1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971 | #include "Coupler.hpp"
#include "moab/ParallelComm.hpp"
#include "moab/AdaptiveKDTree.hpp"
#include "ElemUtil.hpp"
#include "moab/CN.hpp"
#include "moab/gs.hpp"
#include "moab/TupleList.hpp"
#include "moab/Error.hpp"
/* C++ includes */
#include <cstdio>
#include <cassert>
#include <iostream>
#include <algorithm>
#include <sstream>
#define ERROR( a ) \
{ \
if( MB_SUCCESS != err ) std::cerr << ( a ) << std::endl; \
}
#define ERRORR( a, b ) \
{ \
if( MB_SUCCESS != ( b ) ) \
{ \
std::cerr << ( a ) << std::endl; \
return b; \
} \
}
#define ERRORMPI( a, b ) \
{ \
if( MPI_SUCCESS != ( b ) ) \
{ \
std::cerr << ( a ) << std::endl; \
return MB_FAILURE; \
} \
}
#define MASTER_PROC 0
namespace moab
{
bool debug = false;
int pack_tuples( TupleList* tl, void** ptr );
void unpack_tuples( void* ptr, TupleList** tlp );
Coupler::Coupler( Interface* impl,
ParallelComm* pc,
Range& local_elems,
int coupler_id,
bool init_tree,
int max_ent_dim )
: mbImpl( impl ), myPc( pc ), myId( coupler_id ), numIts( 3 ), max_dim( max_ent_dim ), _ntot( 0 ),
spherical( false )
{
assert( NULL != impl && ( pc || !local_elems.empty() ) );
// Keep track of the local points, at least for now
myRange = local_elems;
myTree = NULL;
// Now initialize the tree
if( init_tree ) initialize_tree();
// Initialize tuple lists to indicate not initialized
mappedPts = NULL;
targetPts = NULL;
_spectralSource = _spectralTarget = NULL;
}
/* Destructor
*/
Coupler::~Coupler()
{
// This will clear the cache
delete(moab::Element::SpectralHex*)_spectralSource;
delete(moab::Element::SpectralHex*)_spectralTarget;
delete myTree;
delete targetPts;
delete mappedPts;
}
ErrorCode Coupler::initialize_tree()
{
Range local_ents;
// Get entities on the local part
ErrorCode result = MB_SUCCESS;
if( myPc )
{
result = myPc->get_part_entities( local_ents, max_dim );
if( local_ents.empty() )
{
max_dim--;
result = myPc->get_part_entities( local_ents, max_dim ); // go one dimension lower
// right now, this is used for spherical meshes only
}
}
else
local_ents = myRange;
if( MB_SUCCESS != result || local_ents.empty() )
{
std::cout << "Problems getting source entities" << std::endl;
return result;
}
// Build the tree for local processor
int max_per_leaf = 6;
for( int i = 0; i < numIts; i++ )
{
std::ostringstream str;
str << "PLANE_SET=0;"
<< "MAX_PER_LEAF=" << max_per_leaf << ";";
if( spherical && !local_ents.empty() )
{
// get coordinates of one vertex, and use for radius computation
EntityHandle elem = local_ents[0];
const EntityHandle* conn;
int numn = 0;
mbImpl->get_connectivity( elem, conn, numn );
CartVect pos0;
mbImpl->get_coords( conn, 1, &( pos0[0] ) );
double radius = pos0.length();
str << "SPHERICAL=true;RADIUS=" << radius << ";";
}
FileOptions opts( str.str().c_str() );
myTree = new AdaptiveKDTree( mbImpl );
result = myTree->build_tree( local_ents, &localRoot, &opts );
if( MB_SUCCESS != result )
{
std::cout << "Problems building tree";
if( numIts != i )
{
delete myTree;
max_per_leaf *= 2;
std::cout << "; increasing elements/leaf to " << max_per_leaf << std::endl;
}
else
{
std::cout << "; exiting" << std::endl;
return result;
}
}
else
break; // Get out of tree building
}
// Get the bounding box for local tree
if( myPc )
allBoxes.resize( 6 * myPc->proc_config().proc_size() );
else
allBoxes.resize( 6 );
unsigned int my_rank = ( myPc ? myPc->proc_config().proc_rank() : 0 );
BoundBox box;
result = myTree->get_bounding_box( box, &localRoot );
if( MB_SUCCESS != result ) return result;
box.bMin.get( &allBoxes[6 * my_rank] );
box.bMax.get( &allBoxes[6 * my_rank + 3] );
// Now communicate to get all boxes
if( myPc )
{
int mpi_err;
#if( MPI_VERSION >= 2 )
// Use "in place" option
mpi_err = MPI_Allgather( MPI_IN_PLACE, 0, MPI_DATATYPE_NULL, &allBoxes[0], 6, MPI_DOUBLE,
myPc->proc_config().proc_comm() );
#else
{
std::vector< double > allBoxes_tmp( 6 * myPc->proc_config().proc_size() );
mpi_err = MPI_Allgather( &allBoxes[6 * my_rank], 6, MPI_DOUBLE, &allBoxes_tmp[0], 6, MPI_DOUBLE,
myPc->proc_config().proc_comm() );
allBoxes = allBoxes_tmp;
}
#endif
if( MPI_SUCCESS != mpi_err ) return MB_FAILURE;
}
/* std::ostringstream blah;
for(int i = 0; i < allBoxes.size(); i++)
blah << allBoxes[i] << " ";
std::cout << blah.str() << "\n";*/
#ifdef VERBOSE
double min[3] = { 0, 0, 0 }, max[3] = { 0, 0, 0 };
unsigned int dep;
myTree->get_info( localRoot, min, max, dep );
std::cout << "Proc " << my_rank << ": box min/max, tree depth = (" << min[0] << "," << min[1] << "," << min[2]
<< "), (" << max[0] << "," << max[1] << "," << max[2] << "), " << dep << std::endl;
#endif
return result;
}
ErrorCode Coupler::initialize_spectral_elements( EntityHandle rootSource,
EntityHandle rootTarget,
bool& specSou,
bool& specTar )
{
/*void * _spectralSource;
void * _spectralTarget;*/
moab::Range spectral_sets;
moab::Tag sem_tag;
int sem_dims[3];
ErrorCode rval = mbImpl->tag_get_handle( "SEM_DIMS", 3, moab::MB_TYPE_INTEGER, sem_tag );
if( moab::MB_SUCCESS != rval )
{
std::cout << "Can't find tag, no spectral set\n";
return MB_SUCCESS; // Nothing to do, no spectral elements
}
rval = mbImpl->get_entities_by_type_and_tag( rootSource, moab::MBENTITYSET, &sem_tag, NULL, 1, spectral_sets );
if( moab::MB_SUCCESS != rval || spectral_sets.empty() )
std::cout << "Can't get sem set on source\n";
else
{
moab::EntityHandle firstSemSet = spectral_sets[0];
rval = mbImpl->tag_get_data( sem_tag, &firstSemSet, 1, (void*)sem_dims );
if( moab::MB_SUCCESS != rval ) return MB_FAILURE;
if( sem_dims[0] != sem_dims[1] || sem_dims[0] != sem_dims[2] )
{
std::cout << " dimensions are different. bail out\n";
return MB_FAILURE;
}
// Repeat for target sets
spectral_sets.empty();
// Now initialize a source spectral element !
_spectralSource = new moab::Element::SpectralHex( sem_dims[0] );
specSou = true;
}
// Repeat for target source
rval = mbImpl->get_entities_by_type_and_tag( rootTarget, moab::MBENTITYSET, &sem_tag, NULL, 1, spectral_sets );
if( moab::MB_SUCCESS != rval || spectral_sets.empty() )
std::cout << "Can't get sem set on target\n";
else
{
moab::EntityHandle firstSemSet = spectral_sets[0];
rval = mbImpl->tag_get_data( sem_tag, &firstSemSet, 1, (void*)sem_dims );
if( moab::MB_SUCCESS != rval ) return MB_FAILURE;
if( sem_dims[0] != sem_dims[1] || sem_dims[0] != sem_dims[2] )
{
std::cout << " dimensions are different. bail out\n";
return MB_FAILURE;
}
// Repeat for target sets
spectral_sets.empty();
// Now initialize a target spectral element !
