1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014 | #include <vector>
#include <utility>
#include <iostream>
using namespace std;
using namespace moab;
#include "moab/Core.hpp"
#include "moab/Interface.hpp"
#include "moab/Range.hpp"
Interface* gMB = 0;
class EntityCount
{
public:
unsigned int node;
unsigned int edge;
unsigned int quad;
unsigned int tri;
unsigned int hex;
unsigned int tet;
EntityCount();
ErrorCode get_counts();
ErrorCode create_adjacencies( Range& entities, int adj_dim );
void copy_counts( EntityCount& count );
void print();
};
EntityCount::EntityCount()
{
node = 0;
edge = 0;
quad = 0;
tri = 0;
hex = 0;
tet = 0;
}
void EntityCount::copy_counts( EntityCount& count )<--- Parameter 'count' can be declared with const
{
node = count.node;
edge = count.edge;
quad = count.quad;
tri = count.tri;
hex = count.hex;
tet = count.tet;
}
ErrorCode EntityCount::get_counts()
{
Range entities;
int do_create = edge == 0;
if( gMB->get_entities_by_type( 0, MBVERTEX, entities ) != MB_SUCCESS ) return MB_FAILURE;
node = entities.size();
entities.clear();
if( gMB->get_entities_by_type( 0, MBHEX, entities ) != MB_SUCCESS ) return MB_FAILURE;
hex = entities.size();
if( hex > 0 && do_create )
{
if( create_adjacencies( entities, 2 ) != MB_SUCCESS ) return MB_FAILURE;
if( create_adjacencies( entities, 1 ) != MB_SUCCESS ) return MB_FAILURE;
}
entities.clear();
if( gMB->get_entities_by_type( 0, MBQUAD, entities ) != MB_SUCCESS ) return MB_FAILURE;
quad = entities.size();
if( quad > 0 && do_create )
{
if( create_adjacencies( entities, 1 ) != MB_SUCCESS ) return MB_FAILURE;
}
entities.clear();
if( gMB->get_entities_by_type( 0, MBTET, entities ) != MB_SUCCESS ) return MB_FAILURE;
tet = entities.size();
if( tet > 0 && do_create )
{
if( create_adjacencies( entities, 2 ) != MB_SUCCESS ) return MB_FAILURE;
if( create_adjacencies( entities, 1 ) != MB_SUCCESS ) return MB_FAILURE;
}
entities.clear();
if( gMB->get_entities_by_type( 0, MBTRI, entities ) != MB_SUCCESS ) return MB_FAILURE;
tri = entities.size();
if( tri > 0 && do_create )
{
if( create_adjacencies( entities, 1 ) != MB_SUCCESS ) return MB_FAILURE;
}
entities.clear();
if( gMB->get_entities_by_type( 0, MBEDGE, entities ) != MB_SUCCESS ) return MB_FAILURE;
edge = entities.size();
return MB_SUCCESS;
}
ErrorCode EntityCount::create_adjacencies( Range& entities, int adj_dim )
{
ErrorCode result;
Range::iterator iter;
std::vector< EntityHandle > adjacencies;
for( iter = entities.begin(); iter != entities.end(); ++iter )
{
result = gMB->get_adjacencies( &*iter, 1, adj_dim, true, adjacencies );
if( result != MB_SUCCESS ) break;
}
return result;
}
void EntityCount::print()
{
std::cout << " Vertices: " << node << std::endl;
cout << " Edges: " << edge << endl;
if( quad > 0 ) cout << " Quad Elements: " << quad << endl;
if( hex > 0 ) cout << " Hex Elements: " << hex << endl;
if( tri > 0 ) cout << " Tri Elements: " << tri << endl;
if( tet > 0 ) cout << " Tet Elements: " << tet << endl;
}
bool points_are_coincident( const double* first, const double* second )
{
double diff[3];
diff[0] = first[0] - second[0];
diff[1] = first[1] - second[1];
diff[2] = first[2] - second[2];
double length = diff[0] * diff[0] + diff[1] * diff[1] + diff[2] * diff[2];
if( fabs( length ) < .001 ) return true;
return false;
}
// dumb n^2 coincident node algorithm
ErrorCode find_coincident_nodes( Range vertices, std::vector< std::pair< EntityHandle, EntityHandle > >& coin_nodes )
{
double first_coords[3], second_coords[3];
Range::iterator iter, jter;
std::pair< EntityHandle, EntityHandle > coincident_pair;
ErrorCode result;
for( iter = vertices.begin(); iter != vertices.end(); ++iter )
{
result = gMB->get_coords( &*iter, 1, first_coords );
if( result != MB_SUCCESS ) return result;
for( jter = iter; jter != vertices.end(); ++jter )
{
if( *iter != *jter )
{
result = gMB->get_coords( &*jter, 1, second_coords );
if( result != MB_SUCCESS ) return result;
if( points_are_coincident( first_coords, second_coords ) )
{
coincident_pair.first = *iter;
coincident_pair.second = *jter;
coin_nodes.push_back( coincident_pair );
}
}
}
}
return MB_SUCCESS;
}
ErrorCode find_coincident_edges( Range entities, std::vector< std::pair< EntityHandle, EntityHandle > >& coin_edges )
{
double coords1[3], coords2[3], coords3[3];
Range::iterator iter, jter;
std::vector< EntityHandle > conn( 2 );
std::pair< EntityHandle, EntityHandle > coincident_pair;
for( iter = entities.begin(); iter != entities.end(); ++iter )
{
if( gMB->get_connectivity( &*iter, 1, conn ) != MB_SUCCESS ) return MB_FAILURE;
// Get the coordinates for the edge endpoints.
