1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652 | /** TSTT Mesh Interface brick mesh performance test
*
* This program tests TSTT mesh interface functions used to create a square structured
* mesh. Boilerplate taken from tstt mesh interface test in MOAB and performance test in MOAB
*
*/
// Different platforms follow different conventions for usage
#ifndef _WIN32
#include <sys/resource.h>
#endif
#ifdef SOLARIS
extern "C" int getrusage( int, struct rusage* );
#ifndef RUSAGE_SELF
#include </usr/ucbinclude/sys/rusage.h>
#endif
#endif
#include <cstdlib>
#include <cstdio>
#include <iostream>
#include <iostream>
#include <cassert>
#include "iMesh.h"
// needed to get the proper size for handles
using namespace std;
double LENGTH = 1.0;
// forward declare some functions
void query_elem_to_vert( iMesh_Instance mesh );
void query_vert_to_elem( iMesh_Instance mesh );
void print_time( const bool print_em, double& tot_time, double& utime, double& stime, long& imem, long& rmem );
void build_connect( const int nelem, const int vstart, int*& connect );
void testB( iMesh_Instance mesh, const int nelem, const double* coords, int* connect );
void testC( iMesh_Instance mesh, const int nelem, const double* coords );
void compute_edge( double* start, const int nelem, const double xint, const int stride );
void compute_face( double* a, const int nelem, const double xint, const int stride1, const int stride2 );
void build_coords( const int nelem, double*& coords );
void build_connect( const int nelem, const int vstart, int*& connect );
int main( int argc, char* argv[] )
{
int nelem = 20;
if( argc < 3 )
{
std::cout << "Usage: " << argv[0] << " <ints_per_side> <A|B|C>" << std::endl;
return 1;
}
char which_test = '\0';
sscanf( argv[1], "%d", &nelem );
sscanf( argv[2], "%c", &which_test );
if( which_test != 'B' && which_test != 'C' )
{
std::cout << "Must indicate B or C for test." << std::endl;
return 1;
}
std::cout << "number of elements: " << nelem << "; test " << which_test << std::endl;
// initialize the data in native format
// pre-build the coords array
double* coords;
build_coords( nelem, coords );
assert( NULL != coords );
// test B: create mesh using bulk interface
// create an implementation
iMesh_Instance mesh;
int result;
iMesh_newMesh( NULL, &mesh, &result, 0 );
int* connect = NULL;
if( iBase_SUCCESS != result )
{
cerr << "Couldn't create mesh instance." << endl;
iMesh_dtor( mesh, &result );
return 1;
}
iMesh_setGeometricDimension( mesh, 3, &result );
if( iBase_SUCCESS != result )
{
cerr << "Couldn't set geometric dimension." << endl;
iMesh_dtor( mesh, &result );
return 1;
}
switch( which_test )
{
case 'B':
build_connect( nelem, 1, connect );
// test B: create mesh using bulk interface
testB( mesh, nelem, coords, connect );
break;
case 'C':
// test C: create mesh using individual interface
testC( mesh, nelem, coords );
break;
}
free( coords );
return 0;
}
void testB( iMesh_Instance mesh, const int nelem, const double* coords, int* connect )
{
double utime, stime, ttime0, ttime1, ttime2, ttime3, ttime4;
long imem0, rmem0, imem1, rmem1, imem2, rmem2, imem3, rmem3, imem4, rmem4;
print_time( false, ttime0, utime, stime, imem0, rmem0 );
int num_verts = ( nelem + 1 ) * ( nelem + 1 ) * ( nelem + 1 );
int num_elems = nelem * nelem * nelem;