_spectralTarget = new moab::Element::SpectralHex( sem_dims[0] );
specTar = true;
}
_ntot = sem_dims[0] * sem_dims[1] * sem_dims[2];<--- Uninitialized variable: sem_dims
rval = mbImpl->tag_get_handle( "SEM_X", _ntot, moab::MB_TYPE_DOUBLE, _xm1Tag );
if( moab::MB_SUCCESS != rval )
{
std::cout << "Can't get xm1tag \n";
return MB_FAILURE;
}
rval = mbImpl->tag_get_handle( "SEM_Y", _ntot, moab::MB_TYPE_DOUBLE, _ym1Tag );
if( moab::MB_SUCCESS != rval )
{
std::cout << "Can't get ym1tag \n";
return MB_FAILURE;
}
rval = mbImpl->tag_get_handle( "SEM_Z", _ntot, moab::MB_TYPE_DOUBLE, _zm1Tag );
if( moab::MB_SUCCESS != rval )
{
std::cout << "Can't get zm1tag \n";
return MB_FAILURE;
}
return MB_SUCCESS;
}
ErrorCode Coupler::locate_points( Range& targ_ents, double rel_eps, double abs_eps, TupleList* tl, bool store_local )
{
// Get locations
std::vector< double > locs( 3 * targ_ents.size() );
Range verts = targ_ents.subset_by_type( MBVERTEX );
ErrorCode rval = mbImpl->get_coords( verts, &locs[0] );
if( MB_SUCCESS != rval ) return rval;
// Now get other ents; reuse verts
unsigned int num_verts = verts.size();
verts = subtract( targ_ents, verts );
// Compute centroids
std::vector< EntityHandle > dum_conn( CN::MAX_NODES_PER_ELEMENT );
std::vector< double > dum_pos( CN::MAX_NODES_PER_ELEMENT );
const EntityHandle* conn;
int num_conn;
double* coords = &locs[num_verts];
// Do this here instead of a function to allow reuse of dum_pos and dum_conn
for( Range::const_iterator rit = verts.begin(); rit != verts.end(); ++rit )
{
rval = mbImpl->get_connectivity( *rit, conn, num_conn, false, &dum_conn );
if( MB_SUCCESS != rval ) return rval;
rval = mbImpl->get_coords( conn, num_conn, &dum_pos[0] );
if( MB_SUCCESS != rval ) return rval;
coords[0] = coords[1] = coords[2] = 0.0;
for( int i = 0; i < num_conn; i++ )
{
coords[0] += dum_pos[3 * i];
coords[1] += dum_pos[3 * i + 1];
coords[2] += dum_pos[3 * i + 2];
}
coords[0] /= num_conn;
coords[1] /= num_conn;
coords[2] /= num_conn;
coords += 3;
}
if( store_local ) targetEnts = targ_ents;
return locate_points( &locs[0], targ_ents.size(), rel_eps, abs_eps, tl, store_local );
}
ErrorCode Coupler::locate_points( double* xyz,
unsigned int num_points,
double rel_eps,
double abs_eps,
TupleList* tl,
bool store_local )
{
assert( tl || store_local );
// target_pts: TL(to_proc, tgt_index, x, y, z): tuples sent to source mesh procs representing
// pts to be located source_pts: TL(from_proc, tgt_index, src_index): results of source mesh
// proc point location, ready to send
// back to tgt procs; src_index of -1 indicates point not located (arguably not
// useful...)
TupleList target_pts;
target_pts.initialize( 2, 0, 0, 3, num_points );
target_pts.enableWriteAccess();
TupleList source_pts;
mappedPts = new TupleList( 0, 0, 1, 3, target_pts.get_max() );
mappedPts->enableWriteAccess();
source_pts.initialize( 3, 0, 0, 0, target_pts.get_max() );
source_pts.enableWriteAccess();
mappedPts->set_n( 0 );
source_pts.set_n( 0 );
ErrorCode result;
unsigned int my_rank = ( myPc ? myPc->proc_config().proc_rank() : 0 );
bool point_located;<--- The scope of the variable 'point_located' can be reduced. [+]The scope of the variable 'point_located' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
// For each point, find box(es) containing the point,
// appending results to tuple_list;
// keep local points separately, in local_pts, which has pairs
// of <local_index, mapped_index>, where mapped_index is the index
// into the mappedPts tuple list
for( unsigned int i = 0; i < 3 * num_points; i += 3 )
{
std::vector< int > procs_to_send_to;
for( unsigned int j = 0; j < ( myPc ? myPc->proc_config().proc_size() : 0 ); j++ )
{
// Test if point is in proc's box
if( ( allBoxes[6 * j] <= xyz[i] + abs_eps ) && ( xyz[i] <= allBoxes[6 * j + 3] + abs_eps ) &&
( allBoxes[6 * j + 1] <= xyz[i + 1] + abs_eps ) && ( xyz[i + 1] <= allBoxes[6 * j + 4] + abs_eps ) &&
( allBoxes[6 * j + 2] <= xyz[i + 2] + abs_eps ) && ( xyz[i + 2] <= allBoxes[6 * j + 5] + abs_eps ) )
{
// If in this proc's box, will send to proc to test further
procs_to_send_to.push_back( j );
}
}
if( procs_to_send_to.empty() )
{
#ifdef VERBOSE
std::cout << " point index " << i / 3 << ": " << xyz[i] << " " << xyz[i + 1] << " " << xyz[i + 2]
<< " not found in any box\n";
#endif
// try to find the closest box, and put it in that box, anyway
double min_dist = 1.e+20;
int index = -1;
for( unsigned int j = 0; j < ( myPc ? myPc->proc_config().proc_size() : 0 ); j++ )
{
BoundBox box( &allBoxes[6 * j] ); // form back the box
double distance = box.distance( &xyz[i] ); // will compute the distance in 3d, from the box
if( distance < min_dist )
{
index = j;
min_dist = distance;
}
}
if( index == -1 )
{
// need to abort early, nothing we can do
assert( "cannot locate any box for some points" );
// need a better exit strategy
}
#ifdef VERBOSE
std::cout << " point index " << i / 3 << " added to box for proc j:" << index << "\n";
#endif
procs_to_send_to.push_back( index ); // will send to just one proc, that has the closest box
}
// we finally decided to populate the tuple list for a list of processors
for( size_t k = 0; k < procs_to_send_to.size(); k++ )
{
unsigned int j = procs_to_send_to[k];
// Check size of tuple list, grow if we're at max
if( target_pts.get_n() == target_pts.get_max() )
target_pts.resize( std::max( 10.0, 1.5 * target_pts.get_max() ) );
target_pts.vi_wr[2 * target_pts.get_n()] = j;
target_pts.vi_wr[2 * target_pts.get_n() + 1] = i / 3;
target_pts.vr_wr[3 * target_pts.get_n()] = xyz[i];
target_pts.vr_wr[3 * target_pts.get_n() + 1] = xyz[i + 1];
target_pts.vr_wr[3 * target_pts.get_n() + 2] = xyz[i + 2];
target_pts.inc_n();
}
} // end for (unsigned int i = 0; ..
int num_to_me = 0;
for( unsigned int i = 0; i < target_pts.get_n(); i++ )
if( target_pts.vi_rd[2 * i] == (int)my_rank ) num_to_me++;
#ifdef VERBOSE
printf( "rank: %u local points: %u, nb sent target pts: %u mappedPts: %u num to me: %d \n", my_rank, num_points,
target_pts.get_n(), mappedPts->get_n(), num_to_me );
#endif
// Perform scatter/gather, to gather points to source mesh procs
if( myPc )
{
( myPc->proc_config().crystal_router() )->gs_transfer( 1, target_pts, 0 );
num_to_me = 0;
for( unsigned int i = 0; i < target_pts.get_n(); i++ )
{
if( target_pts.vi_rd[2 * i] == (int)my_rank ) num_to_me++;
}
#ifdef VERBOSE
printf( "rank: %u after first gs nb received_pts: %u; num_from_me = %d\n", my_rank, target_pts.get_n(),
num_to_me );
#endif
// After scatter/gather:
// target_pts.set_n(# points local proc has to map);
// target_pts.vi_wr[2*i] = proc sending point i
// target_pts.vi_wr[2*i + 1] = index of point i on sending proc
// target_pts.vr_wr[3*i..3*i + 2] = xyz of point i
//
// Mapping builds the tuple list:
// source_pts.set_n(target_pts.get_n())
// source_pts.vi_wr[3*i] = target_pts.vi_wr[2*i] = sending proc
// source_pts.vi_wr[3*i + 1] = index of point i on sending proc
// source_pts.vi_wr[3*i + 2] = index of mapped point (-1 if not mapped)
//
// Also, mapping builds local tuple_list mappedPts:
// mappedPts->set_n( # mapped points );
// mappedPts->vul_wr[i] = local handle of mapped entity
// mappedPts->vr_wr[3*i..3*i + 2] = natural coordinates in mapped entity
// Test target points against my elements
for( unsigned i = 0; i < target_pts.get_n(); i++ )
{
result = test_local_box( target_pts.vr_wr + 3 * i, target_pts.vi_rd[2 * i], target_pts.vi_rd[2 * i + 1], i,
point_located, rel_eps, abs_eps, &source_pts );
if( MB_SUCCESS != result ) return result;
}
// No longer need target_pts
target_pts.reset();
#ifdef VERBOSE
printf( "rank: %u nb sent source pts: %u, mappedPts now: %u\n", my_rank, source_pts.get_n(),
mappedPts->get_n() );
#endif
// Send target points back to target procs
( myPc->proc_config().crystal_router() )->gs_transfer( 1, source_pts, 0 );
#ifdef VERBOSE
printf( "rank: %u nb received source pts: %u\n", my_rank, source_pts.get_n() );
#endif
}
// Store proc/index tuples in targetPts, and/or pass back to application;
// the tuple this gets stored to looks like:
// tl.set_n(# mapped points);
// tl.vi_wr[3*i] = remote proc mapping point
// tl.vi_wr[3*i + 1] = local index of mapped point
// tl.vi_wr[3*i + 2] = remote index of mapped point
//
// Local index is mapped into either myRange, holding the handles of
// local mapped entities, or myXyz, holding locations of mapped pts
// Store information about located points
TupleList* tl_tmp;
if( !store_local )
tl_tmp = tl;
else
{
targetPts = new TupleList();
tl_tmp = targetPts;
}
tl_tmp->initialize( 3, 0, 0, 0, num_points );
tl_tmp->set_n( num_points ); // Automatically sets tl to write_enabled
// Initialize so we know afterwards how many pts weren't located
std::fill( tl_tmp->vi_wr, tl_tmp->vi_wr + 3 * num_points, -1 );
unsigned int local_pts = 0;
for( unsigned int i = 0; i < source_pts.get_n(); i++ )
{
if( -1 != source_pts.vi_rd[3 * i + 2] )
{ // Why bother sending message saying "i don't have the point" if it gets discarded?
