1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752 | #include "moab/BVHTree.hpp"
#include "moab/Interface.hpp"
#include "moab/ElemEvaluator.hpp"
#include "moab/ReadUtilIface.hpp"
#include "moab/CpuTimer.hpp"
namespace moab
{
const char* BVHTree::treeName = "BVHTree";
ErrorCode BVHTree::build_tree( const Range& entities, EntityHandle* tree_root_set, FileOptions* options )
{
ErrorCode rval;
CpuTimer cp;
if( options )
{
rval = parse_options( *options );
if( MB_SUCCESS != rval ) return rval;
if( !options->all_seen() ) return MB_FAILURE;
}
// calculate bounding box of elements
BoundBox box;
rval = box.update( *moab(), entities );
if( MB_SUCCESS != rval ) return rval;
// create tree root
EntityHandle tmp_root;
if( !tree_root_set ) tree_root_set = &tmp_root;
rval = create_root( box.bMin.array(), box.bMax.array(), *tree_root_set );
if( MB_SUCCESS != rval ) return rval;
rval = mbImpl->add_entities( *tree_root_set, entities );
if( MB_SUCCESS != rval ) return rval;
// a fully balanced tree will have 2*_entities.size()
// which is one doubling away..
std::vector< Node > tree_nodes;
tree_nodes.reserve( entities.size() / maxPerLeaf );
std::vector< HandleData > handle_data_vec;
rval = construct_element_vec( handle_data_vec, entities, boundBox );
if( MB_SUCCESS != rval ) return rval;
#ifndef NDEBUG
for( std::vector< HandleData >::const_iterator i = handle_data_vec.begin(); i != handle_data_vec.end(); ++i )
{
if( !boundBox.intersects_box( i->myBox, 0 ) )
{
std::cerr << "BB:" << boundBox << "EB:" << i->myBox << std::endl;
return MB_FAILURE;
}
}
#endif
// We only build nonempty trees
if( !handle_data_vec.empty() )
{
// initially all bits are set
tree_nodes.push_back( Node() );
const int depth = local_build_tree( tree_nodes, handle_data_vec.begin(), handle_data_vec.end(), 0, boundBox );
#ifndef NDEBUG
std::set< EntityHandle > entity_handles;
for( std::vector< Node >::iterator n = tree_nodes.begin(); n != tree_nodes.end(); ++n )
{
for( HandleDataVec::const_iterator j = n->entities.begin(); j != n->entities.end(); ++j )
{
entity_handles.insert( j->myHandle );
}
}
if( entity_handles.size() != entities.size() )
{
std::cout << "Entity Handle Size Mismatch!" << std::endl;
}
for( Range::iterator i = entities.begin(); i != entities.end(); ++i )
{
if( entity_handles.find( *i ) == entity_handles.end() )
std::cout << "Tree is missing an entity! " << std::endl;
}
#endif
treeDepth = std::max( depth, treeDepth );
}
// convert vector of Node's to entity sets and vector of TreeNode's
rval = convert_tree( tree_nodes );
if( MB_SUCCESS != rval ) return rval;
treeStats.reset();
rval = treeStats.compute_stats( mbImpl, startSetHandle );
treeStats.initTime = cp.time_elapsed();
return rval;
}
ErrorCode BVHTree::convert_tree( std::vector< Node >& tree_nodes )
{
// first construct the proper number of entity sets
ReadUtilIface* read_util;
ErrorCode rval = mbImpl->query_interface( read_util );
if( MB_SUCCESS != rval ) return rval;
{ // isolate potentially-large std::vector so it gets deleted earlier
std::vector< unsigned int > tmp_flags( tree_nodes.size(), meshsetFlags );
rval = read_util->create_entity_sets( tree_nodes.size(), &tmp_flags[0], 0, startSetHandle );
if( MB_SUCCESS != rval ) return rval;
rval = mbImpl->release_interface( read_util );
if( MB_SUCCESS != rval ) return rval;
}
// populate the sets and the TreeNode vector
EntityHandle set_handle = startSetHandle;
std::vector< Node >::iterator it;
myTree.reserve( tree_nodes.size() );
for( it = tree_nodes.begin(); it != tree_nodes.end(); ++it, set_handle++ )
{
if( it != tree_nodes.begin() && !it->entities.empty() )
{
Range range;
for( HandleDataVec::iterator hit = it->entities.begin(); hit != it->entities.end(); ++hit )
range.insert( hit->myHandle );
rval = mbImpl->add_entities( set_handle, range );
if( MB_SUCCESS != rval ) return rval;
}
myTree.push_back( TreeNode( it->dim, it->child, it->Lmax, it->Rmin, it->box ) );