if( gMB->get_coords( &conn[0], 1, coords1 ) != MB_SUCCESS ) return MB_FAILURE;
if( gMB->get_coords( &conn[1], 1, coords2 ) != MB_SUCCESS ) return MB_FAILURE;
for( jter = iter; jter != entities.end(); ++jter )
{
if( *iter != *jter )
{
// Edges should be the same sense to merge.
if( gMB->get_connectivity( &*jter, 1, conn ) != MB_SUCCESS ) return MB_FAILURE;
if( gMB->get_coords( &conn[0], 1, coords3 ) != MB_SUCCESS ) return MB_FAILURE;
if( points_are_coincident( coords1, coords3 ) )
{
if( gMB->get_coords( &conn[1], 1, coords3 ) != MB_SUCCESS ) return MB_FAILURE;
if( points_are_coincident( coords2, coords3 ) )
{
coincident_pair.first = *iter;
coincident_pair.second = *jter;
coin_edges.push_back( coincident_pair );
}
}
}
}
}
return MB_SUCCESS;
}
ErrorCode find_coincident_elements( Range entities,
int num_nodes,
std::vector< std::pair< EntityHandle, EntityHandle > >& coin )
{
double coords1[8][3], coords2[8][3];
Range::iterator iter, jter;
std::vector< EntityHandle > conn( 8 );
std::pair< EntityHandle, EntityHandle > coincident_pair;
int i = 0, j = 0, ii = 0;<--- Variable 'i' is assigned a value that is never used.<--- Variable 'j' is assigned a value that is never used.<--- Variable 'ii' is assigned a value that is never used.
for( iter = entities.begin(); iter != entities.end(); ++iter )
{
// Get the coordinates for the element corners.
if( gMB->get_connectivity( &*iter, 1, conn ) != MB_SUCCESS ) return MB_FAILURE;
for( ii = 0; ii < num_nodes; ii++ )
{
if( gMB->get_coords( &conn[ii], 1, coords1[ii] ) != MB_SUCCESS ) return MB_FAILURE;
}
for( jter = iter; jter != entities.end(); ++jter )
{
if( *iter != *jter )
{
// Elements should be the same sense to merge.
if( gMB->get_connectivity( &*jter, 1, conn ) != MB_SUCCESS ) return MB_FAILURE;
if( gMB->get_coords( &conn[0], 1, coords2[0] ) != MB_SUCCESS ) return MB_FAILURE;
// Find if first node is coincident before testing the rest.
