1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178 | /**
* MOAB, a Mesh-Oriented datABase, is a software component for creating,
* storing and accessing finite element mesh data.
*
* Copyright 2004 Sandia Corporation. Under the terms of Contract
* DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government
* retains certain rights in this software.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
*/
#include "moab/CN.hpp"
#include "MBCNArrays.hpp"
#include "MBCN.h"
#include <cassert>
#include <cstring>
#include <iterator>
namespace moab
{
const char* CN::entityTypeNames[] = { "Vertex", "Edge", "Tri", "Quad", "Polygon", "Tet", "Pyramid",
"Prism", "Knife", "Hex", "Polyhedron", "EntitySet", "MaxType" };
short int CN::numberBasis = 0;
short int CN::permuteVec[MBMAXTYPE][3][MAX_SUB_ENTITIES + 1];
short int CN::revPermuteVec[MBMAXTYPE][3][MAX_SUB_ENTITIES + 1];
const DimensionPair CN::TypeDimensionMap[] = {
DimensionPair( MBVERTEX, MBVERTEX ), DimensionPair( MBEDGE, MBEDGE ),
DimensionPair( MBTRI, MBPOLYGON ), DimensionPair( MBTET, MBPOLYHEDRON ),
DimensionPair( MBENTITYSET, MBENTITYSET ), DimensionPair( MBMAXTYPE, MBMAXTYPE ) };
short CN::increasingInts[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 };
//! set the basis of the numbering system; may or may not do things besides setting the
//! member variable
void CN::SetBasis( const int in_basis )
{
numberBasis = in_basis;
}
/// Get the dimension pair corresponding to a dimension
DimensionPair CN::getDimPair( int entity_type )
{
return TypeDimensionMap[entity_type];
}
//! return a type for the given name
EntityType CN::EntityTypeFromName( const char* name )
{
for( EntityType i = MBVERTEX; i < MBMAXTYPE; i++ )
{
if( 0 == strcmp( name, entityTypeNames[i] ) ) return i;
}
return MBMAXTYPE;
}
void CN::SubEntityNodeIndices( const EntityType this_topo,
const int num_nodes,
const int sub_dimension,
const int sub_index,
EntityType& subentity_topo,
int& num_sub_entity_nodes,
int sub_entity_conn[] )
{
// If asked for a node, the special case...
if( sub_dimension == 0 )
{
assert( sub_index < num_nodes );
subentity_topo = MBVERTEX;
num_sub_entity_nodes = 1;
sub_entity_conn[0] = sub_index;
return;
}
const int ho_bits = HasMidNodes( this_topo, num_nodes );
subentity_topo = SubEntityType( this_topo, sub_dimension, sub_index );
num_sub_entity_nodes = VerticesPerEntity( subentity_topo );
const short* corners = mConnectivityMap[this_topo][sub_dimension - 1].conn[sub_index];
std::copy( corners, corners + num_sub_entity_nodes, sub_entity_conn );
int sub_sub_corners[MAX_SUB_ENTITY_VERTICES];
int side, sense, offset;
for( int dim = 1; dim <= sub_dimension; ++dim )
{
if( !( ho_bits & ( 1 << dim ) ) ) continue;
const short num_mid = NumSubEntities( subentity_topo, dim );
for( int i = 0; i < num_mid; ++i )
{
const EntityType sub_sub_topo = SubEntityType( subentity_topo, dim, i );
const int sub_sub_num_vert = VerticesPerEntity( sub_sub_topo );
SubEntityVertexIndices( subentity_topo, dim, i, sub_sub_corners );
for( int j = 0; j < sub_sub_num_vert; ++j )
sub_sub_corners[j] = corners[sub_sub_corners[j]];
SideNumber( this_topo, sub_sub_corners, sub_sub_num_vert, dim, side, sense, offset );
sub_entity_conn[num_sub_entity_nodes++] = HONodeIndex( this_topo, num_nodes, dim, side );
}
}
}
//! return the vertices of the specified sub entity
//! \param parent_conn Connectivity of parent entity
//! \param parent_type Entity type of parent entity
//! \param sub_dimension Dimension of sub-entity being queried
//! \param sub_index Index of sub-entity being queried
//! \param sub_entity_conn Connectivity of sub-entity, based on parent_conn and canonical
//! ordering for parent_type
//! \param num_sub_vertices Number of vertices in sub-entity
void CN::SubEntityConn( const void* parent_conn,
const EntityType parent_type,
const int sub_dimension,
const int sub_index,
void* sub_entity_conn,
int& num_sub_vertices )
{
static int sub_indices[MAX_SUB_ENTITY_VERTICES];
SubEntityVertexIndices( parent_type, sub_dimension, sub_index, sub_indices );
num_sub_vertices = VerticesPerEntity( SubEntityType( parent_type, sub_dimension, sub_index ) );
void** parent_conn_ptr = static_cast< void** >( const_cast< void* >( parent_conn ) );
void** sub_conn_ptr = static_cast< void** >( sub_entity_conn );
for( int i = 0; i < num_sub_vertices; i++ )
sub_conn_ptr[i] = parent_conn_ptr[sub_indices[i]];
}
//! given an entity and a target dimension & side number, get that entity
short int CN::AdjacentSubEntities( const EntityType this_type,
const int* source_indices,
const int num_source_indices,
const int source_dim,
const int target_dim,
std::vector< int >& index_list,
const int operation_type )
{
// first get all the vertex indices
std::vector< int > tmp_indices;
const int* it1 = source_indices;
assert( source_dim <= 3 && target_dim >= 0 && target_dim <= 3 &&
// make sure we're not stepping off the end of the array;
( ( source_dim > 0 && *it1 < mConnectivityMap[this_type][source_dim - 1].num_sub_elements ) ||
( source_dim == 0 &&
*it1 < mConnectivityMap[this_type][Dimension( this_type ) - 1].num_corners_per_sub_element[0] ) ) &&
*it1 >= 0 );
#define MUC CN::mUpConnMap[this_type][source_dim][target_dim]
// if we're looking for the vertices of a single side, return them in
