1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722 | /*=========================================================================
Module: $RCSfile: V_QuadMetric.cpp,v $
Copyright (c) 2006 Sandia Corporation.
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/*
*
* QuadMetric.cpp contains quality calculations for Quads
*
* This file is part of VERDICT
*
*/
#define VERDICT_EXPORTS
#include "moab/verdict.h"
#include "VerdictVector.hpp"
#include "verdict_defines.hpp"
#include "V_GaussIntegration.hpp"
#include <memory.h>
//! the average area of a quad
double verdict_quad_size = 0;
/*!
weights based on the average size of a quad
*/
int get_weight( double& m11, double& m21, double& m12, double& m22 )
{
m11 = 1;
m21 = 0;
m12 = 0;
m22 = 1;
double scale = sqrt( verdict_quad_size / ( m11 * m22 - m21 * m12 ) );
m11 *= scale;
m21 *= scale;
m12 *= scale;
m22 *= scale;
return 1;
}
//! return the average area of a quad
C_FUNC_DEF void v_set_quad_size( double size )
{
verdict_quad_size = size;
}
//! returns whether the quad is collapsed or not
VerdictBoolean is_collapsed_quad( double coordinates[][3] )
{
if( coordinates[3][0] == coordinates[2][0] && coordinates[3][1] == coordinates[2][1] &&
coordinates[3][2] == coordinates[2][2] )
return VERDICT_TRUE;
else
return VERDICT_FALSE;
}
void make_quad_edges( VerdictVector edges[4], double coordinates[][3] )
{
edges[0].set( coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1],
coordinates[1][2] - coordinates[0][2] );
edges[1].set( coordinates[2][0] - coordinates[1][0], coordinates[2][1] - coordinates[1][1],
coordinates[2][2] - coordinates[1][2] );
edges[2].set( coordinates[3][0] - coordinates[2][0], coordinates[3][1] - coordinates[2][1],
coordinates[3][2] - coordinates[2][2] );
edges[3].set( coordinates[0][0] - coordinates[3][0], coordinates[0][1] - coordinates[3][1],
coordinates[0][2] - coordinates[3][2] );
}
void signed_corner_areas( double areas[4], double coordinates[][3] )
{
VerdictVector edges[4];
make_quad_edges( edges, coordinates );
VerdictVector corner_normals[4];
corner_normals[0] = edges[3] * edges[0];
corner_normals[1] = edges[0] * edges[1];
corner_normals[2] = edges[1] * edges[2];
corner_normals[3] = edges[2] * edges[3];
// principal axes
VerdictVector principal_axes[2];
principal_axes[0] = edges[0] - edges[2];
principal_axes[1] = edges[1] - edges[3];
// quad center unit normal
VerdictVector unit_center_normal;
unit_center_normal = principal_axes[0] * principal_axes[1];
unit_center_normal.normalize();
areas[0] = unit_center_normal % corner_normals[0];
areas[1] = unit_center_normal % corner_normals[1];
areas[2] = unit_center_normal % corner_normals[2];
areas[3] = unit_center_normal % corner_normals[3];
}
/*!
localize the coordinates of a quad
localizing puts the centriod of the quad
at the orgin and also rotates the quad
such that edge (0,1) is aligned with the x axis
and the quad normal lines up with the y axis.
*/
void localize_quad_coordinates( VerdictVector nodes[4] )<--- The function 'localize_quad_coordinates' is never used.
{
int i;
VerdictVector global[4] = { nodes[0], nodes[1], nodes[2], nodes[3] };
VerdictVector center = ( global[0] + global[1] + global[2] + global[3] ) / 4.0;
for( i = 0; i < 4; i++ )
global[i] -= center;
VerdictVector vector_diff;
VerdictVector vector_sum;
VerdictVector ref_point( 0.0, 0.0, 0.0 );<--- Variable 'ref_point' is assigned a value that is never used.
VerdictVector tmp_vector, normal( 0.0, 0.0, 0.0 );
VerdictVector vector1, vector2;
for( i = 0; i < 4; i++ )
{
vector1 = global[i];
vector2 = global[( i + 1 ) % 4];
vector_diff = vector2 - vector1;
ref_point += vector1;<--- Variable 'ref_point' is assigned a value that is never used.
vector_sum = vector1 + vector2;
tmp_vector.set( vector_diff.y() * vector_sum.z(), vector_diff.z() * vector_sum.x(),
vector_diff.x() * vector_sum.y() );
normal += tmp_vector;
}
normal.normalize();
normal *= -1.0;
VerdictVector local_x_axis = global[1] - global[0];
local_x_axis.normalize();
VerdictVector local_y_axis = normal * local_x_axis;
local_y_axis.normalize();
for( i = 0; i < 4; i++ )
{
nodes[i].x( global[i] % local_x_axis );
nodes[i].y( global[i] % local_y_axis );
nodes[i].z( global[i] % normal );
}
}
/*!
moves and rotates the quad such that it enables us to
use components of ef's
*/
void localize_quad_for_ef( VerdictVector node_pos[4] )<--- The function 'localize_quad_for_ef' is never used.
{
VerdictVector centroid( node_pos[0] );
centroid += node_pos[1];
centroid += node_pos[2];
centroid += node_pos[3];
centroid /= 4.0;
node_pos[0] -= centroid;
node_pos[1] -= centroid;
node_pos[2] -= centroid;
node_pos[3] -= centroid;
VerdictVector rotate = node_pos[1] + node_pos[2] - node_pos[3] - node_pos[0];
rotate.normalize();
double cosine = rotate.x();
double sine = rotate.y();
double xnew;<--- The scope of the variable 'xnew' can be reduced. [+]The scope of the variable 'xnew' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
for( int i = 0; i < 4; i++ )
{
xnew = cosine * node_pos[i].x() + sine * node_pos[i].y();
node_pos[i].y( -sine * node_pos[i].x() + cosine * node_pos[i].y() );
node_pos[i].x( xnew );
}
}
/*!
returns the normal vector of a quad
*/
VerdictVector quad_normal( double coordinates[][3] )
{
// get normal at node 0
VerdictVector edge0, edge1;
edge0.set( coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1],
coordinates[1][2] - coordinates[0][2] );
edge1.set( coordinates[3][0] - coordinates[0][0], coordinates[3][1] - coordinates[0][1],
coordinates[3][2] - coordinates[0][2] );
VerdictVector norm0 = edge0 * edge1;
norm0.normalize();
// because some faces may have obtuse angles, check another normal at
// node 2 for consistent sense
edge0.set( coordinates[2][0] - coordinates[3][0], coordinates[2][1] - coordinates[3][1],
coordinates[2][2] - coordinates[3][2] );
edge1.set( coordinates[2][0] - coordinates[1][0], coordinates[2][1] - coordinates[1][1],
coordinates[2][2] - coordinates[1][2] );
VerdictVector norm2 = edge0 * edge1;
norm2.normalize();
// if these two agree, we are done, else test a third to decide
if( ( norm0 % norm2 ) > 0.0 )
{
norm0 += norm2;
norm0 *= 0.5;
return norm0;
}
// test normal at node1
edge0.set( coordinates[1][0] - coordinates[2][0], coordinates[1][1] - coordinates[2][1],
coordinates[1][2] - coordinates[2][2] );
edge1.set( coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1],
coordinates[1][2] - coordinates[0][2] );
VerdictVector norm1 = edge0 * edge1;
norm1.normalize();
if( ( norm0 % norm1 ) > 0.0 )
{
norm0 += norm1;
norm0 *= 0.5;
return norm0;
}
else
{
norm2 += norm1;
norm2 *= 0.5;
return norm2;
}
}
/*!
the edge ratio of a quad
NB (P. Pebay 01/19/07):
Hmax / Hmin where Hmax and Hmin are respectively the maximum and the
minimum edge lengths
*/
C_FUNC_DEF double v_quad_edge_ratio( int /*num_nodes*/, double coordinates[][3] )
{
VerdictVector edges[4];
make_quad_edges( edges, coordinates );
double a2 = edges[0].length_squared();
double b2 = edges[1].length_squared();
double c2 = edges[2].length_squared();
double d2 = edges[3].length_squared();
double mab, Mab, mcd, Mcd, m2, M2;
if( a2 < b2 )
{
mab = a2;
Mab = b2;
}
else // b2 <= a2
{
mab = b2;
Mab = a2;
}
if( c2 < d2 )
{
mcd = c2;
Mcd = d2;
}
else // d2 <= c2
{
mcd = d2;
Mcd = c2;
}
m2 = mab < mcd ? mab : mcd;
M2 = Mab > Mcd ? Mab : Mcd;
if( m2 < VERDICT_DBL_MIN )
return (double)VERDICT_DBL_MAX;
else
{
double edge_ratio = sqrt( M2 / m2 );
if( edge_ratio > 0 ) return (double)VERDICT_MIN( edge_ratio, VERDICT_DBL_MAX );
return (double)VERDICT_MAX( edge_ratio, -VERDICT_DBL_MAX );
}
}
/*!