if( it->dim != 3 )
{
rval = mbImpl->add_child_meshset( set_handle, startSetHandle + it->child );
if( MB_SUCCESS != rval ) return rval;
rval = mbImpl->add_child_meshset( set_handle, startSetHandle + it->child + 1 );
if( MB_SUCCESS != rval ) return rval;
}
}
return MB_SUCCESS;
}
ErrorCode BVHTree::parse_options( FileOptions& opts )
{
ErrorCode rval = parse_common_options( opts );
if( MB_SUCCESS != rval ) return rval;
// SPLITS_PER_DIR: number of candidate splits considered per direction; default = 3
int tmp_int;
rval = opts.get_int_option( "SPLITS_PER_DIR", tmp_int );
if( MB_SUCCESS == rval ) splitsPerDir = tmp_int;
return MB_SUCCESS;
}
void BVHTree::establish_buckets( HandleDataVec::const_iterator begin,
HandleDataVec::const_iterator end,
const BoundBox& interval,
std::vector< std::vector< Bucket > >& buckets ) const
{
// put each element into its bucket
for( HandleDataVec::const_iterator i = begin; i != end; ++i )
{
const BoundBox& box = i->myBox;
for( unsigned int dim = 0; dim < 3; ++dim )
{
const unsigned int index = Bucket::bucket_index( splitsPerDir, box, interval, dim );
assert( index < buckets[dim].size() );
Bucket& bucket = buckets[dim][index];
if( bucket.mySize > 0 )
bucket.boundingBox.update( box );
else
bucket.boundingBox = box;
bucket.mySize++;
}
}
#ifndef NDEBUG
BoundBox elt_union = begin->myBox;
for( HandleDataVec::const_iterator i = begin; i != end; ++i )
{
const BoundBox& box = i->myBox;
elt_union.update( box );
for( unsigned int dim = 0; dim < 3; ++dim )
{
const unsigned int index = Bucket::bucket_index( splitsPerDir, box, interval, dim );
Bucket& bucket = buckets[dim][index];
if( !bucket.boundingBox.intersects_box( box ) ) std::cerr << "Buckets not covering elements!" << std::endl;
}
}
if( !elt_union.intersects_box( interval ) )
{
std::cout << "element union: " << std::endl << elt_union;
std::cout << "intervals: " << std::endl << interval;
std::cout << "union of elts does not contain original box!" << std::endl;
}
if( !interval.intersects_box( elt_union ) )
{
std::cout << "original box does not contain union of elts" << std::endl;
std::cout << interval << std::endl << elt_union << std::endl;
}
for( unsigned int d = 0; d < 3; ++d )
{
std::vector< unsigned int > nonempty;
const std::vector< Bucket >& buckets_ = buckets[d];
unsigned int j = 0;
for( std::vector< Bucket >::const_iterator i = buckets_.begin(); i != buckets_.end(); ++i, ++j )
{
if( i->mySize > 0 )
{
nonempty.push_back( j );
}
}
BoundBox test_box = buckets_[nonempty.front()].boundingBox;
for( unsigned int i = 0; i < nonempty.size(); ++i )
test_box.update( buckets_[nonempty[i]].boundingBox );
if( !test_box.intersects_box( interval ) )
std::cout << "union of buckets in dimension: " << d << "does not contain original box!" << std::endl;
if( !interval.intersects_box( test_box ) )
{
std::cout << "original box does "
<< "not contain union of buckets"
<< "in dimension: " << d << std::endl;
std::cout << interval << std::endl << test_box << std::endl;
}
}
#endif
}
void BVHTree::initialize_splits( std::vector< std::vector< SplitData > >& splits,
const std::vector< std::vector< Bucket > >& buckets,
const SplitData& data ) const
{
for( unsigned int d = 0; d < 3; ++d )
{
std::vector< SplitData >::iterator splits_begin = splits[d].begin();
std::vector< SplitData >::iterator splits_end = splits[d].end();
std::vector< Bucket >::const_iterator left_begin = buckets[d].begin();
std::vector< Bucket >::const_iterator _end = buckets[d].end();
std::vector< Bucket >::const_iterator left_end = buckets[d].begin() + 1;
for( std::vector< SplitData >::iterator s = splits_begin; s != splits_end; ++s, ++left_end )
{
s->nl = set_interval( s->leftBox, left_begin, left_end );
if( s->nl == 0 )
{
s->leftBox = data.boundingBox;
s->leftBox.bMax[d] = s->leftBox.bMin[d];
}
s->nr = set_interval( s->rightBox, left_end, _end );
if( s->nr == 0 )
{
s->rightBox = data.boundingBox;