for( i = 0; i < num_nodes; i++ )
{
if( points_are_coincident( coords1[i], coords2[0] ) ) break;
}
if( i < num_nodes )
{
for( ii = 1; ii < num_nodes; ii++ )
{
if( gMB->get_coords( &conn[ii], 1, coords2[ii] ) != MB_SUCCESS ) return MB_FAILURE;
}
for( j = 1; j < num_nodes; j++ )
{
if( !points_are_coincident( coords1[j], coords2[( j + i ) % num_nodes] ) ) break;
}
if( j == num_nodes )
{
coincident_pair.first = *iter;
coincident_pair.second = *jter;
coin.push_back( coincident_pair );
}
}
}
}
}
return MB_SUCCESS;
}
ErrorCode coincident_counts( EntityCount& curr_count, EntityCount& diff_count )<--- Parameter 'curr_count' can be declared with const
{
Range entities;
std::vector< std::pair< EntityHandle, EntityHandle > > coincident;
if( curr_count.node > 0 )
{
if( gMB->get_entities_by_type( 0, MBVERTEX, entities ) != MB_SUCCESS ) return MB_FAILURE;
find_coincident_nodes( entities, coincident );
diff_count.node = coincident.size();
entities.clear();
coincident.clear();
}
if( curr_count.edge > 0 )
{
if( gMB->get_entities_by_type( 0, MBEDGE, entities ) != MB_SUCCESS ) return MB_FAILURE;
find_coincident_edges( entities, coincident );
diff_count.edge = coincident.size();
entities.clear();
coincident.clear();
}
if( curr_count.quad > 0 )
{
if( gMB->get_entities_by_type( 0, MBQUAD, entities ) != MB_SUCCESS ) return MB_FAILURE;
find_coincident_elements( entities, 4, coincident );
diff_count.quad = coincident.size();
entities.clear();
coincident.clear();
}
if( curr_count.tri > 0 )
{
if( gMB->get_entities_by_type( 0, MBTRI, entities ) != MB_SUCCESS ) return MB_FAILURE;
find_coincident_elements( entities, 3, coincident );
diff_count.tri = coincident.size();
entities.clear();
coincident.clear();
}
if( curr_count.tet > 0 )
{
if( gMB->get_entities_by_type( 0, MBTET, entities ) != MB_SUCCESS ) return MB_FAILURE;
find_coincident_elements( entities, 4, coincident );
diff_count.tet = coincident.size();
entities.clear();
coincident.clear();
}
if( curr_count.hex > 0 )
{
if( gMB->get_entities_by_type( 0, MBHEX, entities ) != MB_SUCCESS ) return MB_FAILURE;
find_coincident_elements( entities, 8, coincident );
diff_count.hex = coincident.size();
entities.clear();
coincident.clear();
}
return MB_SUCCESS;
}
ErrorCode merge_top_down( EntityCount& init_count, EntityCount& curr_count )<--- Parameter 'init_count' can be declared with const
{
Range entities;
EntityCount diff_count;
std::vector< std::pair< EntityHandle, EntityHandle > > coincident;
// Find how many objects of each type need to be merged.
if( coincident_counts( curr_count, diff_count ) != MB_SUCCESS ) return MB_FAILURE;
// Find the top level object to merge.
if( diff_count.hex > 0 )
{
if( gMB->get_entities_by_type( 0, MBHEX, entities ) != MB_SUCCESS ) return MB_FAILURE;
find_coincident_elements( entities, 8, coincident );
}
else if( diff_count.quad > 0 )
{
if( gMB->get_entities_by_type( 0, MBQUAD, entities ) != MB_SUCCESS ) return MB_FAILURE;
find_coincident_elements( entities, 4, coincident );
}
else if( diff_count.tet > 0 )
{
if( gMB->get_entities_by_type( 0, MBTET, entities ) != MB_SUCCESS ) return MB_FAILURE;
find_coincident_elements( entities, 4, coincident );
}
else if( diff_count.tri > 0 )
{
if( gMB->get_entities_by_type( 0, MBTRI, entities ) != MB_SUCCESS ) return MB_FAILURE;
find_coincident_elements( entities, 3, coincident );
}
else if( diff_count.edge > 0 )
{
if( gMB->get_entities_by_type( 0, MBEDGE, entities ) != MB_SUCCESS ) return MB_FAILURE;
find_coincident_edges( entities, coincident );
}
std::vector< std::pair< EntityHandle, EntityHandle > >::iterator iter;
for( iter = coincident.begin(); iter != coincident.end(); ++iter )
gMB->merge_entities( ( *iter ).first, ( *iter ).second, false, true );
// Get the new entity totals.
curr_count.get_counts();
// Make sure we didn't merge anything.
if( init_count.node != curr_count.node || init_count.edge != curr_count.edge ||
init_count.quad != curr_count.quad || init_count.tri != curr_count.tri || init_count.hex != curr_count.hex ||
init_count.tet != curr_count.tet )
{
cout << "***ERROR: Merged top down when not using auto merge.***" << endl;
return MB_FAILURE;
}
return MB_SUCCESS;
}
ErrorCode merge_nodes( EntityCount& init_count, EntityCount& curr_count )
{
cout << "Merging Coincident Nodes:" << endl;
// Get the list of vertices from the database.