maximum of edge ratio of a quad
maximum edge length ratio at quad center
*/
C_FUNC_DEF double v_quad_max_edge_ratio( int /*num_nodes*/, double coordinates[][3] )
{
VerdictVector quad_nodes[4];
quad_nodes[0].set( coordinates[0][0], coordinates[0][1], coordinates[0][2] );
quad_nodes[1].set( coordinates[1][0], coordinates[1][1], coordinates[1][2] );
quad_nodes[2].set( coordinates[2][0], coordinates[2][1], coordinates[2][2] );
quad_nodes[3].set( coordinates[3][0], coordinates[3][1], coordinates[3][2] );
VerdictVector principal_axes[2];
principal_axes[0] = quad_nodes[1] + quad_nodes[2] - quad_nodes[0] - quad_nodes[3];
principal_axes[1] = quad_nodes[2] + quad_nodes[3] - quad_nodes[0] - quad_nodes[1];
double len1 = principal_axes[0].length();
double len2 = principal_axes[1].length();
if( len1 < VERDICT_DBL_MIN || len2 < VERDICT_DBL_MIN ) return (double)VERDICT_DBL_MAX;
double max_edge_ratio = VERDICT_MAX( len1 / len2, len2 / len1 );
if( max_edge_ratio > 0 ) return (double)VERDICT_MIN( max_edge_ratio, VERDICT_DBL_MAX );
return (double)VERDICT_MAX( max_edge_ratio, -VERDICT_DBL_MAX );
}
/*!
the aspect ratio of a quad
NB (P. Pebay 01/20/07):
this is a generalization of the triangle aspect ratio
using Heron's formula.
*/
C_FUNC_DEF double v_quad_aspect_ratio( int /*num_nodes*/, double coordinates[][3] )
{
VerdictVector edges[4];
make_quad_edges( edges, coordinates );
double a1 = edges[0].length();
double b1 = edges[1].length();
double c1 = edges[2].length();
double d1 = edges[3].length();
double ma = a1 > b1 ? a1 : b1;
double mb = c1 > d1 ? c1 : d1;
double hm = ma > mb ? ma : mb;
VerdictVector ab = edges[0] * edges[1];
VerdictVector cd = edges[2] * edges[3];
double denominator = ab.length() + cd.length();
if( denominator < VERDICT_DBL_MIN ) return (double)VERDICT_DBL_MAX;
double aspect_ratio = .5 * hm * ( a1 + b1 + c1 + d1 ) / denominator;
if( aspect_ratio > 0 ) return (double)VERDICT_MIN( aspect_ratio, VERDICT_DBL_MAX );
return (double)VERDICT_MAX( aspect_ratio, -VERDICT_DBL_MAX );
}
/*!
the radius ratio of a quad
NB (P. Pebay 01/19/07):
this metric is called "radius ratio" by extension of a concept that does
not exist in general with quads -- although a different name should probably
be used in the future.
*/
C_FUNC_DEF double v_quad_radius_ratio( int /*num_nodes*/, double coordinates[][3] )
{
static const double normal_coeff = 1. / ( 2. * sqrt( 2. ) );
VerdictVector edges[4];
make_quad_edges( edges, coordinates );
double a2 = edges[0].length_squared();
double b2 = edges[1].length_squared();
double c2 = edges[2].length_squared();
double d2 = edges[3].length_squared();
VerdictVector diag;
diag.set( coordinates[2][0] - coordinates[0][0], coordinates[2][1] - coordinates[0][1],
coordinates[2][2] - coordinates[0][2] );
double m2 = diag.length_squared();
diag.set( coordinates[3][0] - coordinates[1][0], coordinates[3][1] - coordinates[1][1],
coordinates[3][2] - coordinates[1][2] );
double n2 = diag.length_squared();
double t0 = a2 > b2 ? a2 : b2;
double t1 = c2 > d2 ? c2 : d2;
double t2 = m2 > n2 ? m2 : n2;
double h2 = t0 > t1 ? t0 : t1;
h2 = h2 > t2 ? h2 : t2;
VerdictVector ab = edges[0] * edges[1];
VerdictVector bc = edges[1] * edges[2];
VerdictVector cd = edges[2] * edges[3];
VerdictVector da = edges[3] * edges[0];
t0 = da.length();
t1 = ab.length();
t2 = bc.length();
double t3 = cd.length();
t0 = t0 < t1 ? t0 : t1;
t2 = t2 < t3 ? t2 : t3;
t0 = t0 < t2 ? t0 : t2;
if( t0 < VERDICT_DBL_MIN ) return (double)VERDICT_DBL_MAX;
double radius_ratio = normal_coeff * sqrt( ( a2 + b2 + c2 + d2 ) * h2 ) / t0;
if( radius_ratio > 0 ) return (double)VERDICT_MIN( radius_ratio, VERDICT_DBL_MAX );
return (double)VERDICT_MAX( radius_ratio, -VERDICT_DBL_MAX );
}
/*!
the average Frobenius aspect of a quad
NB (P. Pebay 01/20/07):
this metric is calculated by averaging the 4 Frobenius aspects at
each corner of the quad, when the reference triangle is right isosceles.
*/
C_FUNC_DEF double v_quad_med_aspect_frobenius( int /*num_nodes*/, double coordinates[][3] )
{
VerdictVector edges[4];
make_quad_edges( edges, coordinates );
double a2 = edges[0].length_squared();
double b2 = edges[1].length_squared();
double c2 = edges[2].length_squared();
double d2 = edges[3].length_squared();
VerdictVector ab = edges[0] * edges[1];
VerdictVector bc = edges[1] * edges[2];
VerdictVector cd = edges[2] * edges[3];
VerdictVector da = edges[3] * edges[0];
double ab1 = ab.length();
double bc1 = bc.length();
double cd1 = cd.length();
double da1 = da.length();
if( ab1 < VERDICT_DBL_MIN || bc1 < VERDICT_DBL_MIN || cd1 < VERDICT_DBL_MIN || da1 < VERDICT_DBL_MIN )
return (double)VERDICT_DBL_MAX;
double qsum = ( a2 + b2 ) / ab1;
qsum += ( b2 + c2 ) / bc1;
qsum += ( c2 + d2 ) / cd1;
qsum += ( d2 + a2 ) / da1;
double med_aspect_frobenius = .125 * qsum;
if( med_aspect_frobenius > 0 ) return (double)VERDICT_MIN( med_aspect_frobenius, VERDICT_DBL_MAX );
return (double)VERDICT_MAX( med_aspect_frobenius, -VERDICT_DBL_MAX );
}
/*!
the maximum Frobenius aspect of a quad
NB (P. Pebay 01/20/07):
this metric is calculated by taking the maximum of the 4 Frobenius aspects at
each corner of the quad, when the reference triangle is right isosceles.
*/
C_FUNC_DEF double v_quad_max_aspect_frobenius( int /*num_nodes*/, double coordinates[][3] )
{
VerdictVector edges[4];
make_quad_edges( edges, coordinates );
double a2 = edges[0].length_squared();
double b2 = edges[1].length_squared();
double c2 = edges[2].length_squared();
double d2 = edges[3].length_squared();
VerdictVector ab = edges[0] * edges[1];
VerdictVector bc = edges[1] * edges[2];
VerdictVector cd = edges[2] * edges[3];
VerdictVector da = edges[3] * edges[0];
double ab1 = ab.length();
double bc1 = bc.length();
double cd1 = cd.length();
double da1 = da.length();
if( ab1 < VERDICT_DBL_MIN || bc1 < VERDICT_DBL_MIN || cd1 < VERDICT_DBL_MIN || da1 < VERDICT_DBL_MIN )
return (double)VERDICT_DBL_MAX;
double qmax = ( a2 + b2 ) / ab1;
double qcur = ( b2 + c2 ) / bc1;
qmax = qmax > qcur ? qmax : qcur;
qcur = ( c2 + d2 ) / cd1;
qmax = qmax > qcur ? qmax : qcur;
qcur = ( d2 + a2 ) / da1;
qmax = qmax > qcur ? qmax : qcur;
double max_aspect_frobenius = .5 * qmax;
if( max_aspect_frobenius > 0 ) return (double)VERDICT_MIN( max_aspect_frobenius, VERDICT_DBL_MAX );
return (double)VERDICT_MAX( max_aspect_frobenius, -VERDICT_DBL_MAX );
}
/*!
