1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763 | /* *****************************************************************
MESQUITE -- The Mesh Quality Improvement Toolkit
Copyright 2010 Sandia National Laboratories. Developed at the
University of Wisconsin--Madison under SNL contract number
624796. The U.S. Government and the University of Wisconsin
retain certain rights to this software.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
(lgpl.txt) along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
(2010) [email protected]
***************************************************************** */
/** \file ObjectiveFunctionTests.cpp
* \brief
* \author Jason Kraftcheck
*/
#include "ObjectiveFunctionTests.hpp"
/** get a patchdata to use for testing */
static bool init_pd( PatchData& pd );
PatchData& ObjectiveFunctionTests::patch()
{
static PatchData the_pd;
static bool did_init = init_pd( the_pd );
CPPUNIT_ASSERT( did_init );
return the_pd;
}
static bool init_pd( PatchData& pd )
{
MsqError err;
const double coords[] = { 0, 0, 0, 1, 1, 1, 2, 2, 2 };
const bool fixed[] = { false, true, true };
const size_t indices[] = { 0, 1, 2 };
pd.fill( 3, coords, 1, TRIANGLE, indices, fixed, err );
return !err;
}
/** Internal helper function for test_eval_type */
double ObjectiveFunctionTests::evaluate_internal( ObjectiveFunction::EvalType type,
OFTestMode test_mode,
ObjectiveFunction* of )
{
MsqPrintError err( cout );
vector< Vector3D > grad;
vector< SymMatrix3D > diag;
MsqHessian hess;
bool valid = false;
double result;
switch( test_mode )
{
case EVAL:
valid = of->evaluate( type, patch(), result, OF_FREE_EVALS_ONLY, err );
break;
case GRAD:
valid = of->evaluate_with_gradient( type, patch(), result, grad, err );
break;
case DIAG:
valid = of->evaluate_with_Hessian_diagonal( type, patch(), result, grad, diag, err );
break;
case HESS:
hess.initialize( patch(), err );
ASSERT_NO_ERROR( err );
valid = of->evaluate_with_Hessian( type, patch(), result, grad, hess, err );
break;
default:
CPPUNIT_ASSERT( false );
}
ASSERT_NO_ERROR( err );
CPPUNIT_ASSERT( valid );
return result;
}
void ObjectiveFunctionTests::test_eval_type( ObjectiveFunction::EvalType type,
OFTestMode test_mode,
ObjectiveFunctionTemplate* of )
{
// define two sets of quality metric values
const double vals1[] = { 1.0, 3.0, 4.0, 8.0 };
const size_t vals1_len = sizeof( vals1 ) / sizeof( vals1[0] );
const double vals2[] = { 21.5, 11.1, 30.0, 0.5 };
const size_t vals2_len = sizeof( vals2 ) / sizeof( vals2[0] );
// create a quality metric to use
OFTestQM metric;
of->set_quality_metric( &metric );
// get some initial values to compare to
of->clear();
metric.set_values( vals1, vals1_len );
const double init1 = evaluate_internal( ObjectiveFunction::CALCULATE, test_mode, of );
of->clear();
metric.set_values( vals2, vals2_len );
const double init2 = evaluate_internal( ObjectiveFunction::CALCULATE, test_mode, of );
of->clear();
metric.append_values( vals1, vals1_len );
const double inits = evaluate_internal( ObjectiveFunction::CALCULATE, test_mode, of );
of->clear();
double val, expected;
switch( type )
{
case ObjectiveFunction::CALCULATE:
// first make sure we get back the same values
metric.set_values( vals1, vals1_len );
val = evaluate_internal( ObjectiveFunction::CALCULATE, test_mode, of );
CPPUNIT_ASSERT_DOUBLES_EQUAL( init1, val, 1e-6 );
metric.set_values( vals2, vals2_len );
val = evaluate_internal( ObjectiveFunction::CALCULATE, test_mode, of );
CPPUNIT_ASSERT_DOUBLES_EQUAL( init2, val, 1e-6 );
// now do something that should modify the accumulated value of the OF
evaluate_internal( ObjectiveFunction::ACCUMULATE, test_mode, of );
// check that the values are unchanged
metric.set_values( vals1, vals1_len );
val = evaluate_internal( ObjectiveFunction::CALCULATE, test_mode, of );
CPPUNIT_ASSERT_DOUBLES_EQUAL( init1, val, 1e-6 );
metric.set_values( vals2, vals2_len );
val = evaluate_internal( ObjectiveFunction::CALCULATE, test_mode, of );