int tgt_index = 3 * source_pts.vi_rd[3 * i + 1];
// Prefer always entities that are local, from the source_pts
// if a local entity was already found to contain the target point, skip
// tl_tmp->vi_wr[tgt_index] is -1 initially, but it could already be set with
// a remote processor
if( tl_tmp->vi_wr[tgt_index] != (int)my_rank )
{
tl_tmp->vi_wr[tgt_index] = source_pts.vi_rd[3 * i];
tl_tmp->vi_wr[tgt_index + 1] = source_pts.vi_rd[3 * i + 1];
tl_tmp->vi_wr[tgt_index + 2] = source_pts.vi_rd[3 * i + 2];
}
}
}
// Count missing points
unsigned int missing_pts = 0;
for( unsigned int i = 0; i < num_points; i++ )
{
if( tl_tmp->vi_rd[3 * i + 1] == -1 )
{
missing_pts++;
#ifdef VERBOSE
printf( "missing point at index i: %d -> %15.10f %15.10f %15.10f\n", i, xyz[3 * i], xyz[3 * i + 1],<--- %d in format string (no. 1) requires 'int' but the argument type is 'unsigned int'.
xyz[3 * i + 2] );
#endif
}
else if( tl_tmp->vi_rd[3 * i] == (int)my_rank )
local_pts++;
}
#ifdef VERBOSE
printf( "rank: %u point location: wanted %u got %u locally, %u remote, missing %u\n", my_rank, num_points,
local_pts, num_points - missing_pts - local_pts, missing_pts );
#endif
assert( 0 == missing_pts ); // Will likely break on curved geometries
// No longer need source_pts
source_pts.reset();
// Copy into tl if passed in and storing locally
if( tl && store_local )
{
tl->initialize( 3, 0, 0, 0, num_points );
tl->enableWriteAccess();
memcpy( tl->vi_wr, tl_tmp->vi_rd, 3 * tl_tmp->get_n() * sizeof( int ) );
tl->set_n( tl_tmp->get_n() );
tl->disableWriteAccess();
}
tl_tmp->disableWriteAccess();
// Done
return MB_SUCCESS;
}
ErrorCode Coupler::test_local_box( double* xyz,
int from_proc,
int remote_index,
int /*index*/,
bool& point_located,
double rel_eps,
double abs_eps,
TupleList* tl )
{
std::vector< EntityHandle > entities;
std::vector< CartVect > nat_coords;
bool canWrite = false;
if( tl )
{
canWrite = tl->get_writeEnabled();
if( !canWrite )
{
tl->enableWriteAccess();
canWrite = true;
}
}
if( rel_eps && !abs_eps )
{
// Relative epsilon given, translate to absolute epsilon using box dimensions
BoundBox box;
myTree->get_bounding_box( box, &localRoot );
abs_eps = rel_eps * box.diagonal_length();
}
ErrorCode result = nat_param( xyz, entities, nat_coords, abs_eps );
if( MB_SUCCESS != result ) return result;
// If we didn't find any ents and we're looking locally, nothing more to do
if( entities.empty() )
{
if( tl->get_n() == tl->get_max() ) tl->resize( std::max( 10.0, 1.5 * tl->get_max() ) );
tl->vi_wr[3 * tl->get_n()] = from_proc;
tl->vi_wr[3 * tl->get_n() + 1] = remote_index;
tl->vi_wr[3 * tl->get_n() + 2] = -1;
tl->inc_n();
point_located = false;
return MB_SUCCESS;
}
// Grow if we know we'll exceed size
if( mappedPts->get_n() + entities.size() >= mappedPts->get_max() )
mappedPts->resize( std::max( 10.0, 1.5 * mappedPts->get_max() ) );
std::vector< EntityHandle >::iterator eit = entities.begin();
std::vector< CartVect >::iterator ncit = nat_coords.begin();
mappedPts->enableWriteAccess();
for( ; eit != entities.end(); ++eit, ++ncit )
{
// Store in tuple mappedPts
mappedPts->vr_wr[3 * mappedPts->get_n()] = ( *ncit )[0];
mappedPts->vr_wr[3 * mappedPts->get_n() + 1] = ( *ncit )[1];
mappedPts->vr_wr[3 * mappedPts->get_n() + 2] = ( *ncit )[2];
mappedPts->vul_wr[mappedPts->get_n()] = *eit;
mappedPts->inc_n();
// Also store local point, mapped point indices
if( tl->get_n() == tl->get_max() ) tl->resize( std::max( 10.0, 1.5 * tl->get_max() ) );
// Store in tuple source_pts
tl->vi_wr[3 * tl->get_n()] = from_proc;
tl->vi_wr[3 * tl->get_n() + 1] = remote_index;
tl->vi_wr[3 * tl->get_n() + 2] = mappedPts->get_n() - 1;
tl->inc_n();
}
point_located = true;
if( tl && !canWrite ) tl->disableWriteAccess();
return MB_SUCCESS;
}
ErrorCode Coupler::interpolate( Coupler::Method method,
const std::string& interp_tag,
double* interp_vals,
TupleList* tl,
bool normalize )
{
Tag tag;
ErrorCode result;
if( _spectralSource )
{
result = mbImpl->tag_get_handle( interp_tag.c_str(), _ntot, MB_TYPE_DOUBLE, tag );MB_CHK_SET_ERR( result, "Failed to get handle for interpolation tag \"" << interp_tag << "\"" );
}
else
{
result = mbImpl->tag_get_handle( interp_tag.c_str(), 1, MB_TYPE_DOUBLE, tag );MB_CHK_SET_ERR( result, "Failed to get handle for interpolation tag \"" << interp_tag << "\"" );
}
return interpolate( method, tag, interp_vals, tl, normalize );
}
ErrorCode Coupler::interpolate( Coupler::Method* methods,
Tag* tags,
int* points_per_method,
int num_methods,
double* interp_vals,
TupleList* tl,
bool /* normalize */ )
{
// if (!((LINEAR_FE == method) || (CONSTANT == method)))
// return MB_FAILURE;
// remote pts first
TupleList* tl_tmp = ( tl ? tl : targetPts );
ErrorCode result = MB_SUCCESS;<--- Variable 'result' is assigned a value that is never used.