skew of a quad
maximum ||cos A|| where A is the angle between edges at quad center
*/
C_FUNC_DEF double v_quad_skew( int /*num_nodes*/, double coordinates[][3] )
{
VerdictVector node_pos[4];
for( int i = 0; i < 4; i++ )
node_pos[i].set( coordinates[i][0], coordinates[i][1], coordinates[i][2] );
VerdictVector principle_axes[2];
principle_axes[0] = node_pos[1] + node_pos[2] - node_pos[3] - node_pos[0];
principle_axes[1] = node_pos[2] + node_pos[3] - node_pos[0] - node_pos[1];
if( principle_axes[0].normalize() < VERDICT_DBL_MIN ) return 0.0;
if( principle_axes[1].normalize() < VERDICT_DBL_MIN ) return 0.0;
double skew = fabs( principle_axes[0] % principle_axes[1] );
return (double)VERDICT_MIN( skew, VERDICT_DBL_MAX );
}
/*!
taper of a quad
maximum ratio of lengths derived from opposite edges
*/
C_FUNC_DEF double v_quad_taper( int /*num_nodes*/, double coordinates[][3] )
{
VerdictVector node_pos[4];
for( int i = 0; i < 4; i++ )
node_pos[i].set( coordinates[i][0], coordinates[i][1], coordinates[i][2] );
VerdictVector principle_axes[2];
principle_axes[0] = node_pos[1] + node_pos[2] - node_pos[3] - node_pos[0];
principle_axes[1] = node_pos[2] + node_pos[3] - node_pos[0] - node_pos[1];
VerdictVector cross_derivative = node_pos[0] + node_pos[2] - node_pos[1] - node_pos[3];
double lengths[2];
lengths[0] = principle_axes[0].length();
lengths[1] = principle_axes[1].length();
// get min length
lengths[0] = VERDICT_MIN( lengths[0], lengths[1] );
if( lengths[0] < VERDICT_DBL_MIN ) return VERDICT_DBL_MAX;
double taper = cross_derivative.length() / lengths[0];
return (double)VERDICT_MIN( taper, VERDICT_DBL_MAX );
}
/*!
warpage of a quad
deviation of element from planarity
*/
C_FUNC_DEF double v_quad_warpage( int /*num_nodes*/, double coordinates[][3] )
{
VerdictVector edges[4];
make_quad_edges( edges, coordinates );
VerdictVector corner_normals[4];
corner_normals[0] = edges[3] * edges[0];
corner_normals[1] = edges[0] * edges[1];
corner_normals[2] = edges[1] * edges[2];
corner_normals[3] = edges[2] * edges[3];
if( corner_normals[0].normalize() < VERDICT_DBL_MIN || corner_normals[1].normalize() < VERDICT_DBL_MIN ||
corner_normals[2].normalize() < VERDICT_DBL_MIN || corner_normals[3].normalize() < VERDICT_DBL_MIN )
return (double)VERDICT_DBL_MIN;
double warpage =
pow( VERDICT_MIN( corner_normals[0] % corner_normals[2], corner_normals[1] % corner_normals[3] ), 3 );
if( warpage > 0 ) return (double)VERDICT_MIN( warpage, VERDICT_DBL_MAX );
return (double)VERDICT_MAX( warpage, -VERDICT_DBL_MAX );
}
/*!
the area of a quad
jacobian at quad center
*/
C_FUNC_DEF double v_quad_area( int /*num_nodes*/, double coordinates[][3] )
{
double corner_areas[4];
signed_corner_areas( corner_areas, coordinates );
double area = 0.25 * ( corner_areas[0] + corner_areas[1] + corner_areas[2] + corner_areas[3] );
if( area > 0 ) return (double)VERDICT_MIN( area, VERDICT_DBL_MAX );
return (double)VERDICT_MAX( area, -VERDICT_DBL_MAX );
}
/*!
the stretch of a quad
sqrt(2) * minimum edge length / maximum diagonal length
*/
C_FUNC_DEF double v_quad_stretch( int /*num_nodes*/, double coordinates[][3] )
{
VerdictVector edges[4], temp;
make_quad_edges( edges, coordinates );
double lengths_squared[4];
lengths_squared[0] = edges[0].length_squared();
lengths_squared[1] = edges[1].length_squared();
lengths_squared[2] = edges[2].length_squared();
lengths_squared[3] = edges[3].length_squared();
temp.set( coordinates[2][0] - coordinates[0][0], coordinates[2][1] - coordinates[0][1],
coordinates[2][2] - coordinates[0][2] );
double diag02 = temp.length_squared();
temp.set( coordinates[3][0] - coordinates[1][0], coordinates[3][1] - coordinates[1][1],
coordinates[3][2] - coordinates[1][2] );
double diag13 = temp.length_squared();
static const double QUAD_STRETCH_FACTOR = sqrt( 2.0 );
// 'diag02' is now the max diagonal of the quad
diag02 = VERDICT_MAX( diag02, diag13 );
if( diag02 < VERDICT_DBL_MIN )
return (double)VERDICT_DBL_MAX;
else
{
double stretch =
(double)( QUAD_STRETCH_FACTOR * sqrt( VERDICT_MIN( VERDICT_MIN( lengths_squared[0], lengths_squared[1] ),
VERDICT_MIN( lengths_squared[2], lengths_squared[3] ) ) /
diag02 ) );
return (double)VERDICT_MIN( stretch, VERDICT_DBL_MAX );
}
}
/*!
the largest angle of a quad
largest included quad area (degrees)
*/
C_FUNC_DEF double v_quad_maximum_angle( int /*num_nodes*/, double coordinates[][3] )
{
// if this is a collapsed quad, just pass it on to
// the tri_largest_angle routine
if( is_collapsed_quad( coordinates ) == VERDICT_TRUE ) return v_tri_maximum_angle( 3, coordinates );
double angle;
double max_angle = 0.0;
VerdictVector edges[4];
edges[0].set( coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1],
coordinates[1][2] - coordinates[0][2] );
edges[1].set( coordinates[2][0] - coordinates[1][0], coordinates[2][1] - coordinates[1][1],
coordinates[2][2] - coordinates[1][2] );
edges[2].set( coordinates[3][0] - coordinates[2][0], coordinates[3][1] - coordinates[2][1],
coordinates[3][2] - coordinates[2][2] );
edges[3].set( coordinates[0][0] - coordinates[3][0], coordinates[0][1] - coordinates[3][1],
coordinates[0][2] - coordinates[3][2] );
// go around each node and calculate the angle
// at each node
double length[4];<--- Shadow variable
length[0] = edges[0].length();
length[1] = edges[1].length();
length[2] = edges[2].length();
length[3] = edges[3].length();
if( length[0] <= VERDICT_DBL_MIN || length[1] <= VERDICT_DBL_MIN || length[2] <= VERDICT_DBL_MIN ||
length[3] <= VERDICT_DBL_MIN )
return 0.0;
angle = acos( -( edges[0] % edges[1] ) / ( length[0] * length[1] ) );
max_angle = VERDICT_MAX( angle, max_angle );
angle = acos( -( edges[1] % edges[2] ) / ( length[1] * length[2] ) );
max_angle = VERDICT_MAX( angle, max_angle );
angle = acos( -( edges[2] % edges[3] ) / ( length[2] * length[3] ) );
max_angle = VERDICT_MAX( angle, max_angle );
angle = acos( -( edges[3] % edges[0] ) / ( length[3] * length[0] ) );
max_angle = VERDICT_MAX( angle, max_angle );
max_angle = max_angle * 180.0 / VERDICT_PI;
// if any signed areas are < 0, then you are getting the wrong angle
double areas[4];
signed_corner_areas( areas, coordinates );
if( areas[0] < 0 || areas[1] < 0 || areas[2] < 0 || areas[3] < 0 )
{
max_angle = 360 - max_angle;
}
if( max_angle > 0 ) return (double)VERDICT_MIN( max_angle, VERDICT_DBL_MAX );
return (double)VERDICT_MAX( max_angle, -VERDICT_DBL_MAX );
}
/*!
the smallest angle of a quad
smallest included quad angle (degrees)
*/
C_FUNC_DEF double v_quad_minimum_angle( int /*num_nodes*/, double coordinates[][3] )
{
// if this quad is a collapsed quad, then just
// send it to the tri_smallest_angle routine
if( is_collapsed_quad( coordinates ) == VERDICT_TRUE ) return v_tri_minimum_angle( 3, coordinates );
double angle;
double min_angle = 360.0;
VerdictVector edges[4];
edges[0].set( coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1],
coordinates[1][2] - coordinates[0][2] );
edges[1].set( coordinates[2][0] - coordinates[1][0], coordinates[2][1] - coordinates[1][1],
coordinates[2][2] - coordinates[1][2] );
edges[2].set( coordinates[3][0] - coordinates[2][0], coordinates[3][1] - coordinates[2][1],
coordinates[3][2] - coordinates[2][2] );
edges[3].set( coordinates[0][0] - coordinates[3][0], coordinates[0][1] - coordinates[3][1],
coordinates[0][2] - coordinates[3][2] );
// go around each node and calculate the angle
// at each node
double length[4];<--- Shadow variable
length[0] = edges[0].length();
length[1] = edges[1].length();
length[2] = edges[2].length();
length[3] = edges[3].length();
if( length[0] <= VERDICT_DBL_MIN || length[1] <= VERDICT_DBL_MIN || length[2] <= VERDICT_DBL_MIN ||
length[3] <= VERDICT_DBL_MIN )
return 360.0;
angle = acos( -( edges[0] % edges[1] ) / ( length[0] * length[1] ) );
min_angle = VERDICT_MIN( angle, min_angle );
angle = acos( -( edges[1] % edges[2] ) / ( length[1] * length[2] ) );
min_angle = VERDICT_MIN( angle, min_angle );
angle = acos( -( edges[2] % edges[3] ) / ( length[2] * length[3] ) );
min_angle = VERDICT_MIN( angle, min_angle );
angle = acos( -( edges[3] % edges[0] ) / ( length[3] * length[0] ) );
min_angle = VERDICT_MIN( angle, min_angle );
min_angle = min_angle * 180.0 / VERDICT_PI;
if( min_angle > 0 ) return (double)VERDICT_MIN( min_angle, VERDICT_DBL_MAX );
return (double)VERDICT_MAX( min_angle, -VERDICT_DBL_MAX );
}
/*!