// the canonical ordering; otherwise, return them in sorted order
if( num_source_indices == 1 && 0 == target_dim && source_dim != target_dim )
{
// element of mConnectivityMap should be for this type and for one
// less than source_dim, which should give the connectivity of that sub element
const ConnMap& cm = mConnectivityMap[this_type][source_dim - 1];
std::copy( cm.conn[source_indices[0]],
cm.conn[source_indices[0]] + cm.num_corners_per_sub_element[source_indices[0]],
std::back_inserter( index_list ) );
return 0;
}
// now go through source indices, folding adjacencies into target list
for( it1 = source_indices; it1 != source_indices + num_source_indices; it1++ )
{
// *it1 is the side index
// at start of iteration, index_list has the target list
// if a union, or first iteration and index list was empty, copy the list
if( operation_type == CN::UNION || ( it1 == source_indices && index_list.empty() ) )
{
std::copy( MUC.targets_per_source_element[*it1],
MUC.targets_per_source_element[*it1] + MUC.num_targets_per_source_element[*it1],
std::back_inserter( index_list ) );
}
else
{
// else we're intersecting, and have a non-empty list; intersect with this target list
tmp_indices.clear();
for( int i = MUC.num_targets_per_source_element[*it1] - 1; i >= 0; i-- )
if( std::find( index_list.begin(), index_list.end(), MUC.targets_per_source_element[*it1][i] ) !=
index_list.end() )
tmp_indices.push_back( MUC.targets_per_source_element[*it1][i] );
// std::set_intersection(MUC.targets_per_source_element[*it1],
// MUC.targets_per_source_element[*it1]+
// MUC.num_targets_per_source_element[*it1],
// index_list.begin(), index_list.end(),
// std::back_inserter(tmp_indices));
index_list.swap( tmp_indices );
// if we're at this point and the list is empty, the intersection will be NULL;
// return if so
if( index_list.empty() ) return 0;
}
}
if( operation_type == CN::UNION && num_source_indices != 1 )
{
// need to sort then unique the list
std::sort( index_list.begin(), index_list.end() );
index_list.erase( std::unique( index_list.begin(), index_list.end() ), index_list.end() );
}
return 0;
}
template < typename T >
static short int side_number( const T* parent_conn,
const EntityType parent_type,
const T* child_conn,
const int child_num_verts,
const int child_dim,
int& side_no,
int& sense,
int& offset )
{
int parent_num_verts = CN::VerticesPerEntity( parent_type );
int side_indices[8];
assert( sizeof( side_indices ) / sizeof( side_indices[0] ) >= (size_t)child_num_verts );
for( int i = 0; i < child_num_verts; i++ )
{
side_indices[i] = std::find( parent_conn, parent_conn + parent_num_verts, child_conn[i] ) - parent_conn;
if( side_indices[i] == parent_num_verts ) return -1;
}
return CN::SideNumber( parent_type, &side_indices[0], child_num_verts, child_dim, side_no, sense, offset );
}
short int CN::SideNumber( const EntityType parent_type,
const int* parent_conn,
const int* child_conn,
const int child_num_verts,
const int child_dim,
int& side_no,
int& sense,
int& offset )
{
return side_number( parent_conn, parent_type, child_conn, child_num_verts, child_dim, side_no, sense, offset );
}
short int CN::SideNumber( const EntityType parent_type,
const unsigned int* parent_conn,
const unsigned int* child_conn,
const int child_num_verts,
const int child_dim,
int& side_no,
int& sense,
int& offset )
{
return side_number( parent_conn, parent_type, child_conn, child_num_verts, child_dim, side_no, sense, offset );
}
short int CN::SideNumber( const EntityType parent_type,
const long* parent_conn,
const long* child_conn,
const int child_num_verts,
const int child_dim,
int& side_no,
int& sense,
int& offset )
{
return side_number( parent_conn, parent_type, child_conn, child_num_verts, child_dim, side_no, sense, offset );
}
short int CN::SideNumber( const EntityType parent_type,
const unsigned long* parent_conn,
const unsigned long* child_conn,
const int child_num_verts,
const int child_dim,
int& side_no,
int& sense,
int& offset )
{
return side_number( parent_conn, parent_type, child_conn, child_num_verts, child_dim, side_no, sense, offset );
}
short int CN::SideNumber( const EntityType parent_type,
const unsigned long long* parent_conn,
const unsigned long long* child_conn,
const int child_num_verts,
const int child_dim,
int& side_no,
int& sense,
int& offset )
{
return side_number( parent_conn, parent_type, child_conn, child_num_verts, child_dim, side_no, sense, offset );
}
short int CN::SideNumber( const EntityType parent_type,
void* const* parent_conn,
void* const* child_conn,
const int child_num_verts,
const int child_dim,
int& side_no,
int& sense,
int& offset )
{
return side_number( parent_conn, parent_type, child_conn, child_num_verts, child_dim, side_no, sense, offset );
}
short int CN::SideNumber( const EntityType parent_type,
const int* child_conn_indices,
const int child_num_verts,
const int child_dim,
int& side_no,
int& sense,
int& offset )
{
int parent_dim = Dimension( parent_type );
int parent_num_verts = VerticesPerEntity( parent_type );
// degenerate case (vertex), output == input
if( child_dim == 0 )
{
if( child_num_verts != 1 ) return -1;
side_no = *child_conn_indices;
sense = offset = 0;
}
// given a parent and child element, find the corresponding side number
// dim_diff should be -1, 0 or 1 (same dimension, one less dimension, two less, resp.)