CPPUNIT_ASSERT_DOUBLES_EQUAL( init2, val, 1e-6 );
break;
case ObjectiveFunction::ACCUMULATE:
// begin with first set
metric.set_values( vals1, vals1_len );
val = evaluate_internal( ObjectiveFunction::ACCUMULATE, test_mode, of );
CPPUNIT_ASSERT_DOUBLES_EQUAL( init1, val, 1e-6 );
// add in second set
metric.set_values( vals2, vals2_len );
val = evaluate_internal( ObjectiveFunction::ACCUMULATE, test_mode, of );
CPPUNIT_ASSERT_DOUBLES_EQUAL( inits, val, 1e-6 );
// clear
of->clear();
// begin with second set
metric.set_values( vals2, vals2_len );
val = evaluate_internal( ObjectiveFunction::ACCUMULATE, test_mode, of );
CPPUNIT_ASSERT_DOUBLES_EQUAL( init2, val, 1e-6 );
// add in first set
metric.set_values( vals1, vals1_len );
val = evaluate_internal( ObjectiveFunction::ACCUMULATE, test_mode, of );
CPPUNIT_ASSERT_DOUBLES_EQUAL( inits, val, 1e-6 );
break;
case ObjectiveFunction::SAVE:
// calculate value for first set twice
metric.set_values( vals1, vals1_len );
metric.append_values( vals1, vals1_len );
expected = evaluate_internal( ObjectiveFunction::CALCULATE, test_mode, of );
// begin with the first set
metric.set_values( vals1, vals1_len );
val = evaluate_internal( ObjectiveFunction::ACCUMULATE, test_mode, of );
CPPUNIT_ASSERT_DOUBLES_EQUAL( init1, val, 1e-6 );
// add the second set
metric.set_values( vals2, vals2_len );
val = evaluate_internal( ObjectiveFunction::ACCUMULATE, test_mode, of );
CPPUNIT_ASSERT_DOUBLES_EQUAL( inits, val, 1e-6 );
// now save the second set of values - OF value should not change
metric.set_values( vals2, vals2_len );
val = evaluate_internal( ObjectiveFunction::SAVE, test_mode, of );
CPPUNIT_ASSERT_DOUBLES_EQUAL( inits, val, 1e-6 );
// now replace the second set with the first
metric.set_values( vals1, vals1_len );
val = evaluate_internal( ObjectiveFunction::UPDATE, test_mode, of );
CPPUNIT_ASSERT_DOUBLES_EQUAL( expected, val, 1e-6 );
// check that saved values are cleared
of->clear();
metric.set_values( vals2, vals2_len );
val = evaluate_internal( ObjectiveFunction::UPDATE, test_mode, of );
CPPUNIT_ASSERT_DOUBLES_EQUAL( init2, val, 1e-6 );
break;
case ObjectiveFunction::UPDATE:
// With no saved data, an update should produce the same
// result as CALCULATE
metric.set_values( vals1, vals1_len );
val = evaluate_internal( ObjectiveFunction::UPDATE, test_mode, of );
CPPUNIT_ASSERT_DOUBLES_EQUAL( init1, val, 1e-6 );
// Doing an update with a second patch should change
// the global value to that of the second set
metric.set_values( vals2, vals2_len );
val = evaluate_internal( ObjectiveFunction::UPDATE, test_mode, of );
CPPUNIT_ASSERT_DOUBLES_EQUAL( init2, val, 1e-6 );
// Now add in the second set again
metric.set_values( vals2, vals2_len );
evaluate_internal( ObjectiveFunction::ACCUMULATE, test_mode, of );
// Now replace one accumulation of the second set with the first
// Should result in the first set + the second set
metric.set_values( vals1, vals1_len );
val = evaluate_internal( ObjectiveFunction::UPDATE, test_mode, of );
CPPUNIT_ASSERT_DOUBLES_EQUAL( inits, val, 1e-6 );
break;
case ObjectiveFunction::TEMPORARY:
// With no saved data, an TEMPORARY should produce the same
// result as CALCULATE
metric.set_values( vals1, vals1_len );
val = evaluate_internal( ObjectiveFunction::TEMPORARY, test_mode, of );
CPPUNIT_ASSERT_DOUBLES_EQUAL( init1, val, 1e-6 );
// Begin with two instances of the second set in the
// accumulated value, with one instance saved so it
// can be removed later
metric.set_values( vals2, vals2_len );
evaluate_internal( ObjectiveFunction::ACCUMULATE, test_mode, of );
evaluate_internal( ObjectiveFunction::UPDATE, test_mode, of );
// Now do a temporary eval, replacing one instance of the
// second set wiht the first set
metric.set_values( vals1, vals1_len );
val = evaluate_internal( ObjectiveFunction::TEMPORARY, test_mode, of );
// TEMPORARY should produce the same value as UPDATE, but without
// modifying any internal state.