the oddy of a quad
general distortion measure based on left Cauchy-Green Tensor
*/
C_FUNC_DEF double v_quad_oddy( int /*num_nodes*/, double coordinates[][3] )
{
double max_oddy = 0.;
VerdictVector first, second, node_pos[4];
double g, g11, g12, g22, cur_oddy;<--- The scope of the variable 'g' can be reduced. [+]The scope of the variable 'g' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level. <--- The scope of the variable 'g11' can be reduced. [+]The scope of the variable 'g11' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level. <--- The scope of the variable 'g12' can be reduced. [+]The scope of the variable 'g12' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level. <--- The scope of the variable 'g22' can be reduced. [+]The scope of the variable 'g22' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
int i;
for( i = 0; i < 4; i++ )
node_pos[i].set( coordinates[i][0], coordinates[i][1], coordinates[i][2] );
for( i = 0; i < 4; i++ )
{
first = node_pos[i] - node_pos[( i + 1 ) % 4];
second = node_pos[i] - node_pos[( i + 3 ) % 4];
g11 = first % first;
g12 = first % second;
g22 = second % second;
g = g11 * g22 - g12 * g12;
if( g < VERDICT_DBL_MIN )
cur_oddy = VERDICT_DBL_MAX;
else
cur_oddy = ( ( g11 - g22 ) * ( g11 - g22 ) + 4. * g12 * g12 ) / 2. / g;
max_oddy = VERDICT_MAX( max_oddy, cur_oddy );
}
if( max_oddy > 0 ) return (double)VERDICT_MIN( max_oddy, VERDICT_DBL_MAX );
return (double)VERDICT_MAX( max_oddy, -VERDICT_DBL_MAX );
}
/*!
the condition of a quad
maximum condition number of the Jacobian matrix at 4 corners
*/
C_FUNC_DEF double v_quad_condition( int /*num_nodes*/, double coordinates[][3] )
{
if( is_collapsed_quad( coordinates ) == VERDICT_TRUE ) return v_tri_condition( 3, coordinates );
double areas[4];
signed_corner_areas( areas, coordinates );
double max_condition = 0.;
VerdictVector xxi, xet;
double condition;
for( int i = 0; i < 4; i++ )
{
xxi.set( coordinates[i][0] - coordinates[( i + 1 ) % 4][0], coordinates[i][1] - coordinates[( i + 1 ) % 4][1],
coordinates[i][2] - coordinates[( i + 1 ) % 4][2] );
xet.set( coordinates[i][0] - coordinates[( i + 3 ) % 4][0], coordinates[i][1] - coordinates[( i + 3 ) % 4][1],
coordinates[i][2] - coordinates[( i + 3 ) % 4][2] );
if( areas[i] < VERDICT_DBL_MIN )
condition = VERDICT_DBL_MAX;
else
condition = ( xxi % xxi + xet % xet ) / areas[i];
max_condition = VERDICT_MAX( max_condition, condition );
}
max_condition /= 2;
if( max_condition > 0 ) return (double)VERDICT_MIN( max_condition, VERDICT_DBL_MAX );
return (double)VERDICT_MAX( max_condition, -VERDICT_DBL_MAX );
}
/*!
the jacobian of a quad
minimum pointwise volume of local map at 4 corners and center of quad
*/
C_FUNC_DEF double v_quad_jacobian( int /*num_nodes*/, double coordinates[][3] )
{
if( is_collapsed_quad( coordinates ) == VERDICT_TRUE ) return (double)( v_tri_area( 3, coordinates ) * 2.0 );
double areas[4];
signed_corner_areas( areas, coordinates );
double jacobian = VERDICT_MIN( VERDICT_MIN( areas[0], areas[1] ), VERDICT_MIN( areas[2], areas[3] ) );
if( jacobian > 0 ) return (double)VERDICT_MIN( jacobian, VERDICT_DBL_MAX );
return (double)VERDICT_MAX( jacobian, -VERDICT_DBL_MAX );
}
/*!
scaled jacobian of a quad
Minimum Jacobian divided by the lengths of the 2 edge vector
*/
C_FUNC_DEF double v_quad_scaled_jacobian( int /*num_nodes*/, double coordinates[][3] )
{
if( is_collapsed_quad( coordinates ) == VERDICT_TRUE ) return v_tri_scaled_jacobian( 3, coordinates );
double corner_areas[4], min_scaled_jac = VERDICT_DBL_MAX, scaled_jac;
signed_corner_areas( corner_areas, coordinates );
VerdictVector edges[4];
make_quad_edges( edges, coordinates );
double length[4];<--- Shadow variable
length[0] = edges[0].length();
length[1] = edges[1].length();
length[2] = edges[2].length();
length[3] = edges[3].length();
if( length[0] < VERDICT_DBL_MIN || length[1] < VERDICT_DBL_MIN || length[2] < VERDICT_DBL_MIN ||
length[3] < VERDICT_DBL_MIN )
return 0.0;
scaled_jac = corner_areas[0] / ( length[0] * length[3] );
min_scaled_jac = VERDICT_MIN( scaled_jac, min_scaled_jac );
scaled_jac = corner_areas[1] / ( length[1] * length[0] );
min_scaled_jac = VERDICT_MIN( scaled_jac, min_scaled_jac );
scaled_jac = corner_areas[2] / ( length[2] * length[1] );
min_scaled_jac = VERDICT_MIN( scaled_jac, min_scaled_jac );
scaled_jac = corner_areas[3] / ( length[3] * length[2] );
min_scaled_jac = VERDICT_MIN( scaled_jac, min_scaled_jac );
if( min_scaled_jac > 0 ) return (double)VERDICT_MIN( min_scaled_jac, VERDICT_DBL_MAX );
return (double)VERDICT_MAX( min_scaled_jac, -VERDICT_DBL_MAX );
}
/*!
the shear of a quad
2/Condition number of Jacobian Skew matrix
*/
C_FUNC_DEF double v_quad_shear( int /*num_nodes*/, double coordinates[][3] )
{
double scaled_jacobian = v_quad_scaled_jacobian( 4, coordinates );
if( scaled_jacobian <= VERDICT_DBL_MIN )
return 0.0;
else
return (double)VERDICT_MIN( scaled_jacobian, VERDICT_DBL_MAX );
}
/*!
the shape of a quad
2/Condition number of weighted Jacobian matrix
*/
C_FUNC_DEF double v_quad_shape( int /*num_nodes*/, double coordinates[][3] )
{
double corner_areas[4], min_shape = VERDICT_DBL_MAX, shape;
signed_corner_areas( corner_areas, coordinates );
VerdictVector edges[4];
make_quad_edges( edges, coordinates );
double length_squared[4];<--- Shadow variable
length_squared[0] = edges[0].length_squared();
length_squared[1] = edges[1].length_squared();
length_squared[2] = edges[2].length_squared();
length_squared[3] = edges[3].length_squared();
if( length_squared[0] <= VERDICT_DBL_MIN || length_squared[1] <= VERDICT_DBL_MIN ||
length_squared[2] <= VERDICT_DBL_MIN || length_squared[3] <= VERDICT_DBL_MIN )
return 0.0;
shape = corner_areas[0] / ( length_squared[0] + length_squared[3] );
min_shape = VERDICT_MIN( shape, min_shape );
shape = corner_areas[1] / ( length_squared[1] + length_squared[0] );
min_shape = VERDICT_MIN( shape, min_shape );
shape = corner_areas[2] / ( length_squared[2] + length_squared[1] );
min_shape = VERDICT_MIN( shape, min_shape );
shape = corner_areas[3] / ( length_squared[3] + length_squared[2] );
min_shape = VERDICT_MIN( shape, min_shape );
min_shape *= 2;
if( min_shape < VERDICT_DBL_MIN ) min_shape = 0;
if( min_shape > 0 ) return (double)VERDICT_MIN( min_shape, VERDICT_DBL_MAX );
return (double)VERDICT_MAX( min_shape, -VERDICT_DBL_MAX );
}
/*!