Range vertices;
ErrorCode result = gMB->get_entities_by_type( 0, MBVERTEX, vertices );
if( result != MB_SUCCESS ) return result;
// find the coincident node pairs
std::vector< std::pair< EntityHandle, EntityHandle > > coincident_nodes;
find_coincident_nodes( vertices, coincident_nodes );
// merge the coincident nodes
std::vector< std::pair< EntityHandle, EntityHandle > >::iterator iter;
for( iter = coincident_nodes.begin(); iter != coincident_nodes.end(); ++iter )
{
cout << " Coincident nodes: " << ( *iter ).first << "-" << ( *iter ).second << endl;
result = gMB->merge_entities( ( *iter ).first, ( *iter ).second, false, true );
if( result != MB_SUCCESS ) return result;
}
// Get the reduced list of vertices.
curr_count.get_counts();
// Make sure the coincident nodes were all merged.
if( init_count.node - curr_count.node != coincident_nodes.size() )
{
cout << "***ERROR: Not all coincident nodes were merged.***" << endl;
return MB_FAILURE;
}
init_count.node = curr_count.node;
// Make sure we didn't merge anything else.
if( init_count.edge != curr_count.edge || init_count.quad != curr_count.quad || init_count.tri != curr_count.tri ||
init_count.hex != curr_count.hex || init_count.tet != curr_count.tet )
{
cout << "***ERROR: Merged other objects when merging nodes.***" << endl;
return MB_FAILURE;
}
return MB_SUCCESS;
}
ErrorCode merge_edges( EntityCount& init_count, EntityCount& curr_count )
{
cout << "Merging Coincident Edges:" << endl;
// Get the list of entities from the database.
Range entities;
ErrorCode result = gMB->get_entities_by_type( 0, MBEDGE, entities );
if( result != MB_SUCCESS ) return result;
// find the coincident edge pairs
std::vector< std::pair< EntityHandle, EntityHandle > > coincident_edges;
find_coincident_edges( entities, coincident_edges );
// merge the coincident edges
unsigned long id1, id2;<--- The scope of the variable 'id1' can be reduced. [+]The scope of the variable 'id1' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level. <--- The scope of the variable 'id2' can be reduced. [+]The scope of the variable 'id2' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
std::vector< std::pair< EntityHandle, EntityHandle > >::iterator iter;
for( iter = coincident_edges.begin(); iter != coincident_edges.end(); ++iter )
{
id1 = gMB->id_from_handle( ( *iter ).first );
id2 = gMB->id_from_handle( ( *iter ).second );
cout << " Coincident edges: " << id1 << "-" << id2 << endl;
result = gMB->merge_entities( ( *iter ).first, ( *iter ).second, false, true );
if( result != MB_SUCCESS ) return result;
}
// Get the reduced list of edges.
curr_count.get_counts();
// Make sure the coincident edges were all merged.
if( init_count.edge - curr_count.edge != coincident_edges.size() )
{
cout << "***ERROR: Not all coincident edges were merged.***" << endl;
return MB_FAILURE;
}
init_count.edge = curr_count.edge;
// Make sure we didn't merge anything else.
if( init_count.node != curr_count.node || init_count.quad != curr_count.quad || init_count.tri != curr_count.tri ||
init_count.hex != curr_count.hex || init_count.tet != curr_count.tet )
{
cout << "***ERROR: Merged other objects when merging edges.***" << endl;
return MB_FAILURE;
}
return MB_SUCCESS;
}
ErrorCode merge_2D_elem( EntityCount& init_count, EntityCount& curr_count )
{
cout << "Merging Coincident 2D Elements:" << endl;
// Get the list of tris from the database.
Range entities;
ErrorCode result = gMB->get_entities_by_type( 0, MBTRI, entities );
if( result != MB_SUCCESS ) return result;
// find the coincident tri pairs
std::vector< std::pair< EntityHandle, EntityHandle > > coincident;
find_coincident_elements( entities, 3, coincident );
// merge the coincident tris
unsigned long id1, id2;
unsigned int tri_diff = coincident.size();
std::vector< std::pair< EntityHandle, EntityHandle > >::iterator iter;
for( iter = coincident.begin(); iter != coincident.end(); ++iter )
{
id1 = gMB->id_from_handle( ( *iter ).first );
id2 = gMB->id_from_handle( ( *iter ).second );
cout << " Coincident tris: " << id1 << "-" << id2 << endl;
result = gMB->merge_entities( ( *iter ).first, ( *iter ).second, false, true );
if( result != MB_SUCCESS ) return result;
}
// Get the list of quads from the database.