if( child_dim > parent_dim || child_dim < 0 ) return -1;
// different types of same dimension won't be the same
if( parent_dim == child_dim && parent_num_verts != child_num_verts )
{
side_no = -1;
sense = 0;
return 0;
}
// loop over the sub-elements, comparing to child connectivity
int sub_conn_indices[10];
for( int i = 0; i < NumSubEntities( parent_type, child_dim ); i++ )
{
int sub_size = VerticesPerEntity( SubEntityType( parent_type, child_dim, i ) );
if( sub_size != child_num_verts ) continue;
SubEntityVertexIndices( parent_type, child_dim, i, sub_conn_indices );
bool they_match = ConnectivityMatch( child_conn_indices, sub_conn_indices, sub_size, sense, offset );
if( they_match )
{
side_no = i;
return 0;
}
}
// if we've gotten here, we don't match
side_no = -1;
// return value is no success
return 1;
}
//! return the dimension and index of the opposite side, given parent entity type and child
//! dimension and index. This function is only defined for certain types of parent/child types:
//! (Parent, Child dim->Opposite dim):
//! (Tri, 1->0), (Tri, 0->1), (Quad, 1->1), (Quad, 0->0),
//! (Tet, 2->0), (Tet, 1->1), (Tet, 0->2),
//! (Hex, 2->2), (Hex, 1->1)(diagonally across element), (Hex, 0->0) (diagonally across element)
//! All other parent types and child dimensions return an error.
//!
//! \param parent_type The type of parent element
//! \param child_type The type of child element
//! \param child_index The index of the child element
//! \param opposite_index The index of the opposite element
//! \return status Returns 0 if successful, -1 if not
short int CN::OppositeSide( const EntityType parent_type,
const int child_index,
const int child_dim,
int& opposite_index,
int& opposite_dim )
{
switch( parent_type )
{
case MBEDGE:
if( 0 != child_dim )
return -1;
else
opposite_index = 1 - child_index;
opposite_dim = 0;
break;
case MBTRI:
switch( child_dim )
{
case 0:
opposite_dim = 1;
opposite_index = ( child_index + 1 ) % 3;
break;
case 1:
opposite_dim = 0;
opposite_index = ( child_index + 2 ) % 3;
break;
default:
return -1;
}
break;
case MBQUAD:
switch( child_dim )
{
case 0:
case 1:
opposite_dim = child_dim;
opposite_index = ( child_index + 2 ) % 4;
break;
default:
return -1;
}
break;
case MBTET:
switch( child_dim )
{
case 0:
opposite_dim = 2;
opposite_index = ( child_index + 1 ) % 3 + 2 * ( child_index / 3 );
break;
case 1:
opposite_dim = 1;
opposite_index = child_index < 3 ? 3 + ( child_index + 2 ) % 3 : ( child_index + 1 ) % 3;
break;
case 2:
opposite_dim = 0;
opposite_index = ( child_index + 2 ) % 3 + child_index / 3;
break;
default:
return -1;
}
break;
case MBHEX:
opposite_dim = child_dim;
switch( child_dim )
{
case 0:
opposite_index = child_index < 4 ? 4 + ( child_index + 2 ) % 4 : ( child_index - 2 ) % 4;
break;
case 1:
opposite_index = 4 * ( 2 - child_index / 4 ) + ( child_index + 2 ) % 4;
break;
case 2:
opposite_index = child_index < 4 ? ( child_index + 2 ) % 4 : 9 - child_index;
break;
default:
return -1;
}
break;
default:
return -1;
}
return 0;
}
template < typename T >
inline bool connectivity_match( const T* conn1_i, const T* conn2_i, const int num_vertices, int& direct, int& offset )
{
bool they_match;
// special test for 2 handles, since we don't want to wrap the list in this
// case
if( num_vertices == 2 )
{
they_match = false;
if( conn1_i[0] == conn2_i[0] && conn1_i[1] == conn2_i[1] )
{
direct = 1;
they_match = true;
offset = 0;
}
else if( conn1_i[0] == conn2_i[1] && conn1_i[1] == conn2_i[0] )
{
they_match = true;
direct = -1;
offset = 1;
}
}
else
{
const T* iter;
iter = std::find( &conn2_i[0], &conn2_i[num_vertices], conn1_i[0] );
if( iter == &conn2_i[num_vertices] ) return false;
they_match = true;
offset = iter - conn2_i;
int i;
// first compare forward
for( i = 1; i < num_vertices; ++i )
{
if( conn1_i[i] != conn2_i[( offset + i ) % num_vertices] )
{
they_match = false;
break;
}
}
if( they_match == true )
{
direct = 1;
return they_match;
}
they_match = true;
// then compare reverse
for( i = 1; i < num_vertices; i++ )
{
if( conn1_i[i] != conn2_i[( offset + num_vertices - i ) % num_vertices] )
{
they_match = false;
break;
}
}
if( they_match )
{
direct = -1;
}
}
return they_match;
}
bool CN::ConnectivityMatch( const int* conn1_i, const int* conn2_i, const int num_vertices, int& direct, int& offset )
{
return connectivity_match< int >( conn1_i, conn2_i, num_vertices, direct, offset );
}
bool CN::ConnectivityMatch( const unsigned int* conn1_i,
const unsigned int* conn2_i,
const int num_vertices,
int& direct,
int& offset )
{
return connectivity_match< unsigned int >( conn1_i, conn2_i, num_vertices, direct, offset );
}
bool CN::ConnectivityMatch( const long* conn1_i, const long* conn2_i, const int num_vertices, int& direct, int& offset )
{
return connectivity_match< long >( conn1_i, conn2_i, num_vertices, direct, offset );
}
bool CN::ConnectivityMatch( const unsigned long* conn1_i,
const unsigned long* conn2_i,
const int num_vertices,
int& direct,
int& offset )
{
