1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500 | /*=========================================================================
Module: $RCSfile: VerdictVector.hpp,v $
Copyright (c) 2006 Sandia Corporation.
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/*
*
* VerdictVector.hpp contains declarations of vector operations
*
* This file is part of VERDICT
*
*/
#ifndef VERDICTVECTOR_HPP
#define VERDICTVECTOR_HPP
#include "moab/verdict.h"
#include <cassert>
#include <cmath>
class VerdictVector;
typedef void ( VerdictVector::*transform_function )( double gamma, double gamma2 );
// a pointer to some function that transforms the point,
// taking a double parameter. e.g. blow_out, rotate, and scale_angle
class VerdictVector
{
public:
//- Heading: Constructors and Destructor
VerdictVector(); //- Default constructor.
VerdictVector( const double x, const double y, const double z );
//- Constructor: create vector from three components
VerdictVector( const double xyz[3] );<--- Class 'VerdictVector' has a constructor with 1 argument that is not explicit. [+]Class 'VerdictVector' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'VerdictVector' has a constructor with 1 argument that is not explicit. [+]Class 'VerdictVector' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'VerdictVector' has a constructor with 1 argument that is not explicit. [+]Class 'VerdictVector' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'VerdictVector' has a constructor with 1 argument that is not explicit. [+]Class 'VerdictVector' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'VerdictVector' has a constructor with 1 argument that is not explicit. [+]Class 'VerdictVector' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'VerdictVector' has a constructor with 1 argument that is not explicit. [+]Class 'VerdictVector' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'VerdictVector' has a constructor with 1 argument that is not explicit. [+]Class 'VerdictVector' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided. <--- Class 'VerdictVector' has a constructor with 1 argument that is not explicit. [+]Class 'VerdictVector' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
//- Constructor: create vector from tuple
VerdictVector( const VerdictVector& tail, const VerdictVector& head );
//- Constructor for a VerdictVector starting at tail and pointing
//- to head.
VerdictVector( const VerdictVector& copy_from ); //- Copy Constructor
//- Heading: Set and Inquire Functions
void set( const double xv, const double yv, const double zv );
//- Change vector components to {x}, {y}, and {z}
void set( const double xyz[3] );
//- Change vector components to xyz[0], xyz[1], xyz[2]
void set( const VerdictVector& tail, const VerdictVector& head );
//- Change vector to go from tail to head.
void set( const VerdictVector& to_copy );
//- Same as operator=(const VerdictVector&)
double x() const; //- Return x component of vector
double y() const; //- Return y component of vector
double z() const; //- Return z component of vector
void get_xyz( double& x, double& y, double& z ); //- Get x, y, z components
void get_xyz( double xyz[3] ); //- Get xyz tuple
double& r(); //- Return r component of vector, if (r,theta) format
double& theta(); //- Return theta component of vector, if (r,theta) format
void x( const double xv ); //- Set x component of vector
void y( const double yv ); //- Set y component of vector
void z( const double zv ); //- Set z component of vector
void r( const double xv ); //- Set r component of vector, if (r,theta) format
void theta( const double yv ); //- Set theta component of vector, if (r,theta) format
void xy_to_rtheta();
//- convert from cartesian to polar coordinates, just 2d for now
//- theta is in [0,2 PI)
void rtheta_to_xy();
//- convert from polar to cartesian coordinates, just 2d for now
void scale_angle( double gamma, double );
//- tranform_function.
//- transform (x,y) to (r,theta) to (r,gamma*theta) to (x',y')
//- plus some additional scaling so long chords won't cross short ones
void blow_out( double gamma, double gamma2 = 0.0 );
//- transform_function
//- blow points radially away from the origin,
void rotate( double angle, double );
//- transform function.
//- transform (x,y) to (r,theta) to (r,theta+angle) to (x',y')
void reflect_about_xaxis( double dummy, double );
//- dummy argument to make it a transform function
double normalize();
//- Normalize (set magnitude equal to 1) vector - return the magnitude
VerdictVector& length( const double new_length );
//- Change length of vector to {new_length}. Can be used to move a
//- location a specified distance from the origin in the current
//- orientation.
double length() const;
//- Calculate the length of the vector.