// create vertices as a block; initialize to NULL so allocation is done in interface
iBase_EntityHandle* vertices = NULL;
int vertices_allocated = 0, vertices_size;
int result;
iMesh_createVtxArr( mesh, num_verts, iBase_BLOCKED, coords, 3 * num_verts, &vertices, &vertices_allocated,
&vertices_size, &result );
if( iBase_SUCCESS != result )
{
cerr << "Couldn't create vertices in bulk call" << endl;
free( vertices );
return;
}
// need to explicitly fill connectivity array, since we don't know
// the format of entity handles
int nconnect = 8 * num_elems;
iBase_EntityHandle* sidl_connect = (iBase_EntityHandle*)malloc( nconnect * sizeof( iBase_EntityHandle ) );
for( int i = 0; i < nconnect; i++ )
{
// use connect[i]-1 because we used starting vertex index (vstart) of 1
assert( connect[i] - 1 < num_verts );
sidl_connect[i] = vertices[connect[i] - 1];
}
// no longer need vertices and connect arrays, free here to reduce overall peak memory usage
free( vertices );
free( connect );
// create the entities
iBase_EntityHandle* new_hexes = NULL;
int new_hexes_allocated = 0, new_hexes_size;
int* status = NULL;
int status_allocated = 0, status_size;
iMesh_createEntArr( mesh, iMesh_HEXAHEDRON, sidl_connect, nconnect, &new_hexes, &new_hexes_allocated,
&new_hexes_size, &status, &status_allocated, &status_size, &result );
if( iBase_SUCCESS != result )
{
cerr << "Couldn't create hex elements in bulk call" << endl;
free( new_hexes );
free( status );
free( sidl_connect );
return;
}
print_time( false, ttime1, utime, stime, imem1, rmem1 );
free( status );
free( new_hexes );
free( sidl_connect );
// query the mesh 2 ways
query_elem_to_vert( mesh );
print_time( false, ttime2, utime, stime, imem2, rmem2 );
query_vert_to_elem( mesh );
print_time( false, ttime3, utime, stime, imem3, rmem3 );
iMesh_dtor( mesh, &result );
print_time( false, ttime4, utime, stime, imem4, rmem4 );
std::cout << "TSTTb/MOAB_ucd_blocked: nelem, construct, e_to_v, v_to_e, after_dtor = " << nelem << ", "
<< ttime1 - ttime0 << ", " << ttime2 - ttime1 << ", " << ttime3 - ttime2 << ", " << ttime4 - ttime3
<< " seconds" << std::endl;
std::cout << "TSTTb/MOAB_ucd_blocked_memory_(rss): initial, after_construction, e-v, v-e, after_dtor:" << rmem0
<< ", " << rmem1 << ", " << rmem2 << ", " << rmem3 << ", " << rmem4 << " kb" << std::endl;
}
void testC( iMesh_Instance mesh, const int nelem, const double* coords )
{
double utime, stime, ttime0, ttime1, ttime2, ttime3, ttime4;
long imem0, rmem0, imem1, rmem1, imem2, rmem2, imem3, rmem3, imem4, rmem4;
print_time( false, ttime0, utime, stime, imem0, rmem0 );
// need some dimensions
int numv = nelem + 1;
int numv_sq = numv * numv;
int num_verts = numv * numv * numv;
#define VINDEX( i, j, k ) ( ( i ) + ( (j)*numv ) + ( (k)*numv_sq ) )
// array to hold vertices created individually
iBase_EntityHandle* sidl_vertices = (iBase_EntityHandle*)malloc( num_verts * sizeof( iBase_EntityHandle ) );
int result;
for( int i = 0; i < num_verts; i++ )
{
// create the vertex
iMesh_createVtx( mesh, coords[i], coords[i + num_verts], coords[i + 2 * num_verts], sidl_vertices + i,
&result );
if( iBase_SUCCESS != result )
{
cerr << "Couldn't create vertex in individual call" << endl;
return;
}
}
iBase_EntityHandle tmp_conn[8], new_hex;
for( int i = 0; i < nelem; i++ )
{
for( int j = 0; j < nelem; j++ )
{
for( int k = 0; k < nelem; k++ )
{