return connectivity_match< unsigned long >( conn1_i, conn2_i, num_vertices, direct, offset );
}
bool CN::ConnectivityMatch( const unsigned long long* conn1_i,
const unsigned long long* conn2_i,
const int num_vertices,
int& direct,
int& offset )
{
return connectivity_match< unsigned long long >( conn1_i, conn2_i, num_vertices, direct, offset );
}
bool CN::ConnectivityMatch( void* const* conn1_i,
void* const* conn2_i,
const int num_vertices,
int& direct,
int& offset )
{
return connectivity_match< void* >( conn1_i, conn2_i, num_vertices, direct, offset );
}
//! for an entity of this type and a specified subfacet (dimension and index), return
//! the index of the higher order node for that entity in this entity's connectivity array
short int CN::HONodeIndex( const EntityType this_type,
const int num_verts,
const int subfacet_dim,
const int subfacet_index )
{
int i;
int has_mids[4];
HasMidNodes( this_type, num_verts, has_mids );
// if we have no mid nodes on the subfacet_dim, we have no index
if( subfacet_index != -1 && !has_mids[subfacet_dim] ) return -1;
// put start index at last index (one less than the number of vertices
// plus the index basis)
int index = VerticesPerEntity( this_type ) - 1 + numberBasis;
// for each subfacet dimension less than the target subfacet dim which has mid nodes,
// add the number of subfacets of that dimension to the index
for( i = 1; i < subfacet_dim; i++ )
if( has_mids[i] ) index += NumSubEntities( this_type, i );
// now add the index of this subfacet, or one if we're asking about the entity as a whole
if( subfacet_index == -1 && has_mids[subfacet_dim] )
// want the index of the last ho node on this subfacet
index += NumSubEntities( this_type, subfacet_dim );
else if( subfacet_index != -1 && has_mids[subfacet_dim] )
index += subfacet_index + 1 - numberBasis;
// that's it
return index;
}
//! given data about an element and a vertex in that element, return the dimension
//! and index of the sub-entity that the vertex resolves. If it does not resolve a
//! sub-entity, either because it's a corner node or it's not in the element, -1 is
//! returned in both return values
void CN::HONodeParent( EntityType elem_type, int num_verts, int ho_index, int& parent_dim, int& parent_index )
{
// begin with error values
parent_dim = parent_index = -1;
// given the number of verts and the element type, get the hasmidnodes solution
int has_mids[4];
HasMidNodes( elem_type, num_verts, has_mids );
int index = VerticesPerEntity( elem_type ) - 1;
const int dim = Dimension( elem_type );
// keep a running sum of the ho node indices for this type of element, and stop
// when you get to the dimension which has the ho node
for( int i = 1; i < dim; i++ )
{
if( has_mids[i] )
{
if( ho_index <= index + NumSubEntities( elem_type, i ) )
{
// the ho_index resolves an entity of dimension i, so set the return values
// and break out of the loop
parent_dim = i;
parent_index = ho_index - index - 1;
return;
}
else
{
index += NumSubEntities( elem_type, i );
}
}
}
// mid region node case
if( has_mids[dim] && ho_index == index + 1 )
{
parent_dim = dim;
parent_index = 0;
}
}
const char* CN::EntityTypeName( const EntityType this_type )
{
return entityTypeNames[this_type];
}
} // namespace moab
using moab::CN;
using moab::EntityType;
//! get the basis of the numbering system
void MBCN_GetBasis( int* rval )<--- There is an unknown macro here somewhere. Configuration is required. If MOAB_FC_FUNC_ is a macro then please configure it.<--- Skipping configuration 'MOAB_FC_FUNC_' since the value of 'MOAB_FC_FUNC_' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
{
*rval = CN::GetBasis();
}
//! set the basis of the numbering system
void MBCN_SetBasis( const int in_basis )<--- Skipping configuration 'MOAB_FC_FUNC_' since the value of 'MOAB_FC_FUNC_' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
{
CN::SetBasis( in_basis );
}
//! return the string type name for this type
void MBCN_EntityTypeName( const int this_type, char* rval, int rval_len )<--- Skipping configuration 'MOAB_FC_FUNC_' since the value of 'MOAB_FC_FUNC_' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
{
const char* rval_tmp = CN::EntityTypeName( (EntityType)this_type );
int rval_len_tmp = strlen( rval_tmp );
rval_len_tmp = ( rval_len_tmp < rval_len ? rval_len_tmp : rval_len );
strncpy( rval, rval_tmp, rval_len_tmp );
}
//! given a name, find the corresponding entity type
void MBCN_EntityTypeFromName( const char* name, int* rval )<--- Skipping configuration 'MOAB_FC_FUNC_' since the value of 'MOAB_FC_FUNC_' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
{
*rval = CN::EntityTypeFromName( name );
}
//! return the topological entity dimension
void MBCN_Dimension( const int t, int* rval )<--- Skipping configuration 'MOAB_FC_FUNC_' since the value of 'MOAB_FC_FUNC_' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
{
*rval = CN::Dimension( (EntityType)t );
}
//! return the number of (corner) vertices contained in the specified type.