entities.clear();
result = gMB->get_entities_by_type( 0, MBQUAD, entities );
if( result != MB_SUCCESS ) return result;
// find the coincident tri pairs
coincident.clear();
find_coincident_elements( entities, 4, coincident );
// merge the coincident tris
unsigned int quad_diff = coincident.size();
for( iter = coincident.begin(); iter != coincident.end(); ++iter )
{
id1 = gMB->id_from_handle( ( *iter ).first );
id2 = gMB->id_from_handle( ( *iter ).second );
cout << " Coincident quads: " << id1 << "-" << id2 << endl;
result = gMB->merge_entities( ( *iter ).first, ( *iter ).second, false, true );
if( result != MB_SUCCESS ) return result;
}
// Get the reduced list of faces.
curr_count.get_counts();
// Make sure the coincident faces were all merged.
if( init_count.tri - curr_count.tri != tri_diff )
{
cout << "***ERROR: Not all coincident tris were merged.***" << endl;
return MB_FAILURE;
}
if( init_count.quad - curr_count.quad != quad_diff )
{
cout << "***ERROR: Not all coincident quads were merged.***" << endl;
return MB_FAILURE;
}
init_count.tri = curr_count.tri;
init_count.quad = curr_count.quad;
// Make sure we didn't merge anything else.
if( init_count.node != curr_count.node || init_count.edge != curr_count.edge || init_count.hex != curr_count.hex ||
init_count.tet != curr_count.tet )
{
cout << "***ERROR: Merged other objects when merging faces.***" << endl;
return MB_FAILURE;
}
return MB_SUCCESS;
}
ErrorCode merge_3D_elem( EntityCount& init_count, EntityCount& curr_count )
{
cout << "Merging Coincident 3D Elements:" << endl;
// Get the list of tets from the database.
Range entities;
ErrorCode result = gMB->get_entities_by_type( 0, MBTET, entities );
if( result != MB_SUCCESS ) return result;
// find the coincident tet pairs
std::vector< std::pair< EntityHandle, EntityHandle > > coincident;
find_coincident_elements( entities, 4, coincident );
// merge the coincident tets
unsigned long id1, id2;
unsigned int tet_diff = coincident.size();
std::vector< std::pair< EntityHandle, EntityHandle > >::iterator iter;
for( iter = coincident.begin(); iter != coincident.end(); ++iter )
{
id1 = gMB->id_from_handle( ( *iter ).first );
id2 = gMB->id_from_handle( ( *iter ).second );
cout << " Coincident tets: " << id1 << "-" << id2 << endl;
result = gMB->merge_entities( ( *iter ).first, ( *iter ).second, false, true );
if( result != MB_SUCCESS ) return result;
}
// Get the list of hexs from the database.
entities.clear();
result = gMB->get_entities_by_type( 0, MBHEX, entities );
if( result != MB_SUCCESS ) return result;
// find the coincident hex pairs
coincident.clear();
find_coincident_elements( entities, 8, coincident );
// merge the coincident tris
unsigned int hex_diff = coincident.size();
for( iter = coincident.begin(); iter != coincident.end(); ++iter )
{
id1 = gMB->id_from_handle( ( *iter ).first );
id2 = gMB->id_from_handle( ( *iter ).second );
cout << " Coincident hexs: " << id1 << "-" << id2 << endl;
result = gMB->merge_entities( ( *iter ).first, ( *iter ).second, false, true );
if( result != MB_SUCCESS ) return result;
}
// Get the reduced list of elements.
curr_count.get_counts();
// Make sure the coincident elements were all merged.
if( init_count.tet - curr_count.tet != tet_diff )
{
cout << "***ERROR: Not all coincident tets were merged.***" << endl;
return MB_FAILURE;
}
if( init_count.hex - curr_count.hex != hex_diff )
{
cout << "***ERROR: Not all coincident hexs were merged.***" << endl;
return MB_FAILURE;
}
init_count.tet = curr_count.tet;
init_count.hex = curr_count.hex;
// Make sure we didn't merge anything else.
if( init_count.node != curr_count.node || init_count.edge != curr_count.edge ||
init_count.quad != curr_count.quad || init_count.tri != curr_count.tri )
{
cout << "***ERROR: Merged other objects when merging elements.***" << endl;
return MB_FAILURE;
}
return MB_SUCCESS;
}
ErrorCode read_file( std::string& file_name, EntityCount& counts )
{
// Make sure the database is empty.
gMB->delete_mesh();
// Read the model from the file.