int vijk = VINDEX( i, j, k );
tmp_conn[0] = sidl_vertices[vijk];
tmp_conn[1] = sidl_vertices[vijk + 1];
tmp_conn[2] = sidl_vertices[vijk + 1 + numv];
tmp_conn[3] = sidl_vertices[vijk + numv];
tmp_conn[4] = sidl_vertices[vijk + numv * numv];
tmp_conn[5] = sidl_vertices[vijk + 1 + numv * numv];
tmp_conn[6] = sidl_vertices[vijk + 1 + numv + numv * numv];
tmp_conn[7] = sidl_vertices[vijk + numv + numv * numv];
// create the entity
int status;
iMesh_createEnt( mesh, iMesh_HEXAHEDRON, tmp_conn, 8, &new_hex, &status, &result );
if( iBase_SUCCESS != result )
{
cerr << "Couldn't create hex element in individual call" << endl;
// return; do not return if errors, as we would leak memory
}
}
}
}
print_time( false, ttime1, utime, stime, imem1, rmem1 );
free( sidl_vertices );
// query the mesh 2 ways
query_elem_to_vert( mesh );
print_time( false, ttime2, utime, stime, imem2, rmem2 );
query_vert_to_elem( mesh );
print_time( false, ttime3, utime, stime, imem3, rmem3 );
iMesh_dtor( mesh, &result );
print_time( false, ttime4, utime, stime, imem4, rmem4 );
std::cout << "TSTTb/MOAB_ucd_indiv: nelem, construct, e_to_v, v_to_e, after_dtor = " << nelem << ", "
<< ttime1 - ttime0 << ", " << ttime2 - ttime1 << ", " << ttime3 - ttime2 << ", " << ttime4 - ttime3
<< " seconds" << std::endl;
std::cout << "TSTTb/MOAB_ucd_indiv_memory_(rss): initial, after_construction, e-v, v-e, after_dtor:" << rmem0
<< ", " << rmem1 << ", " << rmem2 << ", " << rmem3 << ", " << rmem4 << " kb" << std::endl;
}
void query_elem_to_vert( iMesh_Instance mesh )
{
iBase_EntityHandle* all_hexes = NULL;
int all_hexes_size, all_hexes_allocated = 0;
// get all the hex elements
int success;
iBase_EntitySetHandle root_set;
iMesh_getRootSet( mesh, &root_set, &success );
if( iBase_SUCCESS != success )
{
cerr << "Couldn't get root set." << endl;
return;
}
iMesh_getEntities( mesh, root_set, iBase_REGION, iMesh_HEXAHEDRON, &all_hexes, &all_hexes_allocated,
&all_hexes_size, &success );
if( iBase_SUCCESS != success )
{
cerr << "Couldn't get all hex elements in query_mesh" << endl;
return;
}
// now loop over elements
iBase_EntityHandle* dum_connect = NULL;
int dum_connect_allocated = 0, dum_connect_size;
double* dum_coords = NULL;
int dum_coords_size, dum_coords_allocated = 0;
int order;
iMesh_getDfltStorage( mesh, &order, &success );
if( iBase_SUCCESS != success ) return;
for( int i = 0; i < all_hexes_size; i++ )
{
// get the connectivity of this element; will allocate space on 1st iteration,
// but will have correct size on subsequent ones
iMesh_getEntAdj( mesh, all_hexes[i], iBase_VERTEX, &dum_connect, &dum_connect_allocated, &dum_connect_size,
&success );
if( iBase_SUCCESS == success )
{
// get vertex coordinates; ; will allocate space on 1st iteration,
// but will have correct size on subsequent ones
iMesh_getVtxArrCoords( mesh, dum_connect, dum_connect_size, order, &dum_coords, &dum_coords_allocated,
&dum_coords_size, &success );
double centroid[3] = { 0.0, 0.0, 0.0 };
if( order == iBase_BLOCKED )
{
for( int j = 0; j < 8; j++ )
{
centroid[0] += dum_coords[j];
centroid[1] += dum_coords[8 + j];
centroid[2] += dum_coords[16 + j];
}
}
else
{
for( int j = 0; j < 8; j++ )
{
centroid[0] += dum_coords[3 * j];
centroid[1] += dum_coords[3 * j + 1];
centroid[2] += dum_coords[3 * j + 2];
}
}
}
if( iBase_SUCCESS != success )
{