void MBCN_VerticesPerEntity( const int t, int* rval )<--- Skipping configuration 'MOAB_FC_FUNC_' since the value of 'MOAB_FC_FUNC_' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
{
*rval = CN::VerticesPerEntity( (EntityType)t );
}
//! return the number of sub-entities bounding the entity.
void MBCN_NumSubEntities( const int t, const int d, int* rval )<--- Skipping configuration 'MOAB_FC_FUNC_' since the value of 'MOAB_FC_FUNC_' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
{
*rval = CN::NumSubEntities( (EntityType)t, d );
}
//! return the type of a particular sub-entity.
//! \param this_type Type of entity for which sub-entity type is being queried
//! \param sub_dimension Topological dimension of sub-entity whose type is being queried
//! \param index Index of sub-entity whose type is being queried
//! \return type Entity type of sub-entity with specified dimension and index
void MBCN_SubEntityType( const int this_type, const int sub_dimension, const int index, int* rval )<--- Skipping configuration 'MOAB_FC_FUNC_' since the value of 'MOAB_FC_FUNC_' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
{
*rval = CN::SubEntityType( (EntityType)this_type, sub_dimension, index );
}
//! return the vertex indices of the specified sub-entity.
//! \param this_type Type of entity for which sub-entity connectivity is being queried
//! \param sub_dimension Dimension of sub-entity
//! \param sub_index Index of sub-entity
//! \param sub_entity_conn Connectivity of sub-entity (returned to calling function)
void MBCN_SubEntityVertexIndices( const int this_type,<--- Skipping configuration 'MOAB_FC_FUNC_' since the value of 'MOAB_FC_FUNC_' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
const int sub_dimension,
const int sub_index,
int sub_entity_conn[] )
{
CN::SubEntityVertexIndices( (EntityType)this_type, sub_dimension, sub_index, sub_entity_conn );
}
//! return the vertices of the specified sub entity
//! \param parent_conn Connectivity of parent entity
//! \param parent_type Entity type of parent entity
//! \param sub_dimension Dimension of sub-entity being queried
//! \param sub_index Index of sub-entity being queried
//! \param sub_entity_conn Connectivity of sub-entity, based on parent_conn and canonical
//! ordering for parent_type
//! \param num_sub_vertices Number of vertices in sub-entity
// void MBCN_SubEntityConn(const void *parent_conn, const int parent_type,
// const int sub_dimension,
// const int sub_index,
// void *sub_entity_conn, int &num_sub_vertices) {return
// CN::SubEntityConn();}
//! For a specified set of sides of given dimension, return the intersection
//! or union of all sides of specified target dimension adjacent to those sides.
//! \param this_type Type of entity for which sub-entity connectivity is being queried
//! \param source_indices Indices of sides being queried
//! \param num_source_indices Number of entries in <em>source_indices</em>
//! \param source_dim Dimension of source entity
//! \param target_dim Dimension of target entity
//! \param index_list Indices of target entities (returned)
//! \param num_indices Number of indices of target entities (returned)
//! \param operation_type Specify either CN::INTERSECT (0) or CN::UNION (1) to get intersection
//! or union of target entity lists over source entities
//! \param rval Error code indicating success or failure (returned)
void MBCN_AdjacentSubEntities( const int this_type,<--- Skipping configuration 'MOAB_FC_FUNC_' since the value of 'MOAB_FC_FUNC_' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
const int* source_indices,
const int num_source_indices,
const int source_dim,
const int target_dim,
int* index_list,
int* num_indices,
const int operation_type,
int* rval )
{
std::vector< int > tmp_index_list;
*rval = CN::AdjacentSubEntities( (EntityType)this_type, source_indices, num_source_indices, source_dim, target_dim,
tmp_index_list, operation_type );
std::copy( tmp_index_list.begin(), tmp_index_list.end(), index_list );
*num_indices = tmp_index_list.size();
}
//! return the side index represented in the input sub-entity connectivity
//! \param parent_type Entity type of parent entity
//! \param child_conn_indices Child connectivity to query, specified as indices
//! into the connectivity list of the parent.