s->rightBox.bMin[d] = s->rightBox.bMax[d];
}
s->Lmax = s->leftBox.bMax[d];
s->Rmin = s->rightBox.bMin[d];
s->split = std::distance( splits_begin, s );
s->dim = d;
}
#ifndef NDEBUG
for( std::vector< SplitData >::iterator s = splits_begin; s != splits_end; ++s )
{
BoundBox test_box = s->leftBox;
test_box.update( s->rightBox );
if( !data.boundingBox.intersects_box( test_box ) )
{
std::cout << "nr: " << s->nr << std::endl;
std::cout << "Test box: " << std::endl << test_box;
std::cout << "Left box: " << std::endl << s->leftBox;
std::cout << "Right box: " << std::endl << s->rightBox;
std::cout << "Interval: " << std::endl << data.boundingBox;
std::cout << "Split boxes larger than bb" << std::endl;
}
if( !test_box.intersects_box( data.boundingBox ) )
{
std::cout << "bb larger than union of split boxes" << std::endl;
}
}
#endif
}
}
void BVHTree::median_order( HandleDataVec::iterator& begin, HandleDataVec::iterator& end, SplitData& data ) const
{
int dim = data.dim;
for( HandleDataVec::iterator i = begin; i != end; ++i )
{
i->myDim = 0.5 * ( i->myBox.bMin[dim], i->myBox.bMax[dim] );
}
std::sort( begin, end, BVHTree::HandleData_comparator() );
const unsigned int total = std::distance( begin, end );
HandleDataVec::iterator middle = begin + ( total / 2 );
double middle_center = middle->myDim;
middle_center += ( ++middle )->myDim;
middle_center *= 0.5;
data.split = middle_center;
data.nl = std::distance( begin, middle ) + 1;
data.nr = total - data.nl;
++middle;
data.leftBox = begin->myBox;
data.rightBox = middle->myBox;
for( HandleDataVec::iterator i = begin; i != middle; ++i )
{
i->myDim = 0;
data.leftBox.update( i->myBox );
}
for( HandleDataVec::iterator i = middle; i != end; ++i )
{
i->myDim = 1;
data.rightBox.update( i->myBox );
}
data.Rmin = data.rightBox.bMin[data.dim];
data.Lmax = data.leftBox.bMax[data.dim];
#ifndef NDEBUG
BoundBox test_box( data.rightBox );
if( !data.boundingBox.intersects_box( test_box ) )
{
std::cerr << "MEDIAN: BB Does not contain splits" << std::endl;
std::cerr << "test_box: " << test_box << std::endl;
std::cerr << "data.boundingBox: " << data.boundingBox << std::endl;
}
#endif
}
void BVHTree::find_split( HandleDataVec::iterator& begin, HandleDataVec::iterator& end, SplitData& data ) const
{
std::vector< std::vector< Bucket > > buckets( 3, std::vector< Bucket >( splitsPerDir + 1 ) );
std::vector< std::vector< SplitData > > splits( 3, std::vector< SplitData >( splitsPerDir, data ) );
const BoundBox interval = data.boundingBox;
establish_buckets( begin, end, interval, buckets );
initialize_splits( splits, buckets, data );
choose_best_split( splits, data );
const bool use_median = ( 0 == data.nl ) || ( data.nr == 0 );
if( !use_median )
order_elements( begin, end, data );
else
median_order( begin, end, data );
#ifndef NDEBUG
bool seen_one = false, issue = false;
bool first_left = true, first_right = true;
unsigned int count_left = 0, count_right = 0;
BoundBox left_box, right_box;
for( HandleDataVec::iterator i = begin; i != end; ++i )
{
int order = i->myDim;
if( order != 0 && order != 1 )
{
std::cerr << "Invalid order element !";
std::cerr << order << std::endl;
std::exit( -1 );
}
if( order == 1 )
{
seen_one = 1;
count_right++;
if( first_right )
{
right_box = i->myBox;
first_right = false;
}
else
{
right_box.update( i->myBox );
}
if( !right_box.intersects_box( i->myBox ) )
{
if( !issue )
{
std::cerr << "Bounding right box issue!" << std::endl;
}
issue = true;
}
}
if( order == 0 )
{
count_left++;
if( first_left )
{
left_box = i->myBox;
first_left = false;
}
else
{
left_box.update( i->myBox );
}
if( !data.leftBox.intersects_box( i->myBox ) )
{
if( !issue )
{
std::cerr << "Bounding left box issue!" << std::endl;
}
issue = true;
}
if( seen_one )
{
std::cerr << "Invalid ordering!" << std::endl;
std::cout << ( i - 1 )->myDim << order << std::endl;
exit( -1 );
}
}
}
if( !left_box.intersects_box( data.leftBox ) ) std::cout << "left elts do not contain left box" << std::endl;