cerr << "Problem getting connectivity or vertex coords." << endl;
return;
}
}
free( all_hexes );
free( dum_connect );
free( dum_coords );
}
void query_vert_to_elem( iMesh_Instance mesh )
{
iBase_EntityHandle* all_verts = NULL;
int all_verts_allocated = 0, all_verts_size;
iBase_EntitySetHandle root_set;
int success;
iMesh_getRootSet( mesh, &root_set, &success );
if( iBase_SUCCESS != success )
{
cerr << "Couldn't get root set." << endl;
return;
}
// get all the vertices elements
iMesh_getEntities( mesh, root_set, iBase_VERTEX, iMesh_POINT, &all_verts, &all_verts_allocated, &all_verts_size,
&success );
if( iBase_SUCCESS != success )
{
cerr << "Couldn't get all vertices in query_vert_to_elem" << endl;
return;
}
// for this mesh, should never be more than 8 hexes connected to a vertex
iBase_EntityHandle* dum_hexes = (iBase_EntityHandle*)calloc( 8, sizeof( iBase_EntityHandle ) );
int dum_hexes_allocated = 8, dum_hexes_size;
// now loop over vertices
for( int i = 0; i < all_verts_size; i++ )
{
// get the connectivity of this element; will have to allocate space on every
// iteration, since size can vary
iMesh_getEntAdj( mesh, all_verts[i], iBase_REGION, &dum_hexes, &dum_hexes_allocated, &dum_hexes_size,
&success );
if( iBase_SUCCESS != success )
{
cerr << "Problem getting connectivity or vertex coords." << endl;
// do not return early, as we would leak memory
}
}
free( dum_hexes );
free( all_verts );
}
void print_time( const bool print_em, double& tot_time, double& utime, double& stime, long& imem, long& rmem )
{
// Disabling this for windows
// Different platforms follow different conventions for usage
#ifndef _WIN32 // Windows does not have rusage
struct rusage r_usage;
getrusage( RUSAGE_SELF, &r_usage );
utime = (double)r_usage.ru_utime.tv_sec + ( (double)r_usage.ru_utime.tv_usec / 1.e6 );
stime = (double)r_usage.ru_stime.tv_sec + ( (double)r_usage.ru_stime.tv_usec / 1.e6 );
tot_time = utime + stime;
if( print_em )
std::cout << "User, system, total time = " << utime << ", " << stime << ", " << tot_time << std::endl;
#ifndef LINUX
imem = r_usage.ru_idrss;
rmem = r_usage.ru_maxrss;
std::cout << "Max resident set size = " << r_usage.ru_maxrss << " kbytes" << std::endl;
std::cout << "Int resident set size = " << r_usage.ru_idrss << " kbytes" << std::endl;
#else
imem = rmem = 0;
system( "ps o args,drs,rss | grep perf | grep -v grep" ); // RedHat 9.0 doesnt fill in actual
// memory data
#endif
// delete [] hex_array;
#endif // if not on windows
}
void compute_edge( double* start, const int nelem, const double xint, const int stride )
{
for( int i = 1; i < nelem; i++ )
{
start[i * stride] = start[0] + i * xint;
start[nelem + 1 + i * stride] = start[nelem + 1] + i * xint;
start[2 * ( nelem + 1 ) + i * stride] = start[2 * ( nelem + 1 )] + i * xint;
}
}
void compute_face( double* a, const int nelem, const double xint, const int stride1, const int stride2 )
{
// 2D TFI on a face starting at a, with strides stride1 in ada and stride2 in tse
for( int j = 1; j < nelem; j++ )
{
double tse = j * xint;
for( int i = 1; i < nelem; i++ )
{
double ada = i * xint;
a[i * stride1 + j * stride2] =
( 1.0 - ada ) * a[i * stride1] + ada * a[i * stride1 + nelem * stride2] +
( 1.0 - tse ) * a[j * stride2] + tse * a[j * stride2 + nelem * stride1] -
( 1.0 - tse ) * ( 1.0 - ada ) * a[0] - ( 1.0 - tse ) * ada * a[nelem * stride1] -