//- Use {length_squared()} if only comparing lengths, not adding.
double distance_between( const VerdictVector& test_vector );
//- Calculate the distance from the head of one vector
// to the head of the test_vector.
double length_squared() const;
//- Calculate the squared length of the vector.
//- Faster than {length()} since it eliminates the square root if
//- only comparing other lengths.
double interior_angle( const VerdictVector& otherVector );
//- Calculate the interior angle: acos((a%b)/(|a||b|))
//- Returns angle in degrees.
double vector_angle_quick( const VerdictVector& vec1, const VerdictVector& vec2 );
//- Calculate the interior angle between the projections of
//- {vec1} and {vec2} onto the plane defined by the {this} vector.
//- The angle returned is the right-handed angle around the {this}
//- vector from {vec1} to {vec2}. Angle is in radians.
double vector_angle( const VerdictVector& vector1, const VerdictVector& vector2 ) const;
//- Compute the angle between the projections of {vector1} and {vector2}
//- onto the plane defined by *this. The angle is the
//- right-hand angle, in radians, about *this from {vector1} to {vector2}.
void perpendicular_z();
//- Transform this vector to a perpendicular one, leaving
//- z-component alone. Rotates clockwise about the z-axis by pi/2.
void print_me();
//- Prints out the coordinates of this vector.
void orthogonal_vectors( VerdictVector& vector2, VerdictVector& vector3 );
//- Finds 2 (arbitrary) vectors that are orthogonal to this one
void next_point( const VerdictVector& direction, double distance, VerdictVector& out_point );
//- Finds the next point in space based on *this* point (starting point),
//- a direction and the distance to extend in the direction. The
//- direction vector need not be a unit vector. The out_point can be
//- "*this" (i.e., modify point in place).
bool within_tolerance( const VerdictVector& vectorPtr2, double tolerance ) const;
//- Compare two vectors to see if they are spatially equal. They
//- compare if x, y, and z are all within tolerance.
//- Heading: Operator Overloads *****************************
VerdictVector& operator+=( const VerdictVector& vec );
//- Compound Assignment: addition: {this = this + vec}
VerdictVector& operator-=( const VerdictVector& vec );
//- Compound Assignment: subtraction: {this = this - vec}
VerdictVector& operator*=( const VerdictVector& vec );
//- Compound Assignment: cross product: {this = this * vec},
//- non-commutative
VerdictVector& operator*=( const double scalar );
//- Compound Assignment: multiplication: {this = this * scalar}
VerdictVector& operator/=( const double scalar );
//- Compound Assignment: division: {this = this / scalar}
VerdictVector operator-() const;
//- unary negation.
friend VerdictVector operator~( const VerdictVector& vec );
//- normalize. Returns a new vector which is a copy of {vec},
//- scaled such that {|vec|=1}. Uses overloaded bitwise NOT operator.
friend VerdictVector operator+( const VerdictVector& v1, const VerdictVector& v2 );
//- vector addition
friend VerdictVector operator-( const VerdictVector& v1, const VerdictVector& v2 );
//- vector subtraction
friend VerdictVector operator*( const VerdictVector& v1, const VerdictVector& v2 );
//- vector cross product, non-commutative
friend VerdictVector operator*( const VerdictVector& v1, const double sclr );
//- vector * scalar
friend VerdictVector operator*( const double sclr, const VerdictVector& v1 );
//- scalar * vector
friend double operator%( const VerdictVector& v1, const VerdictVector& v2 );
//- dot product
friend VerdictVector operator/( const VerdictVector& v1, const double sclr );
//- vector / scalar
friend int operator==( const VerdictVector& v1, const VerdictVector& v2 );
//- Equality operator
friend int operator!=( const VerdictVector& v1, const VerdictVector& v2 );
//- Inequality operator
friend VerdictVector interpolate( const double param, const VerdictVector& v1, const VerdictVector& v2 );
//- Interpolate between two vectors. Returns (1-param)*v1 + param*v2
VerdictVector& operator=( const VerdictVector& from );
private:
double xVal; //- x component of vector.
double yVal; //- y component of vector.
double zVal; //- z component of vector.