if( !data.leftBox.intersects_box( left_box ) ) std::cout << "left box does not contain left elts" << std::endl;
if( !right_box.intersects_box( data.rightBox ) ) std::cout << "right elts do not contain right box" << std::endl;
if( !data.rightBox.intersects_box( right_box ) ) std::cout << "right box do not contain right elts" << std::endl;
if( count_left != data.nl || count_right != data.nr )
{
std::cerr << "counts are off!" << std::endl;
std::cerr << "total: " << std::distance( begin, end ) << std::endl;
std::cerr << "Dim: " << data.dim << std::endl;
std::cerr << data.Lmax << " , " << data.Rmin << std::endl;
std::cerr << "Right box: " << std::endl << data.rightBox << "Left box: " << std::endl << data.leftBox;
std::cerr << "supposed to be: " << data.nl << " " << data.nr << std::endl;
std::cerr << "accountant says: " << count_left << " " << count_right << std::endl;
std::exit( -1 );
}
#endif
}
int BVHTree::local_build_tree( std::vector< Node >& tree_nodes,
HandleDataVec::iterator begin,
HandleDataVec::iterator end,
const int index,
const BoundBox& box,
const int depth )
{
#ifndef NDEBUG
for( HandleDataVec::const_iterator i = begin; i != end; ++i )
{
if( !box.intersects_box( i->myBox, 0 ) )
{
std::cerr << "depth: " << depth << std::endl;
std::cerr << "BB:" << box << "EB:" << i->myBox << std::endl;
std::exit( -1 );
}
}
#endif
const unsigned int total_num_elements = std::distance( begin, end );
tree_nodes[index].box = box;
// logic for splitting conditions
if( (int)total_num_elements > maxPerLeaf && depth < maxDepth )
{
SplitData data;
data.boundingBox = box;
find_split( begin, end, data );
// assign data to node
tree_nodes[index].Lmax = data.Lmax;
tree_nodes[index].Rmin = data.Rmin;
tree_nodes[index].dim = data.dim;
tree_nodes[index].child = tree_nodes.size();
// insert left, right children;
tree_nodes.push_back( Node() );
tree_nodes.push_back( Node() );
const int left_depth =
local_build_tree( tree_nodes, begin, begin + data.nl, tree_nodes[index].child, data.leftBox, depth + 1 );
const int right_depth =
local_build_tree( tree_nodes, begin + data.nl, end, tree_nodes[index].child + 1, data.rightBox, depth + 1 );
return std::max( left_depth, right_depth );
}
tree_nodes[index].dim = 3;
std::copy( begin, end, std::back_inserter( tree_nodes[index].entities ) );
return depth;
}
ErrorCode BVHTree::find_point( const std::vector< double >& point,
const unsigned int& index,
const double iter_tol,
const double inside_tol,
std::pair< EntityHandle, CartVect >& result )
{
if( index == 0 ) treeStats.numTraversals++;
const TreeNode& node = myTree[index];
treeStats.nodesVisited++;
CartVect params;
int is_inside;
ErrorCode rval = MB_SUCCESS;
if( node.dim == 3 )
{
treeStats.leavesVisited++;
Range entities;
rval = mbImpl->get_entities_by_handle( startSetHandle + index, entities );
if( MB_SUCCESS != rval ) return rval;
for( Range::iterator i = entities.begin(); i != entities.end(); ++i )
{
treeStats.traversalLeafObjectTests++;
myEval->set_ent_handle( *i );
myEval->reverse_eval( &point[0], iter_tol, inside_tol, params.array(), &is_inside );
if( is_inside )
{
result.first = *i;
result.second = params;
return MB_SUCCESS;
}
}
result.first = 0;
return MB_SUCCESS;
}
// the extra tol here considers the case where
// 0 < Rmin - Lmax < 2tol
std::vector< EntityHandle > children;
rval = mbImpl->get_child_meshsets( startSetHandle + index, children );
if( MB_SUCCESS != rval || children.size() != 2 ) return rval;
if( ( node.Lmax + iter_tol ) < ( node.Rmin - iter_tol ) )
{
if( point[node.dim] <= ( node.Lmax + iter_tol ) )
return find_point( point, children[0] - startSetHandle, iter_tol, inside_tol, result );
else if( point[node.dim] >= ( node.Rmin - iter_tol ) )
return find_point( point, children[1] - startSetHandle, iter_tol, inside_tol, result );
result = std::make_pair( 0, CartVect( &point[0] ) ); // point lies in empty space.