unsigned int pts_total = 0;
for( int i = 0; i < num_methods; i++ )
pts_total += points_per_method[i];
// If tl was passed in non-NULL, just have those points, otherwise have targetPts plus
// locally mapped pts
if( pts_total != tl_tmp->get_n() ) return MB_FAILURE;
TupleList tinterp;
tinterp.initialize( 5, 0, 0, 1, tl_tmp->get_n() );
int t = 0;
tinterp.enableWriteAccess();
for( int i = 0; i < num_methods; i++ )
{
for( int j = 0; j < points_per_method[i]; j++ )
{
tinterp.vi_wr[5 * t] = tl_tmp->vi_rd[3 * t];
tinterp.vi_wr[5 * t + 1] = tl_tmp->vi_rd[3 * t + 1];
tinterp.vi_wr[5 * t + 2] = tl_tmp->vi_rd[3 * t + 2];
tinterp.vi_wr[5 * t + 3] = methods[i];
tinterp.vi_wr[5 * t + 4] = i;
tinterp.vr_wr[t] = 0.0;
tinterp.inc_n();
t++;
}
}
// Scatter/gather interpolation points
if( myPc )
{
( myPc->proc_config().crystal_router() )->gs_transfer( 1, tinterp, 0 );
// Perform interpolation on local source mesh; put results into
// tinterp.vr_wr[i]
mappedPts->enableWriteAccess();
for( unsigned int i = 0; i < tinterp.get_n(); i++ )
{
int mindex = tinterp.vi_rd[5 * i + 2];
Method method = (Method)tinterp.vi_rd[5 * i + 3];
Tag tag = tags[tinterp.vi_rd[5 * i + 4]];
result = MB_FAILURE;
if( LINEAR_FE == method || QUADRATIC_FE == method || SPHERICAL == method )
{
result = interp_field( mappedPts->vul_rd[mindex], CartVect( mappedPts->vr_wr + 3 * mindex ), tag,
tinterp.vr_wr[i] );
}
else if( CONSTANT == method )
{
result = constant_interp( mappedPts->vul_rd[mindex], tag, tinterp.vr_wr[i] );
}
if( MB_SUCCESS != result ) return result;
}
// Scatter/gather interpolation data
myPc->proc_config().crystal_router()->gs_transfer( 1, tinterp, 0 );
}
// Copy the interpolated field as a unit
for( unsigned int i = 0; i < tinterp.get_n(); i++ )
interp_vals[tinterp.vi_rd[5 * i + 1]] = tinterp.vr_rd[i];
// Done
return MB_SUCCESS;
}
ErrorCode Coupler::nat_param( double xyz[3],
std::vector< EntityHandle >& entities,
std::vector< CartVect >& nat_coords,
double epsilon )
{
if( !myTree ) return MB_FAILURE;
AdaptiveKDTreeIter treeiter;
ErrorCode result = myTree->get_tree_iterator( localRoot, treeiter );
if( MB_SUCCESS != result )
{
std::cout << "Problems getting iterator" << std::endl;
return result;
}
EntityHandle closest_leaf;
if( epsilon )
{
std::vector< double > dists;
std::vector< EntityHandle > leaves;
// Two tolerances
result = myTree->distance_search( xyz, epsilon, leaves,<--- result is assigned
/*iter_tol*/ epsilon,
/*inside_tol*/ 10 * epsilon, &dists, NULL, &localRoot );
if( leaves.empty() )
// Not found returns success here, with empty list, just like case with no epsilon
return MB_SUCCESS;
// Get closest leaf
double min_dist = *dists.begin();
closest_leaf = *leaves.begin();
std::vector< EntityHandle >::iterator vit = leaves.begin() + 1;
std::vector< double >::iterator dit = dists.begin() + 1;
for( ; vit != leaves.end() && min_dist; ++vit, ++dit )
{
if( *dit < min_dist )
{
min_dist = *dit;
closest_leaf = *vit;
}
}
}
else
{
result = myTree->point_search( xyz, treeiter, 1.0e-10, 1.0e-6, NULL, &localRoot );
if( MB_ENTITY_NOT_FOUND == result ) // Point is outside of myTree's bounding box
return MB_SUCCESS;
else if( MB_SUCCESS != result )
{
std::cout << "Problems getting leaf \n";
return result;
}
closest_leaf = treeiter.handle();
}
// Find natural coordinates of point in element(s) in that leaf
CartVect tmp_nat_coords;
Range range_leaf;
result = mbImpl->get_entities_by_dimension( closest_leaf, max_dim, range_leaf, false );<--- result is overwritten
if( MB_SUCCESS != result ) std::cout << "Problem getting leaf in a range" << std::endl;
// Loop over the range_leaf
for( Range::iterator iter = range_leaf.begin(); iter != range_leaf.end(); ++iter )
{
// Test to find out in which entity the point is
// Get the EntityType and create the appropriate Element::Map subtype
// If spectral, do not need coordinates, just the GL points
EntityType etype = mbImpl->type_from_handle( *iter );
if( NULL != this->_spectralSource && MBHEX == etype )
{
EntityHandle eh = *iter;
const double* xval;
const double* yval;
const double* zval;
ErrorCode rval = mbImpl->tag_get_by_ptr( _xm1Tag, &eh, 1, (const void**)&xval );
if( moab::MB_SUCCESS != rval )
{
std::cout << "Can't get xm1 values \n";
return MB_FAILURE;
}
rval = mbImpl->tag_get_by_ptr( _ym1Tag, &eh, 1, (const void**)&yval );
if( moab::MB_SUCCESS != rval )
{
std::cout << "Can't get ym1 values \n";
return MB_FAILURE;
}
rval = mbImpl->tag_get_by_ptr( _zm1Tag, &eh, 1, (const void**)&zval );
if( moab::MB_SUCCESS != rval )
{
std::cout << "Can't get zm1 values \n";
return MB_FAILURE;
}
Element::SpectralHex* spcHex = (Element::SpectralHex*)_spectralSource;
spcHex->set_gl_points( (double*)xval, (double*)yval, (double*)zval );
try
{
tmp_nat_coords = spcHex->ievaluate( CartVect( xyz ), epsilon ); // introduce
bool inside = spcHex->inside_nat_space( CartVect( tmp_nat_coords ), epsilon );
if( !inside )
{
#ifdef VERBOSE
std::cout << "point " << xyz[0] << " " << xyz[1] << " " << xyz[2]
<< " is not converging inside hex " << mbImpl->id_from_handle( eh ) << "\n";
#endif
continue; // It is possible that the point is outside, so it will not converge
}
}
catch( Element::Map::EvaluationError& )
{
continue;
}
}
else
{
const EntityHandle* connect;
int num_connect;
// Get connectivity
result = mbImpl->get_connectivity( *iter, connect, num_connect, true );
if( MB_SUCCESS != result ) return result;
// Get coordinates of the vertices
std::vector< CartVect > coords_vert( num_connect );
result = mbImpl->get_coords( connect, num_connect, &( coords_vert[0][0] ) );
if( MB_SUCCESS != result )
{
std::cout << "Problems getting coordinates of vertices\n";
return result;
}
CartVect pos( xyz );
if( MBHEX == etype )
{
if( 8 == num_connect )
{
Element::LinearHex hexmap( coords_vert );
if( !hexmap.inside_box( pos, epsilon ) ) continue;
try
{
tmp_nat_coords = hexmap.ievaluate( pos, epsilon );
bool inside = hexmap.inside_nat_space( tmp_nat_coords, epsilon );
if( !inside ) continue;
}
catch( Element::Map::EvaluationError& )
{
continue;
}
}
else if( 27 == num_connect )
{
Element::QuadraticHex hexmap( coords_vert );
if( !hexmap.inside_box( pos, epsilon ) ) continue;
try
{
tmp_nat_coords = hexmap.ievaluate( pos, epsilon );
bool inside = hexmap.inside_nat_space( tmp_nat_coords, epsilon );
if( !inside ) continue;
}
catch( Element::Map::EvaluationError& )
{
continue;
}
}
else // TODO this case not treated yet, no interpolation
continue;
}
else if( MBTET == etype )
{
Element::LinearTet tetmap( coords_vert );
// This is just a linear solve; unless degenerate, will not except
tmp_nat_coords = tetmap.ievaluate( pos );
bool inside = tetmap.inside_nat_space( tmp_nat_coords, epsilon );
if( !inside ) continue;
}
else if( MBQUAD == etype && spherical )
{
Element::SphericalQuad sphermap( coords_vert );
/* skip box test, because it can filter out good elements with high curvature
* if (!sphermap.inside_box(pos, epsilon))
continue;*/
try
{
tmp_nat_coords = sphermap.ievaluate( pos, epsilon );
bool inside = sphermap.inside_nat_space( tmp_nat_coords, epsilon );
if( !inside ) continue;
}
catch( Element::Map::EvaluationError& )
{
continue;
}
}
else if( MBTRI == etype && spherical )
{
Element::SphericalTri sphermap( coords_vert );
/* skip box test, because it can filter out good elements with high curvature
* if (!sphermap.inside_box(pos, epsilon))
continue;*/
try
{
tmp_nat_coords = sphermap.ievaluate( pos, epsilon );
bool inside = sphermap.inside_nat_space( tmp_nat_coords, epsilon );
if( !inside ) continue;
}
catch( Element::Map::EvaluationError& )
{
continue;
}
}
else if( MBQUAD == etype )
{
Element::LinearQuad quadmap( coords_vert );
if( !quadmap.inside_box( pos, epsilon ) ) continue;
try
{
tmp_nat_coords = quadmap.ievaluate( pos, epsilon );
bool inside = quadmap.inside_nat_space( tmp_nat_coords, epsilon );
if( !inside ) continue;
}
catch( Element::Map::EvaluationError& )
{
continue;
}
if( !quadmap.inside_nat_space( tmp_nat_coords, epsilon ) ) continue;
}
/*
else if (etype == MBTRI){
Element::LinearTri trimap(coords_vert);
if (!trimap.inside_box( pos, epsilon))
continue;
try {
tmp_nat_coords = trimap.ievaluate(pos, epsilon);
bool inside = trimap.inside_nat_space(tmp_nat_coords, epsilon);
if (!inside) continue;
}
catch (Element::Map::EvaluationError) {
continue;
}
if (!trimap.inside_nat_space(tmp_nat_coords, epsilon))
continue;
}
*/
else if( etype == MBEDGE )
{
Element::LinearEdge edgemap( coords_vert );
try
{
tmp_nat_coords = edgemap.ievaluate( CartVect( xyz ), epsilon );
}
catch( Element::Map::EvaluationError )
{
continue;
}
if( !edgemap.inside_nat_space( tmp_nat_coords, epsilon ) ) continue;
}
else
{
std::cout << "Entity not Hex/Tet/Quad/Tri/Edge. Please verify." << std::endl;
continue;
}
}
// If we get here then we've found the coordinates.
