1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
#include <iostream>
#include <limits>
#include <cassert>

#include "ElemUtil.hpp"
#include "moab/BoundBox.hpp"

namespace moab
{
namespace ElemUtil
{

    bool debug = false;

    /**\brief Class representing a 3-D mapping function (e.g. shape function for volume element) */
    class VolMap
    {
      public:
        /**\brief Return \f$\vec \xi\f$ corresponding to logical center of element */
        virtual CartVect center_xi() const = 0;<--- Virtual function in base class
        /**\brief Evaluate mapping function (calculate \f$\vec x = F($\vec \xi)\f$ )*/
        virtual CartVect evaluate( const CartVect& xi ) const = 0;<--- Virtual function in base class
        /**\brief Evaluate Jacobian of mapping function */
        virtual Matrix3 jacobian( const CartVect& xi ) const = 0;<--- Virtual function in base class
        /**\brief Evaluate inverse of mapping function (calculate \f$\vec \xi = F^-1($\vec x)\f$ )*/
        bool solve_inverse( const CartVect& x, CartVect& xi, double tol ) const;
    };

    bool VolMap::solve_inverse( const CartVect& x, CartVect& xi, double tol ) const
    {
        const double error_tol_sqr = tol * tol;
        double det;
        xi             = center_xi();
        CartVect delta = evaluate( xi ) - x;
        Matrix3 J;