expected = evaluate_internal( ObjectiveFunction::UPDATE, test_mode, of );
CPPUNIT_ASSERT_DOUBLES_EQUAL( expected, val, 1e-6 );
break;
default:
CPPUNIT_ASSERT_MESSAGE( "No test for specified evaluation type", false );
break;
}
}
void ObjectiveFunctionTests::test_value( const double* input_values,
unsigned num_input_values,
double expected_value,
OFTestMode test_mode,
ObjectiveFunctionTemplate* of )
{
OFTestQM metric( input_values, num_input_values );
of->set_quality_metric( &metric );
double val = evaluate_internal( ObjectiveFunction::CALCULATE, test_mode, of );
CPPUNIT_ASSERT_DOUBLES_EQUAL( expected_value, val, 1e-6 );
}
void ObjectiveFunctionTests::test_clone( ObjectiveFunctionTemplate* of )
{
const double some_vals[] = { 1, 2, 3, 4, 5, 6, 0.5 };
const unsigned num_vals = sizeof( some_vals ) / sizeof( some_vals[0] );
OFTestQM metric( some_vals, num_vals );
of->set_quality_metric( &metric );
// test that we get the same value from both
unique_ptr< ObjectiveFunction > of2( of->clone() );
double exp_val, val;
exp_val = evaluate_internal( ObjectiveFunction::CALCULATE, EVAL, of );
val = evaluate_internal( ObjectiveFunction::CALCULATE, EVAL, of2.get() );
CPPUNIT_ASSERT_DOUBLES_EQUAL( exp_val, val, 1e-12 );
// check if OF supports BCD -- if not then done
MsqError err;
of->evaluate( ObjectiveFunction::UPDATE, patch(), val, false, err );
if( err )
{
err.clear();
return;
}
// build up some saved state in the objective function
of->clear();
const double vals1[] = { 1.0, 3.0, 4.0, 8.0 };
const size_t vals1_len = sizeof( vals1 ) / sizeof( vals1[0] );
const double vals2[] = { 21.5, 11.1, 30.0, 0.5 };
const size_t vals2_len = sizeof( vals2 ) / sizeof( vals2[0] );
metric.set_values( vals1, vals1_len );
evaluate_internal( ObjectiveFunction::SAVE, EVAL, of );
metric.append_values( vals2, vals2_len );
evaluate_internal( ObjectiveFunction::ACCUMULATE, EVAL, of );
// check that clone has same accumulated data
of2 = unique_ptr< ObjectiveFunction >( of->clone() );
metric.set_values( some_vals, num_vals );
exp_val = evaluate_internal( ObjectiveFunction::UPDATE, EVAL, of );
val = evaluate_internal( ObjectiveFunction::UPDATE, EVAL, of2.get() );
CPPUNIT_ASSERT_DOUBLES_EQUAL( exp_val, val, 1e-12 );
}
/** Test correct handling of QM negate flag */
void ObjectiveFunctionTests::test_negate_flag( OFTestMode test_mode, ObjectiveFunctionTemplate* of )
{
const double some_vals[] = { 1, 2, 3, 4, 5, 6, 0.5 };
const unsigned num_vals = sizeof( some_vals ) / sizeof( some_vals[0] );
OFTestQM metric( some_vals, num_vals );
of->set_quality_metric( &metric );
MsqPrintError err( cout );
bool rval = false;
double value[2];
vector< Vector3D > grad[2];
vector< SymMatrix3D > diag[2];
MsqHessian hess[2];
// Do twice, once w/out negate flag set and then once
// with negate flag == -1.