the relative size of a quad
Min( J, 1/J ), where J is determinant of weighted Jacobian matrix
*/
C_FUNC_DEF double v_quad_relative_size_squared( int /*num_nodes*/, double coordinates[][3] )
{
double quad_area = v_quad_area( 4, coordinates );
double rel_size = 0;
v_set_quad_size( quad_area );
double w11, w21, w12, w22;
get_weight( w11, w21, w12, w22 );
double avg_area = determinant( w11, w21, w12, w22 );
if( avg_area > VERDICT_DBL_MIN )
{
w11 = quad_area / avg_area;
if( w11 > VERDICT_DBL_MIN )
{
rel_size = VERDICT_MIN( w11, 1 / w11 );
rel_size *= rel_size;
}
}
if( rel_size > 0 ) return (double)VERDICT_MIN( rel_size, VERDICT_DBL_MAX );
return (double)VERDICT_MAX( rel_size, -VERDICT_DBL_MAX );
}
/*!
the relative shape and size of a quad
Product of Shape and Relative Size
*/
C_FUNC_DEF double v_quad_shape_and_size( int num_nodes, double coordinates[][3] )
{
double shape, size;
size = v_quad_relative_size_squared( num_nodes, coordinates );
shape = v_quad_shape( num_nodes, coordinates );
double shape_and_size = shape * size;
if( shape_and_size > 0 ) return (double)VERDICT_MIN( shape_and_size, VERDICT_DBL_MAX );
return (double)VERDICT_MAX( shape_and_size, -VERDICT_DBL_MAX );
}
/*!
the shear and size of a quad
product of shear and relative size
*/
C_FUNC_DEF double v_quad_shear_and_size( int num_nodes, double coordinates[][3] )
{
double shear, size;
shear = v_quad_shear( num_nodes, coordinates );
size = v_quad_relative_size_squared( num_nodes, coordinates );
double shear_and_size = shear * size;
if( shear_and_size > 0 ) return (double)VERDICT_MIN( shear_and_size, VERDICT_DBL_MAX );
return (double)VERDICT_MAX( shear_and_size, -VERDICT_DBL_MAX );
}
/*!
the distortion of a quad
*/
C_FUNC_DEF double v_quad_distortion( int num_nodes, double coordinates[][3] )
{
// To calculate distortion for linear and 2nd order quads
// distortion = {min(|J|)/actual area}*{parent area}
// parent area = 4 for a quad.
// min |J| is the minimum over nodes and gaussian integration points
// created by Ling Pan, CAT on 4/30/01
double element_area = 0.0, distrt, thickness_gauss;<--- The scope of the variable 'distrt' can be reduced. [+]The scope of the variable 'distrt' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level. <--- The scope of the variable 'thickness_gauss' can be reduced. [+]The scope of the variable 'thickness_gauss' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
double cur_jacobian = 0., sign_jacobian, jacobian;<--- The scope of the variable 'cur_jacobian' can be reduced. [+]The scope of the variable 'cur_jacobian' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:<--- Variable 'cur_jacobian' is assigned a value that is never used.
void f(int x)<--- Variable 'cur_jacobian' is assigned a value that is never used.
{<--- Variable 'cur_jacobian' is assigned a value that is never used.
int i = 0;<--- Variable 'cur_jacobian' is assigned a value that is never used.
if (x) {<--- Variable 'cur_jacobian' is assigned a value that is never used.
// it's safe to move 'int i = 0;' here<--- Variable 'cur_jacobian' is assigned a value that is never used.
for (int n = 0; n < 10; ++n) {<--- Variable 'cur_jacobian' is assigned a value that is never used.
// it is possible but not safe to move 'int i = 0;' here<--- Variable 'cur_jacobian' is assigned a value that is never used.
do_something(&i);<--- Variable 'cur_jacobian' is assigned a value that is never used.
}<--- Variable 'cur_jacobian' is assigned a value that is never used.
}<--- Variable 'cur_jacobian' is assigned a value that is never used.
}<--- Variable 'cur_jacobian' is assigned a value that is never used.
When you see this message it is always safe to reduce the variable scope 1 level. <--- The scope of the variable 'jacobian' can be reduced. [+]The scope of the variable 'jacobian' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:<--- Variable 'cur_jacobian' is assigned a value that is never used.
void f(int x)<--- Variable 'cur_jacobian' is assigned a value that is never used.
{<--- Variable 'cur_jacobian' is assigned a value that is never used.
int i = 0;<--- Variable 'cur_jacobian' is assigned a value that is never used.
if (x) {<--- Variable 'cur_jacobian' is assigned a value that is never used.
// it's safe to move 'int i = 0;' here<--- Variable 'cur_jacobian' is assigned a value that is never used.
for (int n = 0; n < 10; ++n) {<--- Variable 'cur_jacobian' is assigned a value that is never used.
// it is possible but not safe to move 'int i = 0;' here<--- Variable 'cur_jacobian' is assigned a value that is never used.
do_something(&i);<--- Variable 'cur_jacobian' is assigned a value that is never used.
}<--- Variable 'cur_jacobian' is assigned a value that is never used.
}<--- Variable 'cur_jacobian' is assigned a value that is never used.
}<--- Variable 'cur_jacobian' is assigned a value that is never used.
When you see this message it is always safe to reduce the variable scope 1 level. <--- Variable 'cur_jacobian' is assigned a value that is never used.
VerdictVector aa, bb, cc, normal_at_point, xin;
// use 2x2 gauss points for linear quads and 3x3 for 2nd order quads
int number_of_gauss_points = 0;
if( num_nodes == 4 )
{ // 2x2 quadrature rule
number_of_gauss_points = 2;
}
else if( num_nodes == 8 )
{ // 3x3 quadrature rule
number_of_gauss_points = 3;
}
int total_number_of_gauss_points = number_of_gauss_points * number_of_gauss_points;
VerdictVector face_normal = quad_normal( coordinates );
double distortion = VERDICT_DBL_MAX;
VerdictVector first, second;
int i;<--- The scope of the variable 'i' can be reduced. [+]The scope of the variable 'i' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
// Will work out the case for collapsed quad later
if( is_collapsed_quad( coordinates ) == VERDICT_TRUE )
{
for( i = 0; i < 3; i++ )
{
first.set( coordinates[i][0] - coordinates[( i + 1 ) % 3][0],
coordinates[i][1] - coordinates[( i + 1 ) % 3][1],
coordinates[i][2] - coordinates[( i + 1 ) % 3][2] );
second.set( coordinates[i][0] - coordinates[( i + 2 ) % 3][0],
coordinates[i][1] - coordinates[( i + 2 ) % 3][1],
coordinates[i][2] - coordinates[( i + 2 ) % 3][2] );
sign_jacobian = ( face_normal % ( first * second ) ) > 0 ? 1. : -1.;
cur_jacobian = sign_jacobian * ( first * second ).length();
distortion = VERDICT_MIN( distortion, cur_jacobian );
}
element_area = ( first * second ).length() / 2.0;
distortion /= element_area;
}
else
{
double shape_function[maxTotalNumberGaussPoints][maxNumberNodes];
double dndy1[maxTotalNumberGaussPoints][maxNumberNodes];
double dndy2[maxTotalNumberGaussPoints][maxNumberNodes];
double weight[maxTotalNumberGaussPoints];
// create an object of GaussIntegration
GaussIntegration::initialize( number_of_gauss_points, num_nodes );
GaussIntegration::calculate_shape_function_2d_quad();
GaussIntegration::get_shape_func( shape_function[0], dndy1[0], dndy2[0], weight );
// calculate element area
int ife, ja;