// Save them and the entity and return success.
entities.push_back( *iter );
nat_coords.push_back( tmp_nat_coords );
return MB_SUCCESS;
}
// Didn't find any elements containing the point
return MB_SUCCESS;
}
ErrorCode Coupler::interp_field( EntityHandle elem, CartVect nat_coord, Tag tag, double& field )
{
if( _spectralSource )
{
// Get tag values at the GL points for some field (Tag)
const double* vx;
ErrorCode rval = mbImpl->tag_get_by_ptr( tag, &elem, 1, (const void**)&vx );
if( moab::MB_SUCCESS != rval )
{
std::cout << "Can't get field values for the tag \n";
return MB_FAILURE;
}
Element::SpectralHex* spcHex = (Element::SpectralHex*)_spectralSource;
field = spcHex->evaluate_scalar_field( nat_coord, vx );
}
else
{
double vfields[27]; // Will work for linear hex, quadratic hex or Tets
moab::Element::Map* elemMap = NULL;
int num_verts = 0;
// Get the EntityType
// Get the tag values at the vertices
const EntityHandle* connect;
int num_connect;
ErrorCode result = mbImpl->get_connectivity( elem, connect, num_connect );
if( MB_SUCCESS != result ) return result;
EntityType etype = mbImpl->type_from_handle( elem );
if( MBHEX == etype )
{
if( 8 == num_connect )
{
elemMap = new moab::Element::LinearHex();
num_verts = 8;
}
else
{ /* (MBHEX == etype && 27 == num_connect) */
elemMap = new moab::Element::QuadraticHex();
num_verts = 27;
}
}
else if( MBTET == etype )
{
elemMap = new moab::Element::LinearTet();
num_verts = 4;
}
else if( MBQUAD == etype )
{
elemMap = new moab::Element::LinearQuad();
num_verts = 4;
}
else if( MBTRI == etype )
{
elemMap = new moab::Element::LinearTri();
num_verts = 3;
}
else
return MB_FAILURE;
result = mbImpl->tag_get_data( tag, connect, std::min( num_verts, num_connect ), vfields );
if( MB_SUCCESS != result )
{
delete elemMap;
return result;
}
// Function for the interpolation
field = 0;
// Check the number of vertices
assert( num_connect >= num_verts );
// Calculate the field
try
{
field = elemMap->evaluate_scalar_field( nat_coord, vfields );
}
catch( moab::Element::Map::EvaluationError& )
{
delete elemMap;
return MB_FAILURE;
}
delete elemMap;
}
return MB_SUCCESS;
}
// Simplest "interpolation" for element-based source fields. Set the value of the field
// at the target point to that of the field in the source element it lies in.
ErrorCode Coupler::constant_interp( EntityHandle elem, Tag tag, double& field )
{
double tempField;
// Get the tag values at the vertices
ErrorCode result = mbImpl->tag_get_data( tag, &elem, 1, &tempField );
if( MB_SUCCESS != result ) return result;
field = tempField;
return MB_SUCCESS;
}
// Normalize a field over the entire mesh represented by the root_set.
ErrorCode Coupler::normalize_mesh( EntityHandle root_set,
const char* norm_tag,
Coupler::IntegType integ_type,
int num_integ_pts )
{
ErrorCode err;
// SLAVE START ****************************************************************
// Search for entities based on tag_handles and tag_values
std::vector< std::vector< EntityHandle > > entity_sets;
std::vector< std::vector< EntityHandle > > entity_groups;
// put the root_set into entity_sets
std::vector< EntityHandle > ent_set;
ent_set.push_back( root_set );
entity_sets.push_back( ent_set );
// get all entities from root_set and put into entity_groups
std::vector< EntityHandle > entities;
err = mbImpl->get_entities_by_handle( root_set, entities, true );ERRORR( "Failed to get entities in root_set.", err );
entity_groups.push_back( entities );
// Call do_normalization() to continue common normalization processing
err = do_normalization( norm_tag, entity_sets, entity_groups, integ_type, num_integ_pts );ERRORR( "Failure in do_normalization().", err );
// SLAVE END ****************************************************************
return err;
}
// Normalize a field over the subset of entities identified by the tags and values passed
ErrorCode Coupler::normalize_subset( EntityHandle root_set,
const char* norm_tag,
const char** tag_names,
int num_tags,
const char** tag_values,
Coupler::IntegType integ_type,
int num_integ_pts )
{
moab::ErrorCode err;
std::vector< Tag > tag_handles;
// Lookup tag handles from tag names
for( int t = 0; t < num_tags; t++ )
{
// get tag handle & size
Tag th;
err = mbImpl->tag_get_handle( tag_names[t], 1, moab::MB_TYPE_DOUBLE, th, moab::MB_TAG_ANY );ERRORR( "Failed to get tag handle.", err );
tag_handles.push_back( th );
}
return normalize_subset( root_set, norm_tag, &tag_handles[0], num_tags, tag_values, integ_type, num_integ_pts );
}
ErrorCode Coupler::normalize_subset( EntityHandle root_set,
const char* norm_tag,
Tag* tag_handles,
int num_tags,
const char** tag_values,
Coupler::IntegType integ_type,
int num_integ_pts )
{
ErrorCode err;
// SLAVE START ****************************************************************
// Search for entities based on tag_handles and tag_values
std::vector< std::vector< EntityHandle > > entity_sets;
std::vector< std::vector< EntityHandle > > entity_groups;
err = get_matching_entities( root_set, tag_handles, tag_values, num_tags, &entity_sets, &entity_groups );ERRORR( "Failed to get matching entities.", err );
// Call do_normalization() to continue common normalization processing
err = do_normalization( norm_tag, entity_sets, entity_groups, integ_type, num_integ_pts );ERRORR( "Failure in do_normalization().", err );
// SLAVE END ****************************************************************
return err;
}
ErrorCode Coupler::do_normalization( const char* norm_tag,
std::vector< std::vector< EntityHandle > >& entity_sets,
std::vector< std::vector< EntityHandle > >& entity_groups,
Coupler::IntegType integ_type,
int num_integ_pts )
{
// SLAVE START ****************************************************************
ErrorCode err;
int ierr = 0;
// Setup data for parallel computing
int nprocs, rank;
ierr = MPI_Comm_size( MPI_COMM_WORLD, &nprocs );
ERRORMPI( "Getting number of procs failed.", ierr );
ierr = MPI_Comm_rank( MPI_COMM_WORLD, &rank );
ERRORMPI( "Getting rank failed.", ierr );
// Get the integrated field value for each group(vector) of entities.
// If no entities are in a group then a zero will be put in the list
// of return values.
unsigned int num_ent_grps = entity_groups.size();
std::vector< double > integ_vals( num_ent_grps );
err = get_group_integ_vals( entity_groups, integ_vals, norm_tag, num_integ_pts, integ_type );ERRORR( "Failed to get integrated field values for groups in mesh.", err );
// SLAVE END ****************************************************************
// SLAVE/MASTER START #########################################################
// Send list of integrated values back to master proc. The ordering of the
// values will match the ordering of the entity groups (i.e. vector of vectors)
// sent from master to slaves earlier. The values for each entity group will
// be summed during the transfer.
std::vector< double > sum_integ_vals( num_ent_grps );
if( nprocs > 1 )
{
// If parallel then send the values back to the master.
ierr = MPI_Reduce( &integ_vals[0], &sum_integ_vals[0], num_ent_grps, MPI_DOUBLE, MPI_SUM, MASTER_PROC,
myPc->proc_config().proc_comm() );
ERRORMPI( "Transfer and reduction of integrated values failed.", ierr );
}
else
{
// Otherwise just copy the vector
sum_integ_vals = integ_vals;
}
// SLAVE/MASTER END #########################################################
// MASTER START ***************************************************************
// Calculate the normalization factor for each group by taking the
// inverse of each integrated field value. Put the normalization factor
// for each group back into the list in the same order.
for( unsigned int i = 0; i < num_ent_grps; i++ )
{
double val = sum_integ_vals[i];
if( fabs( val ) > 1e-8 )
sum_integ_vals[i] = 1.0 / val;
else
{
sum_integ_vals[i] = 0.0; /* VSM: not sure what we should do here ? */
/* commenting out error below since if integral(value)=0.0, then normalization
is probably unnecessary to start with ? */
/* ERRORR("Integrating an invalid field -- integral("<<norm_tag<<") = "<<val<<".", err);
*/
}
}
// MASTER END ***************************************************************
// MASTER/SLAVE START #########################################################
if( nprocs > 1 )
{
// If parallel then broadcast the normalization factors to the procs.
ierr = MPI_Bcast( &sum_integ_vals[0], num_ent_grps, MPI_DOUBLE, MASTER_PROC, myPc->proc_config().proc_comm() );
ERRORMPI( "Broadcast of normalization factors failed.", ierr );
}
// MASTER/SLAVE END #########################################################
// SLAVE START ****************************************************************
// Save the normalization factors to a new tag with name of norm_tag's value
// and the string "_normF" appended. This new tag will be created on the entity
// set that contains all of the entities from a group.