if( gMB->load_mesh( file_name.c_str(), 0 ) != MB_SUCCESS )
{
cout << "***ERROR: Unable to load mesh file.***" << endl;
return MB_FAILURE;
}
// Get the number of each entity types in the mesh.
if( counts.get_counts() != MB_SUCCESS )
{
cout << "***ERROR: Unable to get entity list counts.***" << endl;
return MB_FAILURE;
}
return MB_SUCCESS;
}
ErrorCode write_file( std::string& file_name )
{
// get the block tag
ErrorCode result;
Range block_range;
Tag block_tag;
if( gMB->tag_get_handle( "MATERIAL_SET", block_tag ) == MB_SUCCESS )
{
// get all the blocks
result = gMB->get_entities_by_type_and_tag( 0, MBENTITYSET, &block_tag, 0, 1, block_range );
if( result != MB_SUCCESS ) return result;
}
// transfer range contents into vectors
std::vector< EntityHandle > output_list;
Range::iterator range_iter, end_iter;
range_iter = block_range.begin();
end_iter = block_range.end();
for( ; range_iter != end_iter; ++range_iter )
{
int id;
result = gMB->tag_get_handle( "MATERIAL_SET", block_tag );
if( result != MB_SUCCESS ) return result;
result = gMB->tag_get_data( block_tag, &*range_iter, 1, &id );
if( result != MB_SUCCESS ) return result;
// if(id != 2)
output_list.push_back( *range_iter );
}
// write the file
static std::string mrg_splice( ".mrg" );
file_name.insert( file_name.size() - 2, mrg_splice );
result = gMB->write_mesh( file_name.c_str(), &output_list[0], output_list.size() );
return result;
}
ErrorCode process_td_auto_merge( std::string& file_name )
{
EntityCount init_count;
EntityCount curr_count;
EntityCount diff_count;
// Read in the mesh and get the number of entities of each type.
if( read_file( file_name, init_count ) != MB_SUCCESS ) return MB_FAILURE;
// Copy the initial counts into the current count object.
curr_count.copy_counts( init_count );
// Print out the list of initial objects.
cout << "Initial Entities:" << endl;
curr_count.print();
// Try auto merging from the top down.
Range entities;
std::vector< std::pair< EntityHandle, EntityHandle > > coincident;
// Find how many objects of each type need to be merged.
if( coincident_counts( curr_count, diff_count ) != MB_SUCCESS ) return MB_FAILURE;
// Find the top level object to merge.
if( diff_count.hex > 0 )
{
if( gMB->get_entities_by_type( 0, MBHEX, entities ) != MB_SUCCESS ) return MB_FAILURE;
find_coincident_elements( entities, 8, coincident );
}
else if( diff_count.quad > 0 )
{
if( gMB->get_entities_by_type( 0, MBQUAD, entities ) != MB_SUCCESS ) return MB_FAILURE;
find_coincident_elements( entities, 4, coincident );
}
else if( diff_count.tet > 0 )
{
if( gMB->get_entities_by_type( 0, MBTET, entities ) != MB_SUCCESS ) return MB_FAILURE;
find_coincident_elements( entities, 4, coincident );
}
else if( diff_count.tri > 0 )
{
if( gMB->get_entities_by_type( 0, MBTRI, entities ) != MB_SUCCESS ) return MB_FAILURE;
find_coincident_elements( entities, 3, coincident );
}
else if( diff_count.edge > 0 )
{
if( gMB->get_entities_by_type( 0, MBEDGE, entities ) != MB_SUCCESS ) return MB_FAILURE;
find_coincident_edges( entities, coincident );
}
else if( diff_count.node > 0 )
{
if( gMB->get_entities_by_type( 0, MBVERTEX, entities ) != MB_SUCCESS ) return MB_FAILURE;
find_coincident_nodes( entities, coincident );
}
cout << "Merging coincident entities(top down)..." << endl;
std::vector< std::pair< EntityHandle, EntityHandle > >::iterator iter;
for( iter = coincident.begin(); iter != coincident.end(); ++iter )
gMB->merge_entities( ( *iter ).first, ( *iter ).second, true, true );
// Get the new entity totals.
if( curr_count.get_counts() != MB_SUCCESS )
{
cout << "***ERROR: Unable to get entity list counts.***" << endl;
return MB_FAILURE;
}
// Make sure we merged everything.
if( init_count.node - curr_count.node != diff_count.node || init_count.edge - curr_count.edge != diff_count.edge ||
init_count.quad - curr_count.quad != diff_count.quad || init_count.tri - curr_count.tri != diff_count.tri ||
init_count.hex - curr_count.hex != diff_count.hex || init_count.tet - curr_count.tet != diff_count.tet )
{
cout << "***ERROR: Not all coincident objects merged automatically.***" << endl;
curr_count.print();
return MB_FAILURE;
}
// Print out the final list of objects.