ObjectiveFunction::EvalType type = ObjectiveFunction::CALCULATE;
for( unsigned i = 0; i < 2; ++i )
{
switch( test_mode )
{
case EVAL:
rval = of->evaluate( type, patch(), value[i], false, err );
break;
case GRAD:
rval = of->evaluate_with_gradient( type, patch(), value[i], grad[i], err );
break;
case DIAG:
rval = of->evaluate_with_Hessian_diagonal( type, patch(), value[i], grad[i], diag[i], err );
break;
case HESS:
hess[i].initialize( patch(), err );
ASSERT_NO_ERROR( err );
rval = of->evaluate_with_Hessian( type, patch(), value[i], grad[i], hess[i], err );
break;
default:
CPPUNIT_ASSERT_MESSAGE( "Invalid enum value in test code", false );
break;
}
ASSERT_NO_ERROR( err );
CPPUNIT_ASSERT( rval );
metric.set_negate_flag( -1 );
}
switch( test_mode )
{
case HESS:
CPPUNIT_ASSERT_EQUAL( hess[0].size(), hess[1].size() );
for( size_t r = 0; r < hess[0].size(); ++r )
for( size_t c = r; c < hess[0].size(); ++c )
if( hess[0].get_block( r, c ) )
CPPUNIT_ASSERT_MATRICES_EQUAL( -*hess[0].get_block( r, c ), *hess[1].get_block( r, c ), 1e-6 );
case DIAG:
// NOTE: When case HESS: falls through to here, diag[0] and diag[1]
// will be empty, making this a no-op.
CPPUNIT_ASSERT_EQUAL( diag[0].size(), diag[1].size() );
for( size_t j = 0; j < diag[0].size(); ++j )
CPPUNIT_ASSERT_MATRICES_EQUAL( -diag[0][j], diag[1][j], 1e-6 );
case GRAD:
CPPUNIT_ASSERT_EQUAL( grad[0].size(), grad[1].size() );
for( size_t j = 0; j < grad[0].size(); ++j )
CPPUNIT_ASSERT_VECTORS_EQUAL( -grad[0][j], grad[1][j], 1e-6 );
default:
CPPUNIT_ASSERT_DOUBLES_EQUAL( -value[0], value[1], 1e-6 );
}
}
void ObjectiveFunctionTests::compare_numerical_gradient( ObjectiveFunction* of )
{
MsqPrintError err( std::cout );
PatchData pd;
create_twelve_hex_patch( pd, err );
ASSERT_NO_ERROR( err );
std::vector< Vector3D > num_grad, ana_grad;
double num_val, ana_val;
bool valid;
valid = of->evaluate_with_gradient( ObjectiveFunction::CALCULATE, pd, ana_val, ana_grad, err );
ASSERT_NO_ERROR( err );
CPPUNIT_ASSERT( valid );
CPPUNIT_ASSERT_EQUAL( pd.num_free_vertices(), ana_grad.size() );
valid = of->ObjectiveFunction::evaluate_with_gradient( ObjectiveFunction::CALCULATE, pd, num_val, num_grad, err );
ASSERT_NO_ERROR( err );
CPPUNIT_ASSERT( valid );
CPPUNIT_ASSERT_EQUAL( pd.num_free_vertices(), num_grad.size() );
CPPUNIT_ASSERT_DOUBLES_EQUAL( ana_val, num_val, 1e-6 );
for( size_t i = 0; i < pd.num_free_vertices(); ++i )
{
CPPUNIT_ASSERT_VECTORS_EQUAL( num_grad[i], ana_grad[i], 1e-3 );
}
}
void ObjectiveFunctionTests::compare_hessian_gradient( ObjectiveFunction* of )
{
MsqPrintError err( std::cout );
PatchData pd;
create_twelve_hex_patch( pd, err );
ASSERT_NO_ERROR( err );
std::vector< Vector3D > grad, hess_grad;
MsqHessian hess;
double grad_val, hess_val;
bool valid;
valid = of->evaluate_with_gradient( ObjectiveFunction::CALCULATE, pd, grad_val, grad, err );
ASSERT_NO_ERROR( err );
CPPUNIT_ASSERT( valid );
CPPUNIT_ASSERT_EQUAL( pd.num_free_vertices(), grad.size() );