for( ife = 0; ife < total_number_of_gauss_points; ife++ )
{
aa.set( 0.0, 0.0, 0.0 );
bb.set( 0.0, 0.0, 0.0 );
for( ja = 0; ja < num_nodes; ja++ )
{
xin.set( coordinates[ja][0], coordinates[ja][1], coordinates[ja][2] );
aa += dndy1[ife][ja] * xin;
bb += dndy2[ife][ja] * xin;
}
normal_at_point = aa * bb;
jacobian = normal_at_point.length();
element_area += weight[ife] * jacobian;
}
double dndy1_at_node[maxNumberNodes][maxNumberNodes];
double dndy2_at_node[maxNumberNodes][maxNumberNodes];
GaussIntegration::calculate_derivative_at_nodes( dndy1_at_node, dndy2_at_node );
VerdictVector normal_at_nodes[9];
// evaluate normal at nodes and distortion values at nodes
int jai;
for( ja = 0; ja < num_nodes; ja++ )
{
aa.set( 0.0, 0.0, 0.0 );
bb.set( 0.0, 0.0, 0.0 );
for( jai = 0; jai < num_nodes; jai++ )
{
xin.set( coordinates[jai][0], coordinates[jai][1], coordinates[jai][2] );
aa += dndy1_at_node[ja][jai] * xin;
bb += dndy2_at_node[ja][jai] * xin;
}
normal_at_nodes[ja] = aa * bb;
normal_at_nodes[ja].normalize();
}
// determine if element is flat
bool flat_element = true;
double dot_product;<--- The scope of the variable 'dot_product' can be reduced. [+]The scope of the variable 'dot_product' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:<--- Shadow variable
void f(int x)<--- Shadow variable
{<--- Shadow variable
int i = 0;<--- Shadow variable
if (x) {<--- Shadow variable
// it's safe to move 'int i = 0;' here<--- Shadow variable
for (int n = 0; n < 10; ++n) {<--- Shadow variable
// it is possible but not safe to move 'int i = 0;' here<--- Shadow variable
do_something(&i);<--- Shadow variable
}<--- Shadow variable
}<--- Shadow variable
}<--- Shadow variable
When you see this message it is always safe to reduce the variable scope 1 level. <--- Shadow variable
for( ja = 0; ja < num_nodes; ja++ )
{
dot_product = normal_at_nodes[0] % normal_at_nodes[ja];
if( fabs( dot_product ) < 0.99 )
{
flat_element = false;
break;
}
}
// take into consideration of the thickness of the element
double thickness;
// get_quad_thickness(face, element_area, thickness );
thickness = 0.001 * sqrt( element_area );
// set thickness gauss point location
double zl = 0.5773502691896;
if( flat_element ) zl = 0.0;
int no_gauss_pts_z = ( flat_element ) ? 1 : 2;
double thickness_z;
int igz;
// loop on Gauss points
for( ife = 0; ife < total_number_of_gauss_points; ife++ )
{
// loop on the thickness direction gauss points
for( igz = 0; igz < no_gauss_pts_z; igz++ )
{
zl = -zl;
thickness_z = zl * thickness / 2.0;
aa.set( 0.0, 0.0, 0.0 );
bb.set( 0.0, 0.0, 0.0 );
cc.set( 0.0, 0.0, 0.0 );
for( ja = 0; ja < num_nodes; ja++ )
{
xin.set( coordinates[ja][0], coordinates[ja][1], coordinates[ja][2] );
xin += thickness_z * normal_at_nodes[ja];
aa += dndy1[ife][ja] * xin;
bb += dndy2[ife][ja] * xin;
thickness_gauss = shape_function[ife][ja] * thickness / 2.0;
cc += thickness_gauss * normal_at_nodes[ja];
}
normal_at_point = aa * bb;
// jacobian = normal_at_point.length();
distrt = cc % normal_at_point;
if( distrt < distortion ) distortion = distrt;
}
}
// loop through nodal points
for( ja = 0; ja < num_nodes; ja++ )
{
for( igz = 0; igz < no_gauss_pts_z; igz++ )
{
zl = -zl;
thickness_z = zl * thickness / 2.0;
aa.set( 0.0, 0.0, 0.0 );
bb.set( 0.0, 0.0, 0.0 );
cc.set( 0.0, 0.0, 0.0 );
for( jai = 0; jai < num_nodes; jai++ )
{
xin.set( coordinates[jai][0], coordinates[jai][1], coordinates[jai][2] );
xin += thickness_z * normal_at_nodes[ja];
aa += dndy1_at_node[ja][jai] * xin;
bb += dndy2_at_node[ja][jai] * xin;
if( jai == ja )
thickness_gauss = thickness / 2.0;
else
thickness_gauss = 0.;
cc += thickness_gauss * normal_at_nodes[jai];
}
}
normal_at_point = aa * bb;
sign_jacobian = ( face_normal % normal_at_point ) > 0 ? 1. : -1.;
distrt = sign_jacobian * ( cc % normal_at_point );
if( distrt < distortion ) distortion = distrt;
}
if( element_area * thickness != 0 )
distortion *= 8. / ( element_area * thickness );
else
distortion *= 8.;
}
return (double)distortion;
}
/*!
multiple quality measures of a quad
*/
C_FUNC_DEF void v_quad_quality( int num_nodes,
double coordinates[][3],
unsigned int metrics_request_flag,
QuadMetricVals* metric_vals )
{
memset( metric_vals, 0, sizeof( QuadMetricVals ) );
// for starts, lets set up some basic and common information
/* node numbers and side numbers used below
2
3 +--------- 2
/ +
/ |
3 / | 1
/ |
+ |
0 -------------+ 1
0
*/
// vectors for each side
VerdictVector edges[4];
make_quad_edges( edges, coordinates );
double areas[4];
signed_corner_areas( areas, coordinates );
double lengths[4];
lengths[0] = edges[0].length();
lengths[1] = edges[1].length();
lengths[2] = edges[2].length();
lengths[3] = edges[3].length();
VerdictBoolean is_collapsed = is_collapsed_quad( coordinates );
// handle collapsed quads metrics here
if( is_collapsed == VERDICT_TRUE && metrics_request_flag & ( V_QUAD_MINIMUM_ANGLE | V_QUAD_MAXIMUM_ANGLE |
V_QUAD_JACOBIAN | V_QUAD_SCALED_JACOBIAN ) )
{
if( metrics_request_flag & V_QUAD_MINIMUM_ANGLE )
metric_vals->minimum_angle = v_tri_minimum_angle( 3, coordinates );
if( metrics_request_flag & V_QUAD_MAXIMUM_ANGLE )
metric_vals->maximum_angle = v_tri_maximum_angle( 3, coordinates );
if( metrics_request_flag & V_QUAD_JACOBIAN )
metric_vals->jacobian = (double)( v_tri_area( 3, coordinates ) * 2.0 );
if( metrics_request_flag & V_QUAD_SCALED_JACOBIAN )
metric_vals->jacobian = (double)( v_tri_scaled_jacobian( 3, coordinates ) * 2.0 );
}
// calculate both largest and smallest angles
if( metrics_request_flag & ( V_QUAD_MINIMUM_ANGLE | V_QUAD_MAXIMUM_ANGLE ) && is_collapsed == VERDICT_FALSE )
{
// gather the angles
double angles[4];
angles[0] = acos( -( edges[0] % edges[1] ) / ( lengths[0] * lengths[1] ) );
angles[1] = acos( -( edges[1] % edges[2] ) / ( lengths[1] * lengths[2] ) );
angles[2] = acos( -( edges[2] % edges[3] ) / ( lengths[2] * lengths[3] ) );
angles[3] = acos( -( edges[3] % edges[0] ) / ( lengths[3] * lengths[0] ) );
if( lengths[0] <= VERDICT_DBL_MIN || lengths[1] <= VERDICT_DBL_MIN || lengths[2] <= VERDICT_DBL_MIN ||
lengths[3] <= VERDICT_DBL_MIN )
{
metric_vals->minimum_angle = 360.0;
metric_vals->maximum_angle = 0.0;
}
else
{
// if smallest angle, find the smallest angle
if( metrics_request_flag & V_QUAD_MINIMUM_ANGLE )
{
metric_vals->minimum_angle = VERDICT_DBL_MAX;
for( int i = 0; i < 4; i++ )
metric_vals->minimum_angle = VERDICT_MIN( angles[i], metric_vals->minimum_angle );
metric_vals->minimum_angle *= 180.0 / VERDICT_PI;
}
// if largest angle, find the largest angle
if( metrics_request_flag & V_QUAD_MAXIMUM_ANGLE )
{
metric_vals->maximum_angle = 0.0;
for( int i = 0; i < 4; i++ )
metric_vals->maximum_angle = VERDICT_MAX( angles[i], metric_vals->maximum_angle );
metric_vals->maximum_angle *= 180.0 / VERDICT_PI;
if( areas[0] < 0 || areas[1] < 0 || areas[2] < 0 || areas[3] < 0 )
metric_vals->maximum_angle = 360 - metric_vals->maximum_angle;
}
}
}
// handle max_edge_ratio, skew, taper, and area together