//! \param child_num_verts Number of values in <em>child_conn_indices</em>
//! \param child_dim Dimension of child entity being queried
//! \param side_no Side number of child entity (returned)
//! \param sense Sense of child entity with respect to order in <em>child_conn</em> (returned)
//! \param offset Offset of <em>child_conn</em> with respect to canonical ordering data (returned)
//! \return status Returns zero if successful, -1 if not
void MBCN_SideNumber( const int parent_type,<--- Skipping configuration 'MOAB_FC_FUNC_' since the value of 'MOAB_FC_FUNC_' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
const int* child_conn_indices,
const int child_num_verts,
const int child_dim,
int* side_no,
int* sense,
int* offset )
{
CN::SideNumber( (EntityType)parent_type, child_conn_indices, child_num_verts, child_dim, *side_no, *sense,
*offset );
}
void MBCN_SideNumberInt( const int* parent_conn,<--- Skipping configuration 'MOAB_FC_FUNC_' since the value of 'MOAB_FC_FUNC_' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
const EntityType parent_type,
const int* child_conn,
const int child_num_verts,
const int child_dim,
int* side_no,
int* sense,
int* offset )
{
moab::side_number( parent_conn, parent_type, child_conn, child_num_verts, child_dim, *side_no, *sense, *offset );
}
void MBCN_SideNumberUint( const unsigned int* parent_conn,<--- Skipping configuration 'MOAB_FC_FUNC_' since the value of 'MOAB_FC_FUNC_' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
const EntityType parent_type,
const unsigned int* child_conn,
const int child_num_verts,
const int child_dim,
int* side_no,
int* sense,
int* offset )
{
moab::side_number( parent_conn, parent_type, child_conn, child_num_verts, child_dim, *side_no, *sense, *offset );
}
void MBCN_SideNumberLong( const long* parent_conn,<--- Skipping configuration 'MOAB_FC_FUNC_' since the value of 'MOAB_FC_FUNC_' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
const EntityType parent_type,
const long* child_conn,
const int child_num_verts,
const int child_dim,
int* side_no,
int* sense,
int* offset )
{
moab::side_number( parent_conn, parent_type, child_conn, child_num_verts, child_dim, *side_no, *sense, *offset );
}
void MBCN_SideNumberUlong( const unsigned long* parent_conn,<--- Skipping configuration 'MOAB_FC_FUNC_' since the value of 'MOAB_FC_FUNC_' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
const EntityType parent_type,
const unsigned long* child_conn,
const int child_num_verts,
const int child_dim,
int* side_no,
int* sense,
int* offset )
{
moab::side_number( parent_conn, parent_type, child_conn, child_num_verts, child_dim, *side_no, *sense, *offset );
}
void MBCN_SideNumberVoid( void* const* parent_conn,<--- Skipping configuration 'MOAB_FC_FUNC_' since the value of 'MOAB_FC_FUNC_' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
const EntityType parent_type,
void* const* child_conn,
const int child_num_verts,
const int child_dim,
int* side_no,
int* sense,
int* offset )
{
moab::side_number( parent_conn, parent_type, child_conn, child_num_verts, child_dim, *side_no, *sense, *offset );
}
//! return the dimension and index of the opposite side, given parent entity type and child
//! dimension and index. This function is only defined for certain types of parent/child types:
//! (Parent, Child dim->Opposite dim):
//! (Tri, 1->0), (Tri, 0->1), (Quad, 1->1), (Quad, 0->0),
//! (Tet, 2->0), (Tet, 1->1), (Tet, 0->2),
//! (Hex, 2->2), (Hex, 1->1)(diagonally across element), (Hex, 0->0) (diagonally across element)
//! All other parent types and child dimensions return an error.
//!
//! \param parent_type The type of parent element
//! \param child_type The type of child element
//! \param child_index The index of the child element
//! \param opposite_index The index of the opposite element
//! \return status Returns 0 if successful, -1 if not
void MBCN_OppositeSide( const int parent_type,<--- Skipping configuration 'MOAB_FC_FUNC_' since the value of 'MOAB_FC_FUNC_' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
const int child_index,
const int child_dim,
int* opposite_index,
int* opposite_dim,
int* rval )
{
*rval = CN::OppositeSide( (EntityType)parent_type, child_index, child_dim, *opposite_index, *opposite_dim );
}
//! given two connectivity arrays, determine whether or not they represent the same entity.