tse * ( 1.0 - ada ) * a[nelem * stride2] - tse * ada * a[nelem * ( stride1 + stride2 )];
a[nelem + 1 + i * stride1 + j * stride2] =
( 1.0 - ada ) * a[nelem + 1 + i * stride1] + ada * a[nelem + 1 + i * stride1 + nelem * stride2] +
( 1.0 - tse ) * a[nelem + 1 + j * stride2] + tse * a[nelem + 1 + j * stride2 + nelem * stride1] -
( 1.0 - tse ) * ( 1.0 - ada ) * a[nelem + 1 + 0] -
( 1.0 - tse ) * ada * a[nelem + 1 + nelem * stride1] -
tse * ( 1.0 - ada ) * a[nelem + 1 + nelem * stride2] -
tse * ada * a[nelem + 1 + nelem * ( stride1 + stride2 )];
a[2 * ( nelem + 1 ) + i * stride1 + j * stride2] =
( 1.0 - ada ) * a[2 * ( nelem + 1 ) + i * stride1] +
ada * a[2 * ( nelem + 1 ) + i * stride1 + nelem * stride2] +
( 1.0 - tse ) * a[2 * ( nelem + 1 ) + j * stride2] +
tse * a[2 * ( nelem + 1 ) + j * stride2 + nelem * stride1] -
( 1.0 - tse ) * ( 1.0 - ada ) * a[2 * ( nelem + 1 ) + 0] -
( 1.0 - tse ) * ada * a[2 * ( nelem + 1 ) + nelem * stride1] -
tse * ( 1.0 - ada ) * a[2 * ( nelem + 1 ) + nelem * stride2] -
tse * ada * a[2 * ( nelem + 1 ) + nelem * ( stride1 + stride2 )];
}
}
}
void build_coords( const int nelem, double*& coords )
{
double ttime0, ttime1, utime1, stime1;
long imem, rmem;
print_time( false, ttime0, utime1, stime1, imem, rmem );
// allocate the memory
int numv = nelem + 1;
int numv_sq = numv * numv;
int tot_numv = numv * numv * numv;
coords = (double*)malloc( 3 * tot_numv * sizeof( double ) );
// use FORTRAN-like indexing
#define VINDEX( i, j, k ) ( ( i ) + ( (j)*numv ) + ( (k)*numv_sq ) )
int idx;<--- Unused variable: idx
double scale1, scale2, scale3;
// use these to prevent optimization on 1-scale, etc (real map wouldn't have
// all these equal)
scale1 = LENGTH / nelem;
scale2 = LENGTH / nelem;
scale3 = LENGTH / nelem;
#ifdef REALTFI
// use a real TFI xform to compute coordinates
// compute edges
// i (stride=1)
compute_edge( &coords[VINDEX( 0, 0, 0 )], nelem, scale1, 1 );
compute_edge( &coords[VINDEX( 0, nelem, 0 )], nelem, scale1, 1 );
compute_edge( &coords[VINDEX( 0, 0, nelem )], nelem, scale1, 1 );
compute_edge( &coords[VINDEX( 0, nelem, nelem )], nelem, scale1, 1 );
// j (stride=numv)
compute_edge( &coords[VINDEX( 0, 0, 0 )], nelem, scale1, numv );
compute_edge( &coords[VINDEX( nelem, 0, 0 )], nelem, scale1, numv );
compute_edge( &coords[VINDEX( 0, 0, nelem )], nelem, scale1, numv );
compute_edge( &coords[VINDEX( nelem, 0, nelem )], nelem, scale1, numv );
// k (stride=numv^2)
compute_edge( &coords[VINDEX( 0, 0, 0 )], nelem, scale1, numv_sq );
compute_edge( &coords[VINDEX( nelem, 0, 0 )], nelem, scale1, numv_sq );
compute_edge( &coords[VINDEX( 0, nelem, 0 )], nelem, scale1, numv_sq );
compute_edge( &coords[VINDEX( nelem, nelem, 0 )], nelem, scale1, numv_sq );
// compute faces
// i=0, nelem
compute_face( &coords[VINDEX( 0, 0, 0 )], nelem, scale1, numv, numv_sq );
compute_face( &coords[VINDEX( nelem, 0, 0 )], nelem, scale1, numv, numv_sq );
// j=0, nelem
compute_face( &coords[VINDEX( 0, 0, 0 )], nelem, scale1, 1, numv_sq );
compute_face( &coords[VINDEX( 0, nelem, 0 )], nelem, scale1, 1, numv_sq );
// k=0, nelem
compute_face( &coords[VINDEX( 0, 0, 0 )], nelem, scale1, 1, numv );
compute_face( &coords[VINDEX( 0, 0, nelem )], nelem, scale1, 1, numv );
// initialize corner indices
int i000 = VINDEX( 0, 0, 0 );
int ia00 = VINDEX( nelem, 0, 0 );
int i0t0 = VINDEX( 0, nelem, 0 );