if( metrics_request_flag & ( V_QUAD_MAX_EDGE_RATIO | V_QUAD_SKEW | V_QUAD_TAPER ) )
{
// get principle axes
VerdictVector principal_axes[2];
principal_axes[0] = edges[0] - edges[2];
principal_axes[1] = edges[1] - edges[3];
if( metrics_request_flag & ( V_QUAD_MAX_EDGE_RATIO | V_QUAD_SKEW | V_QUAD_TAPER ) )
{
double len1 = principal_axes[0].length();
double len2 = principal_axes[1].length();
// calculate the max_edge_ratio ratio
if( metrics_request_flag & V_QUAD_MAX_EDGE_RATIO )
{
if( len1 < VERDICT_DBL_MIN || len2 < VERDICT_DBL_MIN )
metric_vals->max_edge_ratio = VERDICT_DBL_MAX;
else
metric_vals->max_edge_ratio = VERDICT_MAX( len1 / len2, len2 / len1 );
}
// calculate the taper
if( metrics_request_flag & V_QUAD_TAPER )
{
double min_length = VERDICT_MIN( len1, len2 );
VerdictVector cross_derivative = edges[1] + edges[3];
if( min_length < VERDICT_DBL_MIN )
metric_vals->taper = VERDICT_DBL_MAX;
else
metric_vals->taper = cross_derivative.length() / min_length;
}
// calculate the skew
if( metrics_request_flag & V_QUAD_SKEW )
{
if( principal_axes[0].normalize() < VERDICT_DBL_MIN || principal_axes[1].normalize() < VERDICT_DBL_MIN )
metric_vals->skew = 0.0;
else
metric_vals->skew = fabs( principal_axes[0] % principal_axes[1] );
}
}
}
// calculate the area
if( metrics_request_flag & ( V_QUAD_AREA | V_QUAD_RELATIVE_SIZE_SQUARED ) )
{
metric_vals->area = 0.25 * ( areas[0] + areas[1] + areas[2] + areas[3] );
}
// calculate the relative size
if( metrics_request_flag & ( V_QUAD_RELATIVE_SIZE_SQUARED | V_QUAD_SHAPE_AND_SIZE | V_QUAD_SHEAR_AND_SIZE ) )
{
double quad_area = v_quad_area( 4, coordinates );
v_set_quad_size( quad_area );
double w11, w21, w12, w22;
get_weight( w11, w21, w12, w22 );
double avg_area = determinant( w11, w21, w12, w22 );
if( avg_area < VERDICT_DBL_MIN )
metric_vals->relative_size_squared = 0.0;
else
metric_vals->relative_size_squared =
pow( VERDICT_MIN( metric_vals->area / avg_area, avg_area / metric_vals->area ), 2 );
}
// calculate the jacobian
if( metrics_request_flag & V_QUAD_JACOBIAN )
{
metric_vals->jacobian = VERDICT_MIN( VERDICT_MIN( areas[0], areas[1] ), VERDICT_MIN( areas[2], areas[3] ) );
}
if( metrics_request_flag & ( V_QUAD_SCALED_JACOBIAN | V_QUAD_SHEAR | V_QUAD_SHEAR_AND_SIZE ) )
{
double scaled_jac, min_scaled_jac = VERDICT_DBL_MAX;<--- The scope of the variable 'scaled_jac' can be reduced. [+]The scope of the variable 'scaled_jac' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
if( lengths[0] < VERDICT_DBL_MIN || lengths[1] < VERDICT_DBL_MIN || lengths[2] < VERDICT_DBL_MIN ||
lengths[3] < VERDICT_DBL_MIN )
{
metric_vals->scaled_jacobian = 0.0;
metric_vals->shear = 0.0;
}
else
{
scaled_jac = areas[0] / ( lengths[0] * lengths[3] );
min_scaled_jac = VERDICT_MIN( scaled_jac, min_scaled_jac );
scaled_jac = areas[1] / ( lengths[1] * lengths[0] );
min_scaled_jac = VERDICT_MIN( scaled_jac, min_scaled_jac );
scaled_jac = areas[2] / ( lengths[2] * lengths[1] );
min_scaled_jac = VERDICT_MIN( scaled_jac, min_scaled_jac );
scaled_jac = areas[3] / ( lengths[3] * lengths[2] );
min_scaled_jac = VERDICT_MIN( scaled_jac, min_scaled_jac );
metric_vals->scaled_jacobian = min_scaled_jac;
// what the heck...set shear as well
if( min_scaled_jac <= VERDICT_DBL_MIN )
metric_vals->shear = 0.0;
else
metric_vals->shear = min_scaled_jac;
}
}
if( metrics_request_flag & ( V_QUAD_WARPAGE | V_QUAD_ODDY ) )
{
VerdictVector corner_normals[4];
corner_normals[0] = edges[3] * edges[0];
corner_normals[1] = edges[0] * edges[1];
corner_normals[2] = edges[1] * edges[2];
corner_normals[3] = edges[2] * edges[3];
if( metrics_request_flag & V_QUAD_ODDY )
{
double oddy, max_oddy = 0.0;<--- The scope of the variable 'oddy' can be reduced. [+]The scope of the variable 'oddy' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level. <--- The scope of the variable 'max_oddy' can be reduced. [+]The scope of the variable 'max_oddy' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
double diff, dot_prod;<--- The scope of the variable 'diff' can be reduced. [+]The scope of the variable 'diff' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level. <--- The scope of the variable 'dot_prod' can be reduced. [+]The scope of the variable 'dot_prod' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
double length_squared[4];<--- Shadow variable
length_squared[0] = corner_normals[0].length_squared();
length_squared[1] = corner_normals[1].length_squared();
length_squared[2] = corner_normals[2].length_squared();
length_squared[3] = corner_normals[3].length_squared();
if( length_squared[0] < VERDICT_DBL_MIN || length_squared[1] < VERDICT_DBL_MIN ||
length_squared[2] < VERDICT_DBL_MIN || length_squared[3] < VERDICT_DBL_MIN )
metric_vals->oddy = VERDICT_DBL_MAX;
else
{
diff = ( lengths[0] * lengths[0] ) - ( lengths[1] * lengths[1] );
dot_prod = edges[0] % edges[1];
oddy = ( ( diff * diff ) + 4 * dot_prod * dot_prod ) / ( 2 * length_squared[1] );
max_oddy = VERDICT_MAX( oddy, max_oddy );
diff = ( lengths[1] * lengths[1] ) - ( lengths[2] * lengths[2] );
dot_prod = edges[1] % edges[2];
oddy = ( ( diff * diff ) + 4 * dot_prod * dot_prod ) / ( 2 * length_squared[2] );
max_oddy = VERDICT_MAX( oddy, max_oddy );
diff = ( lengths[2] * lengths[2] ) - ( lengths[3] * lengths[3] );
dot_prod = edges[2] % edges[3];
oddy = ( ( diff * diff ) + 4 * dot_prod * dot_prod ) / ( 2 * length_squared[3] );
max_oddy = VERDICT_MAX( oddy, max_oddy );
diff = ( lengths[3] * lengths[3] ) - ( lengths[0] * lengths[0] );
dot_prod = edges[3] % edges[0];
oddy = ( ( diff * diff ) + 4 * dot_prod * dot_prod ) / ( 2 * length_squared[0] );
max_oddy = VERDICT_MAX( oddy, max_oddy );
metric_vals->oddy = max_oddy;
}
}
if( metrics_request_flag & V_QUAD_WARPAGE )
{
if( corner_normals[0].normalize() < VERDICT_DBL_MIN || corner_normals[1].normalize() < VERDICT_DBL_MIN ||
corner_normals[2].normalize() < VERDICT_DBL_MIN || corner_normals[3].normalize() < VERDICT_DBL_MIN )
metric_vals->warpage = VERDICT_DBL_MAX;
else
{
metric_vals->warpage =
pow( VERDICT_MIN( corner_normals[0] % corner_normals[2], corner_normals[1] % corner_normals[3] ),
3 );
}
}
}
if( metrics_request_flag & V_QUAD_STRETCH )
{
VerdictVector temp;
temp.set( coordinates[2][0] - coordinates[0][0], coordinates[2][1] - coordinates[0][1],
coordinates[2][2] - coordinates[0][2] );
double diag02 = temp.length_squared();
temp.set( coordinates[3][0] - coordinates[1][0], coordinates[3][1] - coordinates[1][1],
coordinates[3][2] - coordinates[1][2] );
double diag13 = temp.length_squared();
static const double QUAD_STRETCH_FACTOR = sqrt( 2.0 );
// 'diag02' is now the max diagonal of the quad
diag02 = VERDICT_MAX( diag02, diag13 );
if( diag02 < VERDICT_DBL_MIN )
metric_vals->stretch = VERDICT_DBL_MAX;
else
metric_vals->stretch =
QUAD_STRETCH_FACTOR *
VERDICT_MIN( VERDICT_MIN( lengths[0], lengths[1] ), VERDICT_MIN( lengths[2], lengths[3] ) ) /
sqrt( diag02 );
}