return MB_SUCCESS;
}
// Boxes overlap
// left of Rmin, you must be on the left
// we can't be sure about the boundaries since the boxes overlap
// this was a typo in the paper which caused pain.
if( point[node.dim] < ( node.Rmin - iter_tol ) )
return find_point( point, children[0] - startSetHandle, iter_tol, inside_tol, result );
// if you are on the right Lmax, you must be on the right
else if( point[node.dim] > ( node.Lmax + iter_tol ) )
return find_point( point, children[1] - startSetHandle, iter_tol, inside_tol, result );
/* pg5 of paper
* However, instead of always traversing either subtree
* first (e.g. left always before right), we first traverse
* the subtree whose bounding plane has the larger distance to the
* sought point. This results in less overall traversal, and the correct
* cell is identified more quickly.
*/
// So far all testing confirms that this 'heuristic' is
// significantly slower.
// I conjecture this is because it gets improperly
// branch predicted..
// bool dir = (point[ node.dim] - node.Rmin) <=
// (node.Lmax - point[ node.dim]);
find_point( point, children[0] - startSetHandle, iter_tol, inside_tol, result );
if( result.first == 0 )
{
return find_point( point, children[1] - startSetHandle, iter_tol, inside_tol, result );
}
return MB_SUCCESS;
}
EntityHandle BVHTree::bruteforce_find( const double* point, const double iter_tol, const double inside_tol )<--- The function 'bruteforce_find' is never used.
{
treeStats.numTraversals++;
CartVect params;
for( unsigned int i = 0; i < myTree.size(); i++ )
{
if( myTree[i].dim != 3 || !myTree[i].box.contains_point( point, iter_tol ) ) continue;
if( myEval )
{
EntityHandle entity = 0;
treeStats.leavesVisited++;
ErrorCode rval = myEval->find_containing_entity( startSetHandle + i, point, iter_tol, inside_tol, entity,
params.array(), &treeStats.traversalLeafObjectTests );
if( entity )
return entity;
else if( MB_SUCCESS != rval )
return 0;
}
else
return startSetHandle + i;
}
return 0;
}
ErrorCode BVHTree::get_bounding_box( BoundBox& box, EntityHandle* tree_node ) const
{
if( !tree_node || *tree_node == startSetHandle )<--- Assuming that condition '!tree_node' is not redundant
{
box = boundBox;
return MB_SUCCESS;
}
else if( ( tree_node && !startSetHandle ) || *tree_node < startSetHandle ||<--- Condition 'tree_node' is always true
*tree_node - startSetHandle > myTree.size() )
return MB_FAILURE;
box = myTree[*tree_node - startSetHandle].box;
return MB_SUCCESS;
}
ErrorCode BVHTree::point_search( const double* point,
EntityHandle& leaf_out,
const double iter_tol,
const double inside_tol,
bool* multiple_leaves,
EntityHandle* start_node,
CartVect* params )
{
treeStats.numTraversals++;
EntityHandle this_set = ( start_node ? *start_node : startSetHandle );
// convoluted check because the root is different from startSetHandle
if( this_set != myRoot && ( this_set < startSetHandle || this_set >= startSetHandle + myTree.size() ) )
return MB_FAILURE;
else if( this_set == myRoot )
this_set = startSetHandle;
std::vector< EntityHandle > candidates,
result_list; // list of subtrees to traverse, and results
candidates.push_back( this_set - startSetHandle );
BoundBox box;
while( !candidates.empty() )
{
EntityHandle ind = candidates.back();
treeStats.nodesVisited++;
if( myTree[ind].dim == 3 ) treeStats.leavesVisited++;
this_set = startSetHandle + ind;
candidates.pop_back();
// test box of this node
ErrorCode rval = get_bounding_box( box, &this_set );
if( MB_SUCCESS != rval ) return rval;
if( !box.contains_point( point, iter_tol ) ) continue;
// else if not a leaf, test children & put on list