err = apply_group_norm_factor( entity_sets, sum_integ_vals, norm_tag, integ_type );ERRORR( "Failed to set the normalization factor for groups in mesh.", err );
// SLAVE END ****************************************************************
return err;
}
// Functions supporting the subset normalization function
// Retrieve groups of entities matching tags and values if present
ErrorCode Coupler::get_matching_entities( EntityHandle root_set,
const char** tag_names,
const char** tag_values,
int num_tags,
std::vector< std::vector< EntityHandle > >* entity_sets,
std::vector< std::vector< EntityHandle > >* entity_groups )
{
ErrorCode err;
std::vector< Tag > tag_handles;
for( int t = 0; t < num_tags; t++ )
{
// Get tag handle & size
Tag th;
err = mbImpl->tag_get_handle( tag_names[t], 1, moab::MB_TYPE_DOUBLE, th, moab::MB_TAG_ANY );ERRORR( "Failed to get tag handle.", err );
tag_handles.push_back( th );
}
return get_matching_entities( root_set, &tag_handles[0], tag_values, num_tags, entity_sets, entity_groups );
}
// Retrieve groups of entities matching tags and values if present
ErrorCode Coupler::get_matching_entities( EntityHandle root_set,
Tag* tag_handles,
const char** tag_values,
int num_tags,
std::vector< std::vector< EntityHandle > >* entity_sets,
std::vector< std::vector< EntityHandle > >* entity_groups )
{
// SLAVE START ****************************************************************
// Setup data for parallel computing
ErrorCode err;
int ierr = 0;
int nprocs, rank;
ierr = MPI_Comm_size( MPI_COMM_WORLD, &nprocs );
ERRORMPI( "Getting number of procs failed.", ierr );
ierr = MPI_Comm_rank( MPI_COMM_WORLD, &rank );
ERRORMPI( "Getting rank failed.", ierr );
Range ent_sets;
err =
mbImpl->get_entities_by_type_and_tag( root_set, moab::MBENTITYSET, tag_handles, (const void* const*)tag_values,
num_tags, ent_sets, Interface::INTERSECT, false );ERRORR( "Core::get_entities_by_type_and_tag failed.", err );
TupleList* tag_list = NULL;
err = create_tuples( ent_sets, tag_handles, num_tags, &tag_list );ERRORR( "Failed to create tuples from entity sets.", err );
// Free up range
ent_sets.clear();
// SLAVE END ****************************************************************
// If we are running in a multi-proc session then send tuple list back to master
// proc for consolidation. Otherwise just copy the pointer to the tuple_list.
TupleList* cons_tuples;
if( nprocs > 1 )
{
// SLAVE/MASTER START #########################################################
// Pack the tuple_list in a buffer.
uint* tuple_buf;
int tuple_buf_len;
tuple_buf_len = pack_tuples( tag_list, (void**)&tuple_buf );
// Free tag_list here as its not used again if nprocs > 1
tag_list->reset();
// Send back the buffer sizes to the master proc
int* recv_cnts = (int*)malloc( nprocs * sizeof( int ) );
int* offsets = (int*)malloc( nprocs * sizeof( int ) );
uint* all_tuples_buf = NULL;
MPI_Gather( &tuple_buf_len, 1, MPI_INT, recv_cnts, 1, MPI_INT, MASTER_PROC, myPc->proc_config().proc_comm() );
ERRORMPI( "Gathering buffer sizes failed.", err );<--- Memory leak: offsets
// Allocate a buffer large enough for all the data
if( rank == MASTER_PROC )
{
int all_tuples_len = recv_cnts[0];
offsets[0] = 0;
for( int i = 1; i < nprocs; i++ )
{
offsets[i] = offsets[i - 1] + recv_cnts[i - 1];
all_tuples_len += recv_cnts[i];
}
all_tuples_buf = (uint*)malloc( all_tuples_len * sizeof( uint ) );
}
// Send all buffers to the master proc for consolidation
MPI_Gatherv( (void*)tuple_buf, tuple_buf_len, MPI_INT, (void*)all_tuples_buf, recv_cnts, offsets, MPI_INT,
MASTER_PROC, myPc->proc_config().proc_comm() );
ERRORMPI( "Gathering tuple_lists failed.", err );
free( tuple_buf ); // malloc'd in pack_tuples
if( rank == MASTER_PROC )
{
// Unpack the tuple_list from the buffer.
TupleList** tl_array = (TupleList**)malloc( nprocs * sizeof( TupleList* ) );
for( int i = 0; i < nprocs; i++ )
unpack_tuples( (void*)&all_tuples_buf[offsets[i]], &tl_array[i] );
// Free all_tuples_buf here as it is only allocated on the MASTER_PROC
free( all_tuples_buf );
// SLAVE/MASTER END #########################################################
// MASTER START ***************************************************************
// Consolidate all tuple_lists into one tuple_list with no duplicates.
err = consolidate_tuples( tl_array, nprocs, &cons_tuples );ERRORR( "Failed to consolidate tuples.", err );
for( int i = 0; i < nprocs; i++ )
tl_array[i]->reset();
free( tl_array );
// MASTER END ***************************************************************
}
// Free offsets and recv_cnts as they are allocated on all procs
free( offsets );
free( recv_cnts );
// MASTER/SLAVE START #########################################################
// Broadcast condensed tuple list back to all procs.
uint* ctl_buf;
int ctl_buf_sz;
if( rank == MASTER_PROC ) ctl_buf_sz = pack_tuples( cons_tuples, (void**)&ctl_buf );
// Send buffer size
ierr = MPI_Bcast( &ctl_buf_sz, 1, MPI_INT, MASTER_PROC, myPc->proc_config().proc_comm() );
ERRORMPI( "Broadcasting tuple_list size failed.", ierr );
// Allocate a buffer in the other procs
if( rank != MASTER_PROC ) ctl_buf = (uint*)malloc( ctl_buf_sz * sizeof( uint ) );
ierr = MPI_Bcast( (void*)ctl_buf, ctl_buf_sz, MPI_INT, MASTER_PROC, myPc->proc_config().proc_comm() );
ERRORMPI( "Broadcasting tuple_list failed.", ierr );
if( rank != MASTER_PROC ) unpack_tuples( ctl_buf, &cons_tuples );
free( ctl_buf );
// MASTER/SLAVE END #########################################################
}
else
cons_tuples = tag_list;
// SLAVE START ****************************************************************
// Loop over the tuple list getting the entities with the tags in the tuple_list entry
uint mi, ml, mul, mr;
cons_tuples->getTupleSize( mi, ml, mul, mr );
for( unsigned int i = 0; i < cons_tuples->get_n(); i++ )
{
// Get Entity Sets that match the tags and values.
// Convert the data in the tuple_list to an array of pointers to the data
// in the tuple_list as that is what the iMesh API call is expecting.
int** vals = (int**)malloc( mi * sizeof( int* ) );
for( unsigned int j = 0; j < mi; j++ )
vals[j] = (int*)&( cons_tuples->vi_rd[( i * mi ) + j] );
// Get entities recursively based on type and tag data
err = mbImpl->get_entities_by_type_and_tag( root_set, moab::MBENTITYSET, tag_handles, (const void* const*)vals,
mi, ent_sets, Interface::INTERSECT, false );ERRORR( "Core::get_entities_by_type_and_tag failed.", err );
if( debug ) std::cout << "ent_sets_size=" << ent_sets.size() << std::endl;
// Free up the array of pointers
free( vals );
// Loop over the entity sets and then free the memory for ent_sets.
std::vector< EntityHandle > ent_set_hdls;
std::vector< EntityHandle > ent_hdls;
for( unsigned int j = 0; j < ent_sets.size(); j++ )
{
// Save the entity set
ent_set_hdls.push_back( ent_sets[j] );
// Get all entities for the entity set
Range ents;
/* VSM: do we need to filter out entity sets ? */
err = mbImpl->get_entities_by_handle( ent_sets[j], ents, false );ERRORR( "Core::get_entities_by_handle failed.", err );
if( debug ) std::cout << "ents_size=" << ents.size() << std::endl;
// Save all of the entities from the entity set and free the memory for ents.
for( unsigned int k = 0; k < ents.size(); k++ )
{
ent_hdls.push_back( ents[k] );
}
ents.clear();
if( debug ) std::cout << "ent_hdls.size=" << ent_hdls.size() << std::endl;
}
// Free the entity set list for next tuple iteration.
ent_sets.clear();
// Push ent_set_hdls onto entity_sets, ent_hdls onto entity_groups
// and clear both ent_set_hdls and ent_hdls.
entity_sets->push_back( ent_set_hdls );
ent_set_hdls.clear();
entity_groups->push_back( ent_hdls );
ent_hdls.clear();
if( debug )
std::cout << "entity_sets->size=" << entity_sets->size()
<< ", entity_groups->size=" << entity_groups->size() << std::endl;
}
cons_tuples->reset();
// SLAVE END ****************************************************************
return err;
}
// Return a tuple_list containing tag values for each Entity Set
// The tuple_list will have a column for each tag and a row for each
// Entity Set. It is assumed all of the tags are integer tags.