cout << "Final Entities:" << endl;
curr_count.print();
return MB_SUCCESS;
}
ErrorCode process_mo_auto_merge( std::string& file_name )
{
EntityCount init_count;
EntityCount curr_count;
EntityCount diff_count;
// Read in the mesh and get the number of entities of each type.
if( read_file( file_name, init_count ) != MB_SUCCESS ) return MB_FAILURE;
// Copy the initial counts into the current count object.
curr_count.copy_counts( init_count );
// Print out the list of initial objects.
cout << "Initial Entities:" << endl;
curr_count.print();
// Try auto merging from the middle out.
Range entities;
std::vector< std::pair< EntityHandle, EntityHandle > > coincident;
// Find how many objects of each type need to be merged.
if( coincident_counts( curr_count, diff_count ) != MB_SUCCESS ) return MB_FAILURE;
// Start merge at the edge level if present.
if( diff_count.edge > 0 )
{
if( gMB->get_entities_by_type( 0, MBEDGE, entities ) != MB_SUCCESS ) return MB_FAILURE;
find_coincident_edges( entities, coincident );
}
else
{
if( gMB->get_entities_by_type( 0, MBVERTEX, entities ) != MB_SUCCESS ) return MB_FAILURE;
find_coincident_nodes( entities, coincident );
}
cout << "Merging coincident entities(middle out)..." << endl;
std::vector< std::pair< EntityHandle, EntityHandle > >::iterator iter;
for( iter = coincident.begin(); iter != coincident.end(); ++iter )
gMB->merge_entities( ( *iter ).first, ( *iter ).second, true, true );
// Get the new entity totals.
if( curr_count.get_counts() != MB_SUCCESS )
{
cout << "***ERROR: Unable to get entity list counts.***" << endl;
return MB_FAILURE;
}
// Make sure we merged everything.
if( init_count.node - curr_count.node != diff_count.node || init_count.edge - curr_count.edge != diff_count.edge ||
init_count.quad - curr_count.quad != diff_count.quad || init_count.tri - curr_count.tri != diff_count.tri ||
init_count.hex - curr_count.hex != diff_count.hex || init_count.tet - curr_count.tet != diff_count.tet )
{
cout << "***ERROR: Not all coincident objects merged automatically.***" << endl;
curr_count.print();
return MB_FAILURE;
}
// Print out the final list of objects.
cout << "Final Entities:" << endl;
curr_count.print();
return MB_SUCCESS;
}
ErrorCode process_bu_auto_merge( std::string& file_name )
{
EntityCount init_count;
EntityCount curr_count;
EntityCount diff_count;
// Read in the mesh and get the number of entities of each type.
if( read_file( file_name, init_count ) != MB_SUCCESS ) return MB_FAILURE;
// Copy the initial counts into the current count object.
curr_count.copy_counts( init_count );
// Print out the list of initial objects.
cout << "Initial Entities:" << endl;
curr_count.print();
// Try auto merging from the bottom up.
Range entities;
std::vector< std::pair< EntityHandle, EntityHandle > > coincident;
// Find how many objects of each type need to be merged.
if( coincident_counts( curr_count, diff_count ) != MB_SUCCESS ) return MB_FAILURE;
// Start merging from the nodes and go up.
if( gMB->get_entities_by_type( 0, MBVERTEX, entities ) != MB_SUCCESS ) return MB_FAILURE;
find_coincident_nodes( entities, coincident );
cout << "Merging coincident entities(bottom up)..." << endl;
std::vector< std::pair< EntityHandle, EntityHandle > >::iterator iter;
for( iter = coincident.begin(); iter != coincident.end(); ++iter )
gMB->merge_entities( ( *iter ).first, ( *iter ).second, true, true );
// Get the new entity totals.
if( curr_count.get_counts() != MB_SUCCESS )
{
cout << "***ERROR: Unable to get entity list counts.***" << endl;
return MB_FAILURE;
}
// Make sure we merged everything.
if( init_count.node - curr_count.node != diff_count.node || init_count.edge - curr_count.edge != diff_count.edge ||
init_count.quad - curr_count.quad != diff_count.quad || init_count.tri - curr_count.tri != diff_count.tri ||
init_count.hex - curr_count.hex != diff_count.hex || init_count.tet - curr_count.tet != diff_count.tet )
{
cout << "***ERROR: Not all coincident objects merged automatically.***" << endl;
curr_count.print();
return MB_FAILURE;
}
// Print out the final list of objects.