hess.initialize( pd, err );
ASSERT_NO_ERROR( err );
valid = of->evaluate_with_Hessian( ObjectiveFunction::CALCULATE, pd, hess_val, hess_grad, hess, err );
ASSERT_NO_ERROR( err );
CPPUNIT_ASSERT( valid );
CPPUNIT_ASSERT_EQUAL( pd.num_free_vertices(), hess_grad.size() );
CPPUNIT_ASSERT_DOUBLES_EQUAL( grad_val, hess_val, 1e-6 );
for( size_t i = 0; i < pd.num_free_vertices(); ++i )
{
CPPUNIT_ASSERT_VECTORS_EQUAL( grad[i], hess_grad[i], 1e-6 );
}
}
void ObjectiveFunctionTests::compare_diagonal_gradient( ObjectiveFunction* of )
{
MsqPrintError err( std::cout );
PatchData pd;
create_twelve_hex_patch( pd, err );
ASSERT_NO_ERROR( err );
std::vector< Vector3D > grad, hess_grad;
std::vector< SymMatrix3D > hess;
double grad_val, hess_val;
bool valid;
valid = of->evaluate_with_gradient( ObjectiveFunction::CALCULATE, pd, grad_val, grad, err );
ASSERT_NO_ERROR( err );
CPPUNIT_ASSERT( valid );
CPPUNIT_ASSERT_EQUAL( pd.num_free_vertices(), grad.size() );
valid = of->evaluate_with_Hessian_diagonal( ObjectiveFunction::CALCULATE, pd, hess_val, hess_grad, hess, err );
ASSERT_NO_ERROR( err );
CPPUNIT_ASSERT( valid );
CPPUNIT_ASSERT_EQUAL( pd.num_free_vertices(), hess_grad.size() );
CPPUNIT_ASSERT_DOUBLES_EQUAL( grad_val, hess_val, 1e-6 );
for( size_t i = 0; i < pd.num_free_vertices(); ++i )
{
CPPUNIT_ASSERT_VECTORS_EQUAL( grad[i], hess_grad[i], 1e-6 );
}
}
void ObjectiveFunctionTests::compare_hessian_diagonal( ObjectiveFunction* of )
{
MsqPrintError err( std::cout );
PatchData pd;
create_twelve_hex_patch( pd, err );
ASSERT_NO_ERROR( err );
std::vector< Vector3D > diag_grad, hess_grad;
std::vector< SymMatrix3D > diag;
MsqHessian hess;
double diag_val, hess_val;
bool valid;
valid = of->evaluate_with_Hessian_diagonal( ObjectiveFunction::CALCULATE, pd, diag_val, diag_grad, diag, err );
ASSERT_NO_ERROR( err );
CPPUNIT_ASSERT( valid );
CPPUNIT_ASSERT_EQUAL( pd.num_free_vertices(), diag_grad.size() );
CPPUNIT_ASSERT_EQUAL( pd.num_free_vertices(), diag.size() );
hess.initialize( pd, err );
ASSERT_NO_ERROR( err );
valid = of->evaluate_with_Hessian( ObjectiveFunction::CALCULATE, pd, hess_val, hess_grad, hess, err );
ASSERT_NO_ERROR( err );
CPPUNIT_ASSERT( valid );
CPPUNIT_ASSERT_EQUAL( pd.num_free_vertices(), hess_grad.size() );
CPPUNIT_ASSERT_EQUAL( pd.num_free_vertices(), hess.size() );
CPPUNIT_ASSERT_DOUBLES_EQUAL( hess_val, diag_val, 1e-6 );
for( size_t i = 0; i < pd.num_free_vertices(); ++i )
{
CPPUNIT_ASSERT_VECTORS_EQUAL( hess_grad[i], diag_grad[i], 1e-6 );
CPPUNIT_ASSERT_MATRICES_EQUAL( *hess.get_block( i, i ), diag[i], 1e-6 );
}
}
double MAT_EPS( const Matrix3D& A )
{
return std::max( 0.001 * sqrt( Frobenius_2( A ) ), 0.001 );
}
#define CHECK_EQUAL_MATRICES( A, B ) CPPUNIT_ASSERT_MATRICES_EQUAL( ( A ), ( B ), MAT_EPS( A ) )
void ObjectiveFunctionTests::compare_numerical_hessian( ObjectiveFunction* of, bool diagonal_only )
{
const double delta = 0.0001;
MsqPrintError err( std::cout );
PatchData pd;
create_qm_two_tet_patch( pd, err );