ErrorCode Coupler::create_tuples( Range& ent_sets,
const char** tag_names,
unsigned int num_tags,
TupleList** tuple_list )
{
ErrorCode err;
std::vector< Tag > tag_handles;
for( unsigned int t = 0; t < num_tags; t++ )
{
// Get tag handle & size
Tag th;
err = mbImpl->tag_get_handle( tag_names[t], 1, moab::MB_TYPE_DOUBLE, th, moab::MB_TAG_ANY );ERRORR( "Failed to get tag handle.", err );
tag_handles.push_back( th );
}
return create_tuples( ent_sets, &tag_handles[0], num_tags, tuple_list );
}
// Return a tuple_list containing tag values for each Entity Set
// The tuple_list will have a column for each tag and a row for each
// Entity Set. It is assumed all of the tags are integer tags.
ErrorCode Coupler::create_tuples( Range& ent_sets, Tag* tag_handles, unsigned int num_tags, TupleList** tuples )
{
// ASSUMPTION: All tags are of type integer. This may need to be expanded in future.
ErrorCode err;
// Allocate a tuple_list for the number of entity sets passed in
TupleList* tag_tuples = new TupleList( num_tags, 0, 0, 0, (int)ent_sets.size() );
// tag_tuples->initialize(num_tags, 0, 0, 0, num_sets);
uint mi, ml, mul, mr;
tag_tuples->getTupleSize( mi, ml, mul, mr );
tag_tuples->enableWriteAccess();
if( mi == 0 ) ERRORR( "Failed to initialize tuple_list.", MB_FAILURE );
// Loop over the filtered entity sets retrieving each matching tag value one by one.
int val;
for( unsigned int i = 0; i < ent_sets.size(); i++ )
{
for( unsigned int j = 0; j < num_tags; j++ )
{
EntityHandle set_handle = ent_sets[i];
err = mbImpl->tag_get_data( tag_handles[j], &set_handle, 1, &val );ERRORR( "Failed to get integer tag data.", err );
tag_tuples->vi_wr[i * mi + j] = val;
}
// If we get here there was no error so increment n in the tuple_list
tag_tuples->inc_n();
}
tag_tuples->disableWriteAccess();
*tuples = tag_tuples;
return MB_SUCCESS;
}
// Consolidate tuple_lists into one list with no duplicates
ErrorCode Coupler::consolidate_tuples( TupleList** all_tuples, unsigned int num_tuples, TupleList** unique_tuples )
{
int total_rcv_tuples = 0;
int offset = 0, copysz = 0;<--- Variable 'copysz' is assigned a value that is never used.
unsigned num_tags = 0;
uint ml, mul, mr;
uint* mi = (uint*)malloc( sizeof( uint ) * num_tuples );
for( unsigned int i = 0; i < num_tuples; i++ )
{
all_tuples[i]->getTupleSize( mi[i], ml, mul, mr );
}
for( unsigned int i = 0; i < num_tuples; i++ )
{
if( all_tuples[i] != NULL )
{
total_rcv_tuples += all_tuples[i]->get_n();
num_tags = mi[i];
}
}
const unsigned int_size = sizeof( sint );
const unsigned int_width = num_tags * int_size;
// Get the total size of all of the tuple_lists in all_tuples.
for( unsigned int i = 0; i < num_tuples; i++ )
{
if( all_tuples[i] != NULL ) total_rcv_tuples += all_tuples[i]->get_n();
}
// Copy the tuple_lists into a single tuple_list.
TupleList* all_tuples_list = new TupleList( num_tags, 0, 0, 0, total_rcv_tuples );
all_tuples_list->enableWriteAccess();
// all_tuples_list->initialize(num_tags, 0, 0, 0, total_rcv_tuples);
for( unsigned int i = 0; i < num_tuples; i++ )
{
if( all_tuples[i] != NULL )
{
copysz = all_tuples[i]->get_n() * int_width;
memcpy( all_tuples_list->vi_wr + offset, all_tuples[i]->vi_rd, copysz );
offset = offset + ( all_tuples[i]->get_n() * mi[i] );
all_tuples_list->set_n( all_tuples_list->get_n() + all_tuples[i]->get_n() );
}
}
// Sort the new tuple_list. Use a radix type sort, starting with the last (or least significant)
// tag column in the vi array and working towards the first (or most significant) tag column.
TupleList::buffer sort_buffer;
sort_buffer.buffer_init( 2 * total_rcv_tuples * int_width );
for( int i = num_tags - 1; i >= 0; i-- )
{
all_tuples_list->sort( i, &sort_buffer );
}
// Cycle through the sorted list eliminating duplicates.
// Keep counters to the current end of the tuple_list (w/out dups) and the last tuple examined.
unsigned int end_idx = 0, last_idx = 1;
while( last_idx < all_tuples_list->get_n() )
{
if( memcmp( all_tuples_list->vi_rd + ( end_idx * num_tags ), all_tuples_list->vi_rd + ( last_idx * num_tags ),
int_width ) == 0 )
{
// Values equal - skip
last_idx += 1;
}
else
{
// Values different - copy
// Move up the end index
end_idx += 1;
memcpy( all_tuples_list->vi_wr + ( end_idx * num_tags ), all_tuples_list->vi_rd + ( last_idx * num_tags ),
int_width );
last_idx += 1;
}
}
// Update the count in all_tuples_list
all_tuples_list->set_n( end_idx + 1 );
// Resize the tuple_list
all_tuples_list->resize( all_tuples_list->get_n() );
// Set the output parameter
*unique_tuples = all_tuples_list;
return MB_SUCCESS;
}
// Calculate integrated field values for groups of entities
ErrorCode Coupler::get_group_integ_vals( std::vector< std::vector< EntityHandle > >& groups,
std::vector< double >& integ_vals,
const char* norm_tag,
int /*num_integ_vals*/,
Coupler::IntegType integ_type )
{
ErrorCode err;
std::vector< std::vector< EntityHandle > >::iterator iter_i;
std::vector< EntityHandle >::iterator iter_j;
double grp_intrgr_val, intgr_val;<--- The scope of the variable 'grp_intrgr_val' can be reduced. [+]The scope of the variable 'grp_intrgr_val' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
// Get the tag handle for norm_tag
Tag norm_hdl;
err =
mbImpl->tag_get_handle( norm_tag, 1, moab::MB_TYPE_DOUBLE, norm_hdl, moab::MB_TAG_SPARSE | moab::MB_TAG_CREAT );ERRORR( "Failed to get norm_tag handle.", err );
// Check size of integ_vals vector
if( integ_vals.size() != groups.size() ) integ_vals.resize( groups.size() );
// Loop over the groups(vectors) of entities
unsigned int i;
for( i = 0, iter_i = groups.begin(); iter_i != groups.end(); i++, ++iter_i )
{
grp_intrgr_val = 0;
// Loop over the all the entities in the group, integrating
// the field_fn over the entity in iter_j
for( iter_j = ( *iter_i ).begin(); iter_j != ( *iter_i ).end(); ++iter_j )
{
EntityHandle ehandle = ( *iter_j );
// Check that the entity in iter_j is of the same dimension as the
// integ_type we are performing
EntityType j_type;
j_type = mbImpl->type_from_handle( ehandle );ERRORR( "Failed to get entity type.", err );
// Skip any entities in the group that are not of the type being considered
if( ( integ_type == VOLUME ) && ( j_type < MBTET || j_type >= MBENTITYSET ) ) continue;
intgr_val = 0;
// Retrieve the vertices from the element
const EntityHandle* verts = NULL;
int connectivity_size = 0;
err = mbImpl->get_connectivity( ehandle, verts, connectivity_size, false );ERRORR( "Failed to get vertices from entity.", err );
// Get the vertex coordinates and the field values at the vertices.
double* coords = (double*)malloc( sizeof( double ) * ( 3 * connectivity_size ) );
/* TODO: VSM: check if this works for lower dimensions also without problems */
/* if (3 == geom_dim) */
err = mbImpl->get_coords( verts, connectivity_size, coords );ERRORR( "Failed to get vertex coordinates.", err );
/* allocate the field data array */
double* vfield = (double*)malloc( sizeof( double ) * ( connectivity_size ) );
err = mbImpl->tag_get_data( norm_hdl, verts, connectivity_size, vfield );
if( MB_SUCCESS != err )
{
free( coords );
}
ERRORR( "Failed to get vertex coordinates.", err );
// Get coordinates of all corner vertices (in normal order) and
// put in array of CartVec.