//! \param conn1 Connectivity array of first entity
//! \param conn2 Connectivity array of second entity
//! \param num_vertices Number of entries in <em>conn1</em> and <em>conn2</em>
//! \param direct If positive, entities have the same sense (returned)
//! \param offset Offset of <em>conn2</em>'s first vertex in <em>conn1</em>
//! \return rval Returns true if <em>conn1</em> and <em>conn2</em> match
void MBCN_ConnectivityMatchInt( const int* conn1,<--- Skipping configuration 'MOAB_FC_FUNC_' since the value of 'MOAB_FC_FUNC_' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
const int* conn2,
const int num_vertices,
int* direct,
int* offset,
int* rval )
{
*rval = CN::ConnectivityMatch( conn1, conn2, num_vertices, *direct, *offset );
}
void MBCN_ConnectivityMatchUint( const unsigned int* conn1,<--- Skipping configuration 'MOAB_FC_FUNC_' since the value of 'MOAB_FC_FUNC_' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
const unsigned int* conn2,
const int num_vertices,
int* direct,
int* offset,
int* rval )
{
*rval = CN::ConnectivityMatch( conn1, conn2, num_vertices, *direct, *offset );
}
void MBCN_ConnectivityMatchLong( const long* conn1,<--- Skipping configuration 'MOAB_FC_FUNC_' since the value of 'MOAB_FC_FUNC_' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
const long* conn2,
const int num_vertices,
int* direct,
int* offset,
int* rval )
{
*rval = CN::ConnectivityMatch( conn1, conn2, num_vertices, *direct, *offset );
}
void MBCN_ConnectivityMatchUlong( const unsigned long* conn1,<--- Skipping configuration 'MOAB_FC_FUNC_' since the value of 'MOAB_FC_FUNC_' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
const unsigned long* conn2,
const int num_vertices,
int* direct,
int* offset,
int* rval )
{
*rval = CN::ConnectivityMatch( conn1, conn2, num_vertices, *direct, *offset );
}
void MBCN_ConnectivityMatchVoid( void* const* conn1,<--- Skipping configuration 'MOAB_FC_FUNC_' since the value of 'MOAB_FC_FUNC_' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
void* const* conn2,
const int num_vertices,
int* direct,
int* offset,
int* rval )
{
*rval = CN::ConnectivityMatch( conn1, conn2, num_vertices, *direct, *offset );
}
//! true if entities of a given type and number of nodes indicates mid edge nodes are present.
//! \param this_type Type of entity for which sub-entity connectivity is being queried
//! \param num_verts Number of nodes defining entity
//! \return int Returns true if <em>this_type</em> combined with <em>num_nodes</em> indicates
//! mid-edge nodes are likely
void MBCN_HasMidEdgeNodes( const int this_type, const int num_verts, int* rval )<--- Skipping configuration 'MOAB_FC_FUNC_' since the value of 'MOAB_FC_FUNC_' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
{
*rval = CN::HasMidEdgeNodes( (EntityType)this_type, num_verts );
}
//! true if entities of a given type and number of nodes indicates mid face nodes are present.
//! \param this_type Type of entity for which sub-entity connectivity is being queried
//! \param num_verts Number of nodes defining entity
//! \return int Returns true if <em>this_type</em> combined with <em>num_nodes</em> indicates
//! mid-face nodes are likely
void MBCN_HasMidFaceNodes( const int this_type, const int num_verts, int* rval )<--- Skipping configuration 'MOAB_FC_FUNC_' since the value of 'MOAB_FC_FUNC_' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
{
*rval = CN::HasMidFaceNodes( (EntityType)this_type, num_verts );
}
//! true if entities of a given type and number of nodes indicates mid region nodes are present.
//! \param this_type Type of entity for which sub-entity connectivity is being queried
//! \param num_verts Number of nodes defining entity
//! \return int Returns true if <em>this_type</em> combined with <em>num_nodes</em> indicates
//! mid-region nodes are likely
void MBCN_HasMidRegionNodes( const int this_type, const int num_verts, int* rval )<--- Skipping configuration 'MOAB_FC_FUNC_' since the value of 'MOAB_FC_FUNC_' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
{
*rval = CN::HasMidRegionNodes( (EntityType)this_type, num_verts );
}
//! true if entities of a given type and number of nodes indicates mid edge/face/region nodes
//! are present.
//! \param this_type Type of entity for which sub-entity connectivity is being queried
//! \param num_verts Number of nodes defining entity
//! \param mid_nodes If <em>mid_nodes[i], i=1..3</em> is true, indicates that mid-edge
//! (i=1), mid-face (i=2), and/or mid-region (i=3) nodes are likely
void MBCN_HasMidNodes( const int this_type, const int num_verts, int mid_nodes[4] )<--- Skipping configuration 'MOAB_FC_FUNC_' since the value of 'MOAB_FC_FUNC_' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
{
return CN::HasMidNodes( (EntityType)this_type, num_verts, mid_nodes );
}
//! given data about an element and a vertex in that element, return the dimension
//! and index of the sub-entity that the vertex resolves. If it does not resolve a
//! sub-entity, either because it's a corner node or it's not in the element, -1 is
//! returned in both return values.
//! \param elem_type Type of entity being queried
//! \param num_nodes The number of nodes in the element connectivity
//! \param ho_node_index The position of the HO node in the connectivity list (zero based)
//! \param parent_dim Dimension of sub-entity high-order node resolves (returned)
//! \param parent_index Index of sub-entity high-order node resolves (returned)
void MBCN_HONodeParent( int elem_type, int num_nodes, int ho_node_index, int* parent_dim, int* parent_index )<--- Skipping configuration 'MOAB_FC_FUNC_' since the value of 'MOAB_FC_FUNC_' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
{
return CN::HONodeParent( (EntityType)elem_type, num_nodes, ho_node_index, *parent_dim, *parent_index );
}
//! for an entity of this type with num_verts vertices, and a specified subfacet
//! (dimension and index), return the index of the higher order node for that entity
//! in this entity's connectivity array
//! \param this_type Type of entity being queried
//! \param num_verts Number of vertices for the entity being queried
//! \param subfacet_dim Dimension of sub-entity being queried
//! \param subfacet_index Index of sub-entity being queried
//! \return index Index of sub-entity's higher-order node
void MBCN_HONodeIndex( const int this_type,<--- Skipping configuration 'MOAB_FC_FUNC_' since the value of 'MOAB_FC_FUNC_' is unknown. Use -D if you want to check it. You can use -U to skip it explicitly.