ASSERT_NO_ERROR( err );
CPPUNIT_ASSERT( pd.num_free_vertices() != 0 );
// get analytical Hessian from objective function
std::vector< Vector3D > grad;
std::vector< SymMatrix3D > diag;
MsqHessian hess;
hess.initialize( pd, err );
ASSERT_NO_ERROR( err );
double value;
bool valid;
if( diagonal_only )
valid = of->evaluate_with_Hessian_diagonal( ObjectiveFunction::CALCULATE, pd, value, grad, diag, err );
else
valid = of->evaluate_with_Hessian( ObjectiveFunction::CALCULATE, pd, value, grad, hess, err );
ASSERT_NO_ERROR( err );
CPPUNIT_ASSERT( valid );
// do numerical approximation of each block and compare to analytical value
for( size_t i = 0; i < pd.num_free_vertices(); ++i )
{
const size_t j_end = diagonal_only ? i + 1 : pd.num_free_vertices();
for( size_t j = i; j < j_end; ++j )
{
// do numerical approximation for block corresponding to
// coorindates for ith and jth vertices.
Matrix3D block;
for( int k = 0; k < 3; ++k )
{
for( int m = 0; m < 3; ++m )
{
double dk, dm, dkm;
Vector3D ik = pd.vertex_by_index( i );
Vector3D im = pd.vertex_by_index( j );
Vector3D delta_k( 0.0 );
delta_k[k] = delta;
pd.move_vertex( delta_k, i, err );
ASSERT_NO_ERROR( err );
valid = of->evaluate( ObjectiveFunction::CALCULATE, pd, dk, true, err );
ASSERT_NO_ERROR( err );
CPPUNIT_ASSERT( valid );
Vector3D delta_m( 0.0 );
delta_m[m] = delta;
pd.move_vertex( delta_m, j, err );
ASSERT_NO_ERROR( err );
valid = of->evaluate( ObjectiveFunction::CALCULATE, pd, dkm, true, err );
ASSERT_NO_ERROR( err );
CPPUNIT_ASSERT( valid );
// be careful here that we do the right thing if i==j
pd.set_vertex_coordinates( ik, i, err );
ASSERT_NO_ERROR( err );
pd.set_vertex_coordinates( im, j, err );
ASSERT_NO_ERROR( err );
pd.move_vertex( delta_m, j, err );
ASSERT_NO_ERROR( err );
valid = of->evaluate( ObjectiveFunction::CALCULATE, pd, dm, true, err );
ASSERT_NO_ERROR( err );
CPPUNIT_ASSERT( valid );
pd.set_vertex_coordinates( ik, i, err );
ASSERT_NO_ERROR( err );
pd.set_vertex_coordinates( im, j, err );
ASSERT_NO_ERROR( err );
block[k][m] = ( dkm - dk - dm + value ) / ( delta * delta );
}
}
// compare to analytical value
if( diagonal_only )
{
CPPUNIT_ASSERT( i == j ); // see j_end above
CPPUNIT_ASSERT( i < diag.size() );
CHECK_EQUAL_MATRICES( block, Matrix3D( diag[i] ) );
}
else
{
Matrix3D* m = hess.get_block( i, j );
Matrix3D* mt = hess.get_block( j, i );
if( NULL != m )
{
CHECK_EQUAL_MATRICES( block, *m );
}
if( NULL != mt )
{
CHECK_EQUAL_MATRICES( transpose( block ), *m );
}
if( NULL == mt && NULL == m )
{
CHECK_EQUAL_MATRICES( Matrix3D( 0.0 ), block );
}
}
}
}
}
const size_t HANDLE_VAL = 0xDEADBEEF;
class OFTestBadQM : public QualityMetric
{
public:
OFTestBadQM( bool return_error ) : mError( return_error ) {}<--- Class 'OFTestBadQM' has a constructor with 1 argument that is not explicit. [+]Class 'OFTestBadQM' has a constructor with 1 argument that is not explicit. Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided.
