Range tree_sets, elem2d, elem3d, verts, all;
moab()->get_child_meshsets( myRoot, tree_sets, 0 );
for( Range::iterator rit = tree_sets.begin(); rit != tree_sets.end(); ++rit )
{
moab()->get_entities_by_dimension( *rit, 2, elem2d );
moab()->get_entities_by_dimension( *rit, 3, elem3d );
moab()->get_entities_by_type( *rit, MBVERTEX, verts );
}
all.merge( verts );
all.merge( elem2d );
all.merge( elem3d );
tree_sets.insert( myRoot );
unsigned long long set_used, set_amortized, set_store_used, set_store_amortized, set_tag_used, set_tag_amortized,
elem_used, elem_amortized;
moab()->estimated_memory_use( tree_sets, &set_used, &set_amortized, &set_store_used, &set_store_amortized, 0, 0, 0,
0, &set_tag_used, &set_tag_amortized );
moab()->estimated_memory_use( all, &elem_used, &elem_amortized );
int num_2d = 0, num_3d = 0;
;
moab()->get_number_entities_by_dimension( 0, 2, num_2d );
moab()->get_number_entities_by_dimension( 0, 3, num_3d );
BoundBox box;
ErrorCode rval = get_bounding_box( box, &myRoot );
if( MB_SUCCESS != rval || box == BoundBox() ) throw rval;
double diff[3] = { box.bMax[0] - box.bMin[0], box.bMax[1] - box.bMin[1], box.bMax[2] - box.bMin[2] };
double tree_vol = diff[0] * diff[1] * diff[2];
double tree_surf_area = 2 * ( diff[0] * diff[1] + diff[1] * diff[2] + diff[2] * diff[0] );
SimpleStat< unsigned > depth, size;
SimpleStat< double > vol, surf;
AdaptiveKDTreeIter iter;
get_tree_iterator( myRoot, iter );
do
{
depth.add( iter.depth() );
int num_leaf_elem;
moab()->get_number_entities_by_handle( iter.handle(), num_leaf_elem );
size.add( num_leaf_elem );
const double* n = iter.box_min();
const double* x = iter.box_max();
double dims[3] = { x[0] - n[0], x[1] - n[1], x[2] - n[2] };
double leaf_vol = dims[0] * dims[1] * dims[2];
vol.add( leaf_vol );
double area = 2.0 * ( dims[0] * dims[1] + dims[1] * dims[2] + dims[2] * dims[0] );
surf.add( area );
} while( MB_SUCCESS == iter.step() );
printf( "------------------------------------------------------------------\n" );
printf( "tree volume: %f\n", tree_vol );
printf( "total elements: %d\n", num_2d + num_3d );
printf( "number of leaves: %lu\n", (unsigned long)depth.count );
printf( "number of nodes: %lu\n", (unsigned long)tree_sets.size() );
printf( "volume ratio: %0.2f%%\n", 100 * ( vol.sum / tree_vol ) );
printf( "surface ratio: %0.2f%%\n", 100 * ( surf.sum / tree_surf_area ) );
printf( "\nmemory: used amortized\n" );
printf( " ---------- ----------\n" );
printf( "elements %10s %10s\n", mem_to_string( elem_used ).c_str(), mem_to_string( elem_amortized ).c_str() );
printf( "sets (total)%10s %10s\n", mem_to_string( set_used ).c_str(), mem_to_string( set_amortized ).c_str() );
printf( "sets %10s %10s\n", mem_to_string( set_store_used ).c_str(),
mem_to_string( set_store_amortized ).c_str() );
printf( "set tags %10s %10s\n", mem_to_string( set_tag_used ).c_str(),
mem_to_string( set_tag_amortized ).c_str() );
printf( "\nleaf stats: min avg rms max std.dev\n" );
printf( " ---------- ---------- ---------- ---------- ----------\n" );
printf( "depth %10u %10.1f %10.1f %10u %10.2f\n", depth.min, depth.avg(), depth.rms(), depth.max,
depth.dev() );
printf( "triangles %10u %10.1f %10.1f %10u %10.2f\n", size.min, size.avg(), size.rms(), size.max, size.dev() );
printf( "volume %10.2g %10.2g %10.2g %10.2g %10.2g\n", vol.min, vol.avg(), vol.rms(), vol.max, vol.dev() );
printf( "surf. area %10.2g %10.2g %10.2g %10.2g %10.2g\n", surf.min, surf.avg(), surf.rms(), surf.max,
surf.dev() );
printf( "------------------------------------------------------------------\n" );
return MB_SUCCESS;
}
} // namespace moab
|