cout << "Final Entities:" << endl;
curr_count.print();
return MB_SUCCESS;
}
ErrorCode process_merge( std::string& file_name )
{
EntityCount init_count;
EntityCount curr_count;
// Read in the mesh and get the number of entities of each type.
if( read_file( file_name, init_count ) != MB_SUCCESS ) return MB_FAILURE;
// Copy the initial counts into the current count object.
curr_count.copy_counts( init_count );
// Print out the list of initial objects.
cout << "Initial Entities:" << endl;
curr_count.print();
// Try to merge elements before nodes (should fail).
if( merge_top_down( init_count, curr_count ) != MB_SUCCESS ) return MB_FAILURE;
// Merge the nodes.
if( merge_nodes( init_count, curr_count ) != MB_SUCCESS ) return MB_FAILURE;
// Next, merge the edges.
if( merge_edges( init_count, curr_count ) != MB_SUCCESS ) return MB_FAILURE;
// Now, merge the 2D elements.
if( merge_2D_elem( init_count, curr_count ) != MB_SUCCESS ) return MB_FAILURE;
// Finally, merge the 3D elements.
if( merge_3D_elem( init_count, curr_count ) != MB_SUCCESS ) return MB_FAILURE;
// Print out the final list of objects.
if( curr_count.get_counts() != MB_SUCCESS )
{
cout << "***ERROR: Unable to get entity list counts.***" << endl;
return MB_FAILURE;
}
cout << "Final Entities:" << endl;
curr_count.print();
// write the file out (modifies name)
return write_file( file_name );
}
int main()
{
ErrorCode result;
std::string test_files[] = {
std::string( "test/2barcase1.g" ), std::string( "test/2barcase2.g" ), std::string( "test/2hexcase1.g" ),
std::string( "test/2hexcase2.g" ), std::string( "test/2hexcase3.g" ), std::string( "test/2hexcase4.g" ),
std::string( "test/2hexcase5.g" ), std::string( "test/2quadcase1.g" ), std::string( "test/2quadcase2.g" ),
std::string( "test/2quadcase3.g" ), std::string( "test/2quadcase4.g" ), std::string( "test/2tetcase1.g" ),
std::string( "test/2tetcase2.g" ), std::string( "test/2tetcase3.g" ), std::string( "test/2tetcase4.g" ),
std::string( "test/2tricase1.g" ), std::string( "test/2tricase2.g" ), std::string( "test/2tricase3.g" ) };
// Create the MB database instance.
gMB = new Core();
// Loop through the list of test files.
unsigned int i;
cout << "---Starting Top Down Auto Merge Tests---" << endl << endl;
for( i = 0; i < ( sizeof( test_files ) / sizeof( std::string ) ); i++ )
{
cout << "---Testing:\"" << test_files[i] << "\"---" << endl;
result = process_td_auto_merge( test_files[i] );
if( result == MB_SUCCESS )
cout << "---Success---";
else
cout << "---Failure---";
cout << endl << endl;
}
cout << "---Starting Bottom Up Auto Merge Tests---" << endl << endl;
for( i = 0; i < ( sizeof( test_files ) / sizeof( std::string ) ); i++ )
{
cout << "---Testing:\"" << test_files[i] << "\"---" << endl;
result = process_bu_auto_merge( test_files[i] );
if( result == MB_SUCCESS )
cout << "---Success---";
else
cout << "---Failure---";
cout << endl << endl;
}
cout << "---Starting Middle Out Auto Merge Tests---" << endl << endl;
for( i = 0; i < ( sizeof( test_files ) / sizeof( std::string ) ); i++ )
{
cout << "---Testing:\"" << test_files[i] << "\"---" << endl;
result = process_mo_auto_merge( test_files[i] );
if( result == MB_SUCCESS )
cout << "---Success---";
else
cout << "---Failure---";
cout << endl << endl;
}
cout << "---Starting Merge Tests---" << endl << endl;
for( i = 0; i < ( sizeof( test_files ) / sizeof( std::string ) ); i++ )
{
cout << "---Testing:\"" << test_files[i] << "\"---" << endl;
result = process_merge( test_files[i] );
if( result == MB_SUCCESS )
cout << "---Success---";
else
cout << "---Failure---";
cout << endl << endl;
}
// Destroy the MB database instance.
delete gMB;
gMB = NULL;
}
|