else if( myTree[ind].dim != 3 )
{
candidates.push_back( myTree[ind].child );
candidates.push_back( myTree[ind].child + 1 );
continue;
}
else if( myTree[ind].dim == 3 && myEval && params )
{
rval = myEval->find_containing_entity( startSetHandle + ind, point, iter_tol, inside_tol, leaf_out,
params->array(), &treeStats.traversalLeafObjectTests );
if( leaf_out || MB_SUCCESS != rval ) return rval;
}
else
{
// leaf node within distance; return in list
result_list.push_back( this_set );
}
}
if( !result_list.empty() ) leaf_out = result_list[0];
if( multiple_leaves && result_list.size() > 1 ) *multiple_leaves = true;
return MB_SUCCESS;
}
ErrorCode BVHTree::distance_search( const double from_point[3],
const double distance,
std::vector< EntityHandle >& result_list,
const double iter_tol,
const double inside_tol,
std::vector< double >* result_dists,
std::vector< CartVect >* result_params,
EntityHandle* tree_root )
{
// non-NULL root should be in tree
// convoluted check because the root is different from startSetHandle
EntityHandle this_set = ( tree_root ? *tree_root : startSetHandle );
if( this_set != myRoot && ( this_set < startSetHandle || this_set >= startSetHandle + myTree.size() ) )
return MB_FAILURE;
else if( this_set == myRoot )
this_set = startSetHandle;
treeStats.numTraversals++;
const double dist_sqr = distance * distance;
const CartVect from( from_point );
std::vector< EntityHandle > candidates; // list of subtrees to traverse
// pre-allocate space for default max tree depth
candidates.reserve( maxDepth );
// misc temporary values
ErrorCode rval;
BoundBox box;
candidates.push_back( this_set - startSetHandle );
while( !candidates.empty() )
{
EntityHandle ind = candidates.back();
this_set = startSetHandle + ind;
candidates.pop_back();
treeStats.nodesVisited++;
if( myTree[ind].dim == 3 ) treeStats.leavesVisited++;
// test box of this node
rval = get_bounding_box( box, &this_set );
if( MB_SUCCESS != rval ) return rval;
double d_sqr = box.distance_squared( from_point );
// if greater than cutoff, continue
if( d_sqr > dist_sqr ) continue;
// else if not a leaf, test children & put on list
else if( myTree[ind].dim != 3 )
{
candidates.push_back( myTree[ind].child );
candidates.push_back( myTree[ind].child + 1 );
continue;
}
if( myEval && result_params )
{
EntityHandle ent;
CartVect params;
rval = myEval->find_containing_entity( startSetHandle + ind, from_point, iter_tol, inside_tol, ent,
params.array(), &treeStats.traversalLeafObjectTests );
if( MB_SUCCESS != rval )
return rval;
else if( ent )
{
result_list.push_back( ent );
result_params->push_back( params );
if( result_dists ) result_dists->push_back( 0.0 );
}
}
else
{
// leaf node within distance; return in list
result_list.push_back( this_set );
if( result_dists ) result_dists->push_back( sqrt( d_sqr ) );
}
}
return MB_SUCCESS;
}
ErrorCode BVHTree::print_nodes( std::vector< Node >& nodes )<--- The function 'print_nodes' is never used.
{
int i;
std::vector< Node >::iterator it;
for( it = nodes.begin(), i = 0; it != nodes.end(); ++it, i++ )
{
std::cout << "Node " << i << ": dim = " << it->dim << ", child = " << it->child << ", Lmax/Rmin = " << it->Lmax
<< "/" << it->Rmin << ", box = " << it->box << std::endl;
}
return MB_SUCCESS;
}
ErrorCode BVHTree::print()
{
int i;
std::vector< TreeNode >::iterator it;
for( it = myTree.begin(), i = 0; it != myTree.end(); ++it, i++ )
{
std::cout << "Node " << i << ": dim = " << it->dim << ", child = " << it->child << ", Lmax/Rmin = " << it->Lmax
<< "/" << it->Rmin << ", box = " << it->box << std::endl;
}
return MB_SUCCESS;
}
} // namespace moab
|