int iat0 = VINDEX( nelem, nelem, 0 );
int i00g = VINDEX( 0, 0, nelem );
int ia0g = VINDEX( nelem, 0, nelem );
int i0tg = VINDEX( 0, nelem, nelem );
int iatg = VINDEX( nelem, nelem, nelem );
double cX, cY, cZ;
int adaInts = nelem;
int tseInts = nelem;
int gammaInts = nelem;
for( int i = 1; i < nelem; i++ )
{
for( int j = 1; j < nelem; j++ )
{
for( int k = 1; k < nelem; k++ )
{
// idx = VINDEX(i,j,k);
double tse = i * scale1;
double ada = j * scale2;
double gamma = k * scale3;
double tm1 = 1.0 - tse;
double am1 = 1.0 - ada;
double gm1 = 1.0 - gamma;
cX = gm1 * ( am1 * ( tm1 * coords[i000] + tse * coords[i0t0] ) +
ada * ( tm1 * coords[ia00] + tse * coords[iat0] ) ) +
gamma * ( am1 * ( tm1 * coords[i00g] + tse * coords[i0tg] ) +
ada * ( tm1 * coords[ia0g] + tse * coords[iatg] ) );
cY = gm1 * ( am1 * ( tm1 * coords[i000] + tse * coords[i0t0] ) +
ada * ( tm1 * coords[ia00] + tse * coords[iat0] ) ) +
gamma * ( am1 * ( tm1 * coords[i00g] + tse * coords[i0tg] ) +
ada * ( tm1 * coords[ia0g] + tse * coords[iatg] ) );
cZ = gm1 * ( am1 * ( tm1 * coords[i000] + tse * coords[i0t0] ) +
ada * ( tm1 * coords[ia00] + tse * coords[iat0] ) ) +
gamma * ( am1 * ( tm1 * coords[i00g] + tse * coords[i0tg] ) +
ada * ( tm1 * coords[ia0g] + tse * coords[iatg] ) );
double* ai0k = &coords[VINDEX( k, 0, i )];
double* aiak = &coords[VINDEX( k, adaInts, i )];
double* a0jk = &coords[VINDEX( k, j, 0 )];
double* atjk = &coords[VINDEX( k, j, tseInts )];
double* aij0 = &coords[VINDEX( 0, j, i )];
double* aijg = &coords[VINDEX( gammaInts, j, i )];
coords[VINDEX( i, j, k )] = ( am1 * ai0k[0] + ada * aiak[0] + tm1 * a0jk[0] + tse * atjk[0] +
gm1 * aij0[0] + gamma * aijg[0] ) /
2.0 -
cX / 2.0;
coords[nelem + 1 + VINDEX( i, j, k )] =
( am1 * ai0k[nelem + 1] + ada * aiak[nelem + 1] + tm1 * a0jk[nelem + 1] + tse * atjk[nelem + 1] +
gm1 * aij0[nelem + 1] + gamma * aijg[nelem + 1] ) /
2.0 -
cY / 2.0;
coords[2 * ( nelem + 1 ) + VINDEX( i, j, k )] =
( am1 * ai0k[2 * ( nelem + 1 )] + ada * aiak[2 * ( nelem + 1 )] + tm1 * a0jk[2 * ( nelem + 1 )] +
tse * atjk[2 * ( nelem + 1 )] + gm1 * aij0[2 * ( nelem + 1 )] +
gamma * aijg[2 * ( nelem + 1 )] ) /
2.0 -
cZ / 2.0;
}
}
}
#else
for( int i = 0; i < numv; i++ )
{
for( int j = 0; j < numv; j++ )
{
for( int k = 0; k < numv; k++ )
{
idx = VINDEX( i, j, k );
// blocked coordinate ordering
coords[idx] = i * scale1;
coords[tot_numv + idx] = j * scale2;
coords[2 * tot_numv + idx] = k * scale3;
}
}
}
#endif
print_time( false, ttime1, utime1, stime1, imem, rmem );
std::cout << "TSTTbinding/MOAB: TFI time = " << ttime1 - ttime0 << " sec" << std::endl;
}
void build_connect( const int nelem, const int vstart, int*& connect )
{
// allocate the memory
int nume_tot = nelem * nelem * nelem;
connect = (int*)malloc( 8 * nume_tot * sizeof( int ) );
int vijk;
int numv = nelem + 1;
int numv_sq = numv * numv;
int idx = 0;
for( int i = 0; i < nelem; i++ )
{
for( int j = 0; j < nelem; j++ )
{
for( int k = 0; k < nelem; k++ )
{
vijk = vstart + VINDEX( i, j, k );
connect[idx++] = vijk;
connect[idx++] = vijk + 1;
connect[idx++] = vijk + 1 + numv;
connect[idx++] = vijk + numv;
connect[idx++] = vijk + numv * numv;
connect[idx++] = vijk + 1 + numv * numv;
connect[idx++] = vijk + 1 + numv + numv * numv;
connect[idx++] = vijk + numv + numv * numv;
assert( i <= numv * numv * numv );
}
}
}
}
|