std::vector< CartVect > vertices( connectivity_size );
// Put the vertices into a CartVect vector
double* x = coords;
for( int j = 0; j < connectivity_size; j++, x += 3 )
{
vertices[j] = CartVect( x );
}
free( coords );
moab::Element::Map* elemMap;
if( j_type == MBHEX )
{
if( connectivity_size == 8 )
elemMap = new moab::Element::LinearHex( vertices );
else
elemMap = new moab::Element::QuadraticHex( vertices );
}
else if( j_type == MBTET )
{
elemMap = new moab::Element::LinearTet( vertices );
}
else if( j_type == MBQUAD )
{
elemMap = new moab::Element::LinearQuad( vertices );
}
/*
else if (j_type == MBTRI) {
elemMap = new moab::Element::LinearTri(vertices);
}
*/
else if( j_type == MBEDGE )
{
elemMap = new moab::Element::LinearEdge( vertices );
}
else
ERRORR( "Unknown topology type.", MB_UNSUPPORTED_OPERATION );
// Set the vertices in the Map and perform the integration
try
{
/* VSM: Do we need this call ?? */
// elemMap->set_vertices(vertices);
// Perform the actual integration over the element
intgr_val = elemMap->integrate_scalar_field( vfield );<--- Uninitialized variable: elemMap
// Combine the result with those of the group
grp_intrgr_val += intgr_val;
}
catch( moab::Element::Map::ArgError& )
{
std::cerr << "Failed to set vertices on Element::Map." << std::endl;
}
catch( moab::Element::Map::EvaluationError& )
{
std::cerr << "Failed to get inverse evaluation of coordinate on Element::Map." << std::endl;
}
delete( elemMap );
free( vfield );
}
// Set the group integrated value in the vector
integ_vals[i] = grp_intrgr_val;
}
return err;
}
// Apply a normalization factor to group of entities
ErrorCode Coupler::apply_group_norm_factor( std::vector< std::vector< EntityHandle > >& entity_sets,
std::vector< double >& norm_factors,
const char* norm_tag,
Coupler::IntegType /*integ_type*/ )
{
ErrorCode err;
// Construct the new tag for the normalization factor from the norm_tag name
// and "_normf".
int norm_tag_len = strlen( norm_tag );
const char* normf_appd = "_normf";
int normf_appd_len = strlen( normf_appd );
char* normf_tag = (char*)malloc( norm_tag_len + normf_appd_len + 1 );
char* tmp_ptr = normf_tag;
memcpy( tmp_ptr, norm_tag, norm_tag_len );
tmp_ptr += norm_tag_len;
memcpy( tmp_ptr, normf_appd, normf_appd_len );
tmp_ptr += normf_appd_len;
*tmp_ptr = '\0';
Tag normf_hdl;
// Check to see if the tag exists. If not then create it and get the handle.
err = mbImpl->tag_get_handle( normf_tag, 1, moab::MB_TYPE_DOUBLE, normf_hdl,
moab::MB_TAG_SPARSE | moab::MB_TAG_CREAT );ERRORR( "Failed to create normalization factor tag.", err );
if( normf_hdl == NULL )
{
std::string msg( "Failed to create normalization factor tag named '" );
msg += std::string( normf_tag ) + std::string( "'" );ERRORR( msg.c_str(), MB_FAILURE );
}
free( normf_tag );
std::vector< std::vector< EntityHandle > >::iterator iter_i;
std::vector< EntityHandle >::iterator iter_j;
std::vector< double >::iterator iter_f;
double grp_norm_factor = 0.0;<--- Variable 'grp_norm_factor' is assigned a value that is never used.
// Loop over the entity sets
for( iter_i = entity_sets.begin(), iter_f = norm_factors.begin();
( iter_i != entity_sets.end() ) && ( iter_f != norm_factors.end() ); ++iter_i, ++iter_f )
{
grp_norm_factor = *iter_f;
// Loop over the all the entity sets in iter_i and set the
// new normf_tag with the norm factor value on each
for( iter_j = ( *iter_i ).begin(); iter_j != ( *iter_i ).end(); ++iter_j )
{
EntityHandle entset = *iter_j;
std::cout << "Coupler: applying normalization for entity set=" << entset
<< ", normalization_factor=" << grp_norm_factor << std::endl;
err = mbImpl->tag_set_data( normf_hdl, &entset, 1, &grp_norm_factor );ERRORR( "Failed to set normalization factor on entity set.", err );
}
}
return MB_SUCCESS;
}
#define UINT_PER_X( X ) ( ( sizeof( X ) + sizeof( uint ) - 1 ) / sizeof( uint ) )
#define UINT_PER_REAL UINT_PER_X( realType )
#define UINT_PER_LONG UINT_PER_X( slong )
#define UINT_PER_UNSIGNED UINT_PER_X( unsigned )
// Function for packing tuple_list. Returns number of uints copied into buffer.
int pack_tuples( TupleList* tl, void** ptr )
{
uint mi, ml, mul, mr;
tl->getTupleSize( mi, ml, mul, mr );
uint n = tl->get_n();
int sz_buf = 1 + 4 * UINT_PER_UNSIGNED +
tl->get_n() * ( mi + ml * UINT_PER_LONG + mul * UINT_PER_LONG + mr * UINT_PER_REAL );
uint* buf = (uint*)malloc( sz_buf * sizeof( uint ) );
*ptr = (void*)buf;
// Copy n
memcpy( buf, &n, sizeof( uint ) ), buf += 1;
// Copy mi
memcpy( buf, &mi, sizeof( unsigned ) ), buf += UINT_PER_UNSIGNED;
// Copy ml
memcpy( buf, &ml, sizeof( unsigned ) ), buf += UINT_PER_UNSIGNED;
// Copy mul
memcpy( buf, &mul, sizeof( unsigned ) ), buf += UINT_PER_UNSIGNED;
// Copy mr
memcpy( buf, &mr, sizeof( unsigned ) ), buf += UINT_PER_UNSIGNED;
// Copy vi_wr
memcpy( buf, tl->vi_rd, tl->get_n() * mi * sizeof( sint ) ), buf += tl->get_n() * mi;
// Copy vl_wr
memcpy( buf, tl->vl_rd, tl->get_n() * ml * sizeof( slong ) ), buf += tl->get_n() * ml * UINT_PER_LONG;
// Copy vul_wr
memcpy( buf, tl->vul_rd, tl->get_n() * mul * sizeof( ulong ) ), buf += tl->get_n() * mul * UINT_PER_LONG;
// Copy vr_wr
memcpy( buf, tl->vr_rd, tl->get_n() * mr * sizeof( realType ) ), buf += tl->get_n() * mr * UINT_PER_REAL;
return sz_buf;<--- Memory leak: buf
}
// Function for packing tuple_list
void unpack_tuples( void* ptr, TupleList** tlp )
{
TupleList* tl = new TupleList();
*tlp = tl;
uint nt;
unsigned mit, mlt, mult, mrt;
uint* buf = (uint*)ptr;
// Get n
memcpy( &nt, buf, sizeof( uint ) ), buf += 1;
// Get mi
memcpy( &mit, buf, sizeof( unsigned ) ), buf += UINT_PER_UNSIGNED;
// Get ml
memcpy( &mlt, buf, sizeof( unsigned ) ), buf += UINT_PER_UNSIGNED;
// Get mul
memcpy( &mult, buf, sizeof( unsigned ) ), buf += UINT_PER_UNSIGNED;
// Get mr
memcpy( &mrt, buf, sizeof( unsigned ) ), buf += UINT_PER_UNSIGNED;
// Initialize tl
tl->initialize( mit, mlt, mult, mrt, nt );
tl->enableWriteAccess();
tl->set_n( nt );
uint mi, ml, mul, mr;
tl->getTupleSize( mi, ml, mul, mr );
// Get vi_rd
memcpy( tl->vi_wr, buf, tl->get_n() * mi * sizeof( sint ) ), buf += tl->get_n() * mi;
// Get vl_rd
memcpy( tl->vl_wr, buf, tl->get_n() * ml * sizeof( slong ) ), buf += tl->get_n() * ml * UINT_PER_LONG;
// Get vul_rd
memcpy( tl->vul_wr, buf, tl->get_n() * mul * sizeof( ulong ) ), buf += tl->get_n() * mul * UINT_PER_LONG;
// Get vr_rd
memcpy( tl->vr_wr, buf, tl->get_n() * mr * sizeof( realType ) ), buf += tl->get_n() * mr * UINT_PER_REAL;
tl->disableWriteAccess();
return;
}
ErrorCode Coupler::get_gl_points_on_elements( Range& targ_elems, std::vector< double >& vpos, int& numPointsOfInterest )
{
numPointsOfInterest = targ_elems.size() * _ntot;
vpos.resize( 3 * numPointsOfInterest );
int ielem = 0;
for( Range::iterator eit = targ_elems.begin(); eit != targ_elems.end(); ++eit, ielem += _ntot * 3 )
{
EntityHandle eh = *eit;
const double* xval;
const double* yval;
const double* zval;
ErrorCode rval = mbImpl->tag_get_by_ptr( _xm1Tag, &eh, 1, (const void**)&xval );
if( moab::MB_SUCCESS != rval )
{
std::cout << "Can't get xm1 values \n";
return MB_FAILURE;
}
rval = mbImpl->tag_get_by_ptr( _ym1Tag, &eh, 1, (const void**)&yval );
if( moab::MB_SUCCESS != rval )
{
std::cout << "Can't get ym1 values \n";
return MB_FAILURE;
}
rval = mbImpl->tag_get_by_ptr( _zm1Tag, &eh, 1, (const void**)&zval );
if( moab::MB_SUCCESS != rval )
{
std::cout << "Can't get zm1 values \n";
return MB_FAILURE;
}
// Now, in a stride, populate vpos
for( int i = 0; i < _ntot; i++ )
{
vpos[ielem + 3 * i] = xval[i];
vpos[ielem + 3 * i + 1] = yval[i];
vpos[ielem + 3 * i + 2] = zval[i];
}
}
return MB_SUCCESS;
}
} // namespace moab
|