const int num_verts,
const int subfacet_dim,
const int subfacet_index,
int* rval )
{
*rval = CN::HONodeIndex( (EntityType)this_type, num_verts, subfacet_dim, subfacet_index );
}
namespace moab
{
template < typename T >
inline int permute_this( EntityType t, const int dim, T* conn, const int indices_per_ent, const int num_entries )
{
T tmp_conn[MAX_SUB_ENTITIES];
assert( indices_per_ent <= CN::permuteVec[t][dim][MAX_SUB_ENTITIES] );
if( indices_per_ent > CN::permuteVec[t][dim][MAX_SUB_ENTITIES] ) return 1;
short int* tvec = CN::permuteVec[t][dim];
T* pvec = conn;
for( int j = 0; j < num_entries; j++ )
{
for( int i = 0; i < indices_per_ent; i++ )
tmp_conn[tvec[i]] = pvec[i];
memcpy( pvec, tmp_conn, indices_per_ent * sizeof( T ) );
pvec += indices_per_ent;
}
return 0;
}
template < typename T >
inline int rev_permute_this( EntityType t, const int dim, T* conn, const int indices_per_ent, const int num_entries )
{
T tmp_conn[MAX_SUB_ENTITIES];
assert( indices_per_ent <= CN::revPermuteVec[t][dim][MAX_SUB_ENTITIES] );
if( indices_per_ent > CN::revPermuteVec[t][dim][MAX_SUB_ENTITIES] ) return 1;
short int* tvec = CN::revPermuteVec[t][dim];
T* pvec = conn;
for( int j = 0; j < num_entries; j++ )
{
for( int i = 0; i < indices_per_ent; i++ )
tmp_conn[i] = pvec[tvec[i]];
memcpy( pvec, tmp_conn, indices_per_ent * sizeof( T ) );
pvec += indices_per_ent;
}
return 0;
}
short int CN::Dimension( const EntityType t )
{
return mConnectivityMap[t][0].topo_dimension;
}
short int CN::VerticesPerEntity( const EntityType t )
{
return ( MBVERTEX == t
? (short int)1
: mConnectivityMap[t][mConnectivityMap[t][0].topo_dimension - 1].num_corners_per_sub_element[0] );
}
short int CN::NumSubEntities( const EntityType t, const int d )
{
return ( t != MBVERTEX && d > 0 ? mConnectivityMap[t][d - 1].num_sub_elements
: ( d ? (short int)-1 : VerticesPerEntity( t ) ) );
}
//! return the type of a particular sub-entity.
EntityType CN::SubEntityType( const EntityType this_type, const int sub_dimension, const int index )
{
return ( !sub_dimension ? MBVERTEX
: ( Dimension( this_type ) == sub_dimension && 0 == index
? this_type
: mConnectivityMap[this_type][sub_dimension - 1].target_type[index] ) );
}
const short* CN::SubEntityVertexIndices( const EntityType this_type,
const int sub_dimension,
const int index,
EntityType& sub_type,
int& n )
{
if( sub_dimension == 0 )
{
n = 1;
sub_type = MBVERTEX;
return increasingInts + index;
}
else
{
const CN::ConnMap& map = mConnectivityMap[this_type][sub_dimension - 1];
sub_type = map.target_type[index];
n = map.num_corners_per_sub_element[index];
return map.conn[index];
}
}
//! Permute this vector
inline int CN::permuteThis( const EntityType t, const int dim, int* pvec, const int num_indices, const int num_entries )
{
return permute_this( t, dim, pvec, num_indices, num_entries );
}
inline int CN::permuteThis( const EntityType t,
const int dim,
unsigned int* pvec,
const int num_indices,
const int num_entries )
{
return permute_this( t, dim, pvec, num_indices, num_entries );
}
inline int CN::permuteThis( const EntityType t,
const int dim,
long* pvec,
const int num_indices,
const int num_entries )
{
return permute_this( t, dim, pvec, num_indices, num_entries );
}
inline int CN::permuteThis( const EntityType t,
const int dim,
void** pvec,
const int num_indices,
const int num_entries )
{
return permute_this( t, dim, pvec, num_indices, num_entries );
}
//! Reverse permute this vector
inline int CN::revPermuteThis( const EntityType t,
const int dim,
int* pvec,
const int num_indices,
const int num_entries )
{
return rev_permute_this( t, dim, pvec, num_indices, num_entries );
}
inline int CN::revPermuteThis( const EntityType t,
const int dim,
unsigned int* pvec,
const int num_indices,
const int num_entries )
{
return rev_permute_this( t, dim, pvec, num_indices, num_entries );
}
inline int CN::revPermuteThis( const EntityType t,
const int dim,
long* pvec,
const int num_indices,
const int num_entries )
{
return rev_permute_this( t, dim, pvec, num_indices, num_entries );
}
inline int CN::revPermuteThis( const EntityType t,
const int dim,
void** pvec,
const int num_indices,
const int num_entries )
{
return rev_permute_this( t, dim, pvec, num_indices, num_entries );
}
} // namespace moab
|