if( metrics_request_flag & ( V_QUAD_CONDITION | V_QUAD_SHAPE | V_QUAD_SHAPE_AND_SIZE ) )
{
double lengths_squared[4];
lengths_squared[0] = edges[0].length_squared();
lengths_squared[1] = edges[1].length_squared();
lengths_squared[2] = edges[2].length_squared();
lengths_squared[3] = edges[3].length_squared();
if( areas[0] < VERDICT_DBL_MIN || areas[1] < VERDICT_DBL_MIN || areas[2] < VERDICT_DBL_MIN ||
areas[3] < VERDICT_DBL_MIN )
{
metric_vals->condition = VERDICT_DBL_MAX;
metric_vals->shape = 0.0;
}
else
{
double max_condition = 0.0, condition;
condition = ( lengths_squared[0] + lengths_squared[3] ) / areas[0];
max_condition = VERDICT_MAX( max_condition, condition );
condition = ( lengths_squared[1] + lengths_squared[0] ) / areas[1];
max_condition = VERDICT_MAX( max_condition, condition );
condition = ( lengths_squared[2] + lengths_squared[1] ) / areas[2];
max_condition = VERDICT_MAX( max_condition, condition );
condition = ( lengths_squared[3] + lengths_squared[2] ) / areas[3];
max_condition = VERDICT_MAX( max_condition, condition );
metric_vals->condition = 0.5 * max_condition;
metric_vals->shape = 2 / max_condition;
}
}
if( metrics_request_flag & V_QUAD_AREA )
{
if( metric_vals->area > 0 ) metric_vals->area = (double)VERDICT_MIN( metric_vals->area, VERDICT_DBL_MAX );
metric_vals->area = (double)VERDICT_MAX( metric_vals->area, -VERDICT_DBL_MAX );
}
if( metrics_request_flag & V_QUAD_MAX_EDGE_RATIO )
{
if( metric_vals->max_edge_ratio > 0 )
metric_vals->max_edge_ratio = (double)VERDICT_MIN( metric_vals->max_edge_ratio, VERDICT_DBL_MAX );
metric_vals->max_edge_ratio = (double)VERDICT_MAX( metric_vals->max_edge_ratio, -VERDICT_DBL_MAX );
}
if( metrics_request_flag & V_QUAD_CONDITION )
{
if( metric_vals->condition > 0 )
metric_vals->condition = (double)VERDICT_MIN( metric_vals->condition, VERDICT_DBL_MAX );
metric_vals->condition = (double)VERDICT_MAX( metric_vals->condition, -VERDICT_DBL_MAX );
}
// calculate distortion
if( metrics_request_flag & V_QUAD_DISTORTION )
{
metric_vals->distortion = v_quad_distortion( num_nodes, coordinates );
if( metric_vals->distortion > 0 )
metric_vals->distortion = (double)VERDICT_MIN( metric_vals->distortion, VERDICT_DBL_MAX );
metric_vals->distortion = (double)VERDICT_MAX( metric_vals->distortion, -VERDICT_DBL_MAX );
}
if( metrics_request_flag & V_QUAD_JACOBIAN )
{
if( metric_vals->jacobian > 0 )
metric_vals->jacobian = (double)VERDICT_MIN( metric_vals->jacobian, VERDICT_DBL_MAX );
metric_vals->jacobian = (double)VERDICT_MAX( metric_vals->jacobian, -VERDICT_DBL_MAX );
}
if( metrics_request_flag & V_QUAD_MAXIMUM_ANGLE )
{
if( metric_vals->maximum_angle > 0 )
metric_vals->maximum_angle = (double)VERDICT_MIN( metric_vals->maximum_angle, VERDICT_DBL_MAX );
metric_vals->maximum_angle = (double)VERDICT_MAX( metric_vals->maximum_angle, -VERDICT_DBL_MAX );
}
if( metrics_request_flag & V_QUAD_MINIMUM_ANGLE )
{
if( metric_vals->minimum_angle > 0 )
metric_vals->minimum_angle = (double)VERDICT_MIN( metric_vals->minimum_angle, VERDICT_DBL_MAX );
metric_vals->minimum_angle = (double)VERDICT_MAX( metric_vals->minimum_angle, -VERDICT_DBL_MAX );
}
if( metrics_request_flag & V_QUAD_ODDY )
{
if( metric_vals->oddy > 0 ) metric_vals->oddy = (double)VERDICT_MIN( metric_vals->oddy, VERDICT_DBL_MAX );
metric_vals->oddy = (double)VERDICT_MAX( metric_vals->oddy, -VERDICT_DBL_MAX );
}
if( metrics_request_flag & V_QUAD_RELATIVE_SIZE_SQUARED )
{
if( metric_vals->relative_size_squared > 0 )
metric_vals->relative_size_squared =
(double)VERDICT_MIN( metric_vals->relative_size_squared, VERDICT_DBL_MAX );
metric_vals->relative_size_squared =
(double)VERDICT_MAX( metric_vals->relative_size_squared, -VERDICT_DBL_MAX );
}
if( metrics_request_flag & V_QUAD_SCALED_JACOBIAN )
{
if( metric_vals->scaled_jacobian > 0 )
metric_vals->scaled_jacobian = (double)VERDICT_MIN( metric_vals->scaled_jacobian, VERDICT_DBL_MAX );
metric_vals->scaled_jacobian = (double)VERDICT_MAX( metric_vals->scaled_jacobian, -VERDICT_DBL_MAX );
}
if( metrics_request_flag & V_QUAD_SHEAR )
{
if( metric_vals->shear > 0 ) metric_vals->shear = (double)VERDICT_MIN( metric_vals->shear, VERDICT_DBL_MAX );
metric_vals->shear = (double)VERDICT_MAX( metric_vals->shear, -VERDICT_DBL_MAX );
}
// calculate shear and size
// reuse values from above
if( metrics_request_flag & V_QUAD_SHEAR_AND_SIZE )
{
metric_vals->shear_and_size = metric_vals->shear * metric_vals->relative_size_squared;
if( metric_vals->shear_and_size > 0 )
metric_vals->shear_and_size = (double)VERDICT_MIN( metric_vals->shear_and_size, VERDICT_DBL_MAX );
metric_vals->shear_and_size = (double)VERDICT_MAX( metric_vals->shear_and_size, -VERDICT_DBL_MAX );
}
if( metrics_request_flag & V_QUAD_SHAPE )
{
if( metric_vals->shape > 0 ) metric_vals->shape = (double)VERDICT_MIN( metric_vals->shape, VERDICT_DBL_MAX );
metric_vals->shape = (double)VERDICT_MAX( metric_vals->shape, -VERDICT_DBL_MAX );
}
// calculate shape and size
// reuse values from above
if( metrics_request_flag & V_QUAD_SHAPE_AND_SIZE )
{
metric_vals->shape_and_size = metric_vals->shape * metric_vals->relative_size_squared;
if( metric_vals->shape_and_size > 0 )
metric_vals->shape_and_size = (double)VERDICT_MIN( metric_vals->shape_and_size, VERDICT_DBL_MAX );
metric_vals->shape_and_size = (double)VERDICT_MAX( metric_vals->shape_and_size, -VERDICT_DBL_MAX );
}
if( metrics_request_flag & V_QUAD_SKEW )
{
if( metric_vals->skew > 0 ) metric_vals->skew = (double)VERDICT_MIN( metric_vals->skew, VERDICT_DBL_MAX );
metric_vals->skew = (double)VERDICT_MAX( metric_vals->skew, -VERDICT_DBL_MAX );
}
if( metrics_request_flag & V_QUAD_STRETCH )
{
if( metric_vals->stretch > 0 )
metric_vals->stretch = (double)VERDICT_MIN( metric_vals->stretch, VERDICT_DBL_MAX );
metric_vals->stretch = (double)VERDICT_MAX( metric_vals->stretch, -VERDICT_DBL_MAX );
}
if( metrics_request_flag & V_QUAD_TAPER )
{
if( metric_vals->taper > 0 ) metric_vals->taper = (double)VERDICT_MIN( metric_vals->taper, VERDICT_DBL_MAX );
metric_vals->taper = (double)VERDICT_MAX( metric_vals->taper, -VERDICT_DBL_MAX );
}
if( metrics_request_flag & V_QUAD_WARPAGE )
{
if( metric_vals->warpage > 0 )
metric_vals->warpage = (double)VERDICT_MIN( metric_vals->warpage, VERDICT_DBL_MAX );
metric_vals->warpage = (double)VERDICT_MAX( metric_vals->warpage, -VERDICT_DBL_MAX );
}
if( metrics_request_flag & V_QUAD_MED_ASPECT_FROBENIUS )
metric_vals->med_aspect_frobenius = v_quad_med_aspect_frobenius( 4, coordinates );
if( metrics_request_flag & V_QUAD_MAX_ASPECT_FROBENIUS )
metric_vals->max_aspect_frobenius = v_quad_max_aspect_frobenius( 4, coordinates );
if( metrics_request_flag & V_QUAD_EDGE_RATIO ) metric_vals->edge_ratio = v_quad_edge_ratio( 4, coordinates );
if( metrics_request_flag & V_QUAD_ASPECT_RATIO ) metric_vals->aspect_ratio = v_quad_aspect_ratio( 4, coordinates );
if( metrics_request_flag & V_QUAD_RADIUS_RATIO ) metric_vals->radius_ratio = v_quad_radius_ratio( 4, coordinates );
}
|