virtual MetricType get_metric_type() const
{
return ELEMENT_BASED;
}
virtual string get_name() const
{
return "ObjectiveFunctionTests";
}
virtual int get_negate_flag() const
{
return 1;
}
virtual void get_evaluations( PatchData&, vector< size_t >& h, bool, MsqError& )
{
h.clear();
h.push_back( HANDLE_VAL );
}
virtual bool evaluate( PatchData&, size_t h, double&, MsqError& err )
{
CPPUNIT_ASSERT_EQUAL( HANDLE_VAL, h );
if( mError ) MSQ_SETERR( err )( MsqError::INVALID_STATE );
return false;
}
virtual bool evaluate_with_indices( PatchData&, size_t h, double&, vector< size_t >&, MsqError& err )
{
CPPUNIT_ASSERT_EQUAL( HANDLE_VAL, h );
if( mError ) MSQ_SETERR( err )( MsqError::INVALID_STATE );
return false;
}
virtual bool evaluate_with_gradient( PatchData&,
size_t h,
double&,
vector< size_t >&,
vector< Vector3D >&,
MsqError& err )
{
CPPUNIT_ASSERT_EQUAL( HANDLE_VAL, h );
if( mError ) MSQ_SETERR( err )( MsqError::INVALID_STATE );
return false;
}
virtual bool evaluate_with_Hessian( PatchData&,
size_t h,
double&,
vector< size_t >&,
vector< Vector3D >&,
vector< Matrix3D >&,
MsqError& err )
{
CPPUNIT_ASSERT_EQUAL( HANDLE_VAL, h );
if( mError ) MSQ_SETERR( err )( MsqError::INVALID_STATE );
return false;
}
private:
bool mError;
};
void ObjectiveFunctionTests::test_handles_invalid_qm( OFTestMode test_mode, ObjectiveFunctionTemplate* of )
{
OFTestBadQM metric( false );
of->set_quality_metric( &metric );
MsqPrintError err( cout );
vector< Vector3D > grad;
vector< SymMatrix3D > diag;
MsqHessian hess;
double result;
bool valid = false;
switch( test_mode )
{
case EVAL:
valid = of->evaluate( ObjectiveFunction::CALCULATE, patch(), result, OF_FREE_EVALS_ONLY, err );
break;
case GRAD:
valid = of->evaluate_with_gradient( ObjectiveFunction::CALCULATE, patch(), result, grad, err );
break;
case DIAG:
valid =
of->evaluate_with_Hessian_diagonal( ObjectiveFunction::CALCULATE, patch(), result, grad, diag, err );
break;
case HESS:
hess.initialize( patch(), err );
ASSERT_NO_ERROR( err );
valid = of->evaluate_with_Hessian( ObjectiveFunction::CALCULATE, patch(), result, grad, hess, err );
break;
default:
CPPUNIT_ASSERT( false );
}
ASSERT_NO_ERROR( err );
CPPUNIT_ASSERT( !valid );
}
void ObjectiveFunctionTests::test_handles_qm_error( OFTestMode test_mode, ObjectiveFunctionTemplate* of )
{
OFTestBadQM metric( true );
of->set_quality_metric( &metric );
MsqError err;
vector< Vector3D > grad;
vector< SymMatrix3D > diag;
MsqHessian hess;
double result;
bool valid;
switch( test_mode )
{
case EVAL:
valid = of->evaluate( ObjectiveFunction::CALCULATE, patch(), result, OF_FREE_EVALS_ONLY, err );<--- Variable 'valid' is assigned a value that is never used.
break;
case GRAD:
valid = of->evaluate_with_gradient( ObjectiveFunction::CALCULATE, patch(), result, grad, err );<--- Variable 'valid' is assigned a value that is never used.
break;
case DIAG:
valid =<--- Variable 'valid' is assigned a value that is never used.
of->evaluate_with_Hessian_diagonal( ObjectiveFunction::CALCULATE, patch(), result, grad, diag, err );
break;
case HESS:
hess.initialize( patch(), err );
ASSERT_NO_ERROR( err );
valid = of->evaluate_with_Hessian( ObjectiveFunction::CALCULATE, patch(), result, grad, hess, err );<--- Variable 'valid' is assigned a value that is never used.
break;
default:
CPPUNIT_ASSERT( false );
}
CPPUNIT_ASSERT( err );
}
|