};
VerdictVector vectorRotate( const double angle, const VerdictVector& normalAxis, const VerdictVector& referenceAxis );
//- A new coordinate system is created with the xy plane corresponding
//- to the plane normal to {normalAxis}, and the x axis corresponding to
//- the projection of {referenceAxis} onto the normal plane. The normal
//- plane is the tangent plane at the root point. A unit vector is
//- constructed along the local x axis and then rotated by the given
//- ccw angle to form the new point. The new point, then is a unit
//- distance from the global origin in the tangent plane.
//- {angle} is in radians.
inline double VerdictVector::x() const
{
return xVal;
}
inline double VerdictVector::y() const
{
return yVal;
}
inline double VerdictVector::z() const
{
return zVal;
}
inline void VerdictVector::get_xyz( double xyz[3] )
{
xyz[0] = xVal;
xyz[1] = yVal;
xyz[2] = zVal;
}
inline void VerdictVector::get_xyz( double& xv, double& yv, double& zv )
{
xv = xVal;
yv = yVal;
zv = zVal;
}
inline double& VerdictVector::r()
{
return xVal;
}
inline double& VerdictVector::theta()
{
return yVal;
}
inline void VerdictVector::x( const double xv )
{
xVal = xv;
}
inline void VerdictVector::y( const double yv )
{
yVal = yv;
}
inline void VerdictVector::z( const double zv )
{
zVal = zv;
}
inline void VerdictVector::r( const double xv )
{
xVal = xv;
}
inline void VerdictVector::theta( const double yv )
{
yVal = yv;
}
inline VerdictVector& VerdictVector::operator+=( const VerdictVector& vector )
{
xVal += vector.x();
yVal += vector.y();
zVal += vector.z();
return *this;
}
inline VerdictVector& VerdictVector::operator-=( const VerdictVector& vector )
{
xVal -= vector.x();
yVal -= vector.y();
zVal -= vector.z();
return *this;
}
inline VerdictVector& VerdictVector::operator*=( const VerdictVector& vector )
{
double xcross, ycross, zcross;
xcross = yVal * vector.z() - zVal * vector.y();
ycross = zVal * vector.x() - xVal * vector.z();
zcross = xVal * vector.y() - yVal * vector.x();
xVal = xcross;
yVal = ycross;
zVal = zcross;
return *this;
}
inline VerdictVector::VerdictVector( const VerdictVector& copy_from )
: xVal( copy_from.xVal ), yVal( copy_from.yVal ), zVal( copy_from.zVal )
{
}
inline VerdictVector::VerdictVector() : xVal( 0 ), yVal( 0 ), zVal( 0 ) {}
inline VerdictVector::VerdictVector( const VerdictVector& tail, const VerdictVector& head )
: xVal( head.xVal - tail.xVal ), yVal( head.yVal - tail.yVal ), zVal( head.zVal - tail.zVal )
{
}
inline VerdictVector::VerdictVector( const double xIn, const double yIn, const double zIn )
: xVal( xIn ), yVal( yIn ), zVal( zIn )
{
}
// This sets the vector to be perpendicular to it's current direction.
// NOTE:
// This is a 2D function. It only works in the XY Plane.
inline void VerdictVector::perpendicular_z()
{
double temp = x();
x( y() );
y( -temp );
}
inline void VerdictVector::set( const double xv, const double yv, const double zv )
{
xVal = xv;
yVal = yv;
zVal = zv;
}
inline void VerdictVector::set( const double xyz[3] )
{
xVal = xyz[0];
yVal = xyz[1];
zVal = xyz[2];
}
inline void VerdictVector::set( const VerdictVector& tail, const VerdictVector& head )
{
xVal = head.xVal - tail.xVal;
yVal = head.yVal - tail.yVal;
zVal = head.zVal - tail.zVal;
}
inline VerdictVector& VerdictVector::operator=( const VerdictVector& from )
{
xVal = from.xVal;
yVal = from.yVal;
zVal = from.zVal;
return *this;
}
inline void VerdictVector::set( const VerdictVector& to_copy )
{
*this = to_copy;
}
// Scale all values by scalar.
inline VerdictVector& VerdictVector::operator*=( const double scalar )
{
xVal *= scalar;
yVal *= scalar;
zVal *= scalar;
return *this;
}
// Scales all values by 1/scalar
inline VerdictVector& VerdictVector::operator/=( const double scalar )
{
assert( scalar != 0 );
xVal /= scalar;
yVal /= scalar;
zVal /= scalar;
return *this;
}
// Returns the normalized 'this'.
inline VerdictVector operator~( const VerdictVector& vec )
{
double mag = sqrt( vec.xVal * vec.xVal + vec.yVal * vec.yVal + vec.zVal * vec.zVal );
VerdictVector temp = vec;
if( mag != 0.0 )
{
temp /= mag;
}
return temp;
}
// Unary minus. Negates all values in vector.
inline VerdictVector VerdictVector::operator-() const
{
return VerdictVector( -xVal, -yVal, -zVal );
}
inline VerdictVector operator+( const VerdictVector& vector1, const VerdictVector& vector2 )
{
double xv = vector1.x() + vector2.x();
double yv = vector1.y() + vector2.y();
double zv = vector1.z() + vector2.z();
return VerdictVector( xv, yv, zv );
// return VerdictVector(vector1) += vector2;
}
inline VerdictVector operator-( const VerdictVector& vector1, const VerdictVector& vector2 )
{
double xv = vector1.x() - vector2.x();
double yv = vector1.y() - vector2.y();
double zv = vector1.z() - vector2.z();
return VerdictVector( xv, yv, zv );
// return VerdictVector(vector1) -= vector2;
}
// Cross products.
// vector1 cross vector2
inline VerdictVector operator*( const VerdictVector& vector1, const VerdictVector& vector2 )
{
return VerdictVector( vector1 ) *= vector2;
}
// Returns a scaled vector.
inline VerdictVector operator*( const VerdictVector& vector1, const double scalar )
{
return VerdictVector( vector1 ) *= scalar;
}
// Returns a scaled vector
inline VerdictVector operator*( const double scalar, const VerdictVector& vector1 )
{
return VerdictVector( vector1 ) *= scalar;
}
// Returns a vector scaled by 1/scalar
inline VerdictVector operator/( const VerdictVector& vector1, const double scalar )
{
return VerdictVector( vector1 ) /= scalar;
}
inline int operator==( const VerdictVector& v1, const VerdictVector& v2 )
{
return ( v1.xVal == v2.xVal && v1.yVal == v2.yVal && v1.zVal == v2.zVal );
}
inline int operator!=( const VerdictVector& v1, const VerdictVector& v2 )
{
return ( v1.xVal != v2.xVal || v1.yVal != v2.yVal || v1.zVal != v2.zVal );
}
inline double VerdictVector::length_squared() const
{
return ( xVal * xVal + yVal * yVal + zVal * zVal );
}
inline double VerdictVector::length() const
{
return ( sqrt( xVal * xVal + yVal * yVal + zVal * zVal ) );
}
inline double VerdictVector::normalize()
{
double mag = length();
if( mag != 0 )
{
xVal = xVal / mag;
yVal = yVal / mag;
zVal = zVal / mag;
}
return mag;
}
// Dot Product.
inline double operator%( const VerdictVector& vector1, const VerdictVector& vector2 )
{
return ( vector1.x() * vector2.x() + vector1.y() * vector2.y() + vector1.z() * vector2.z() );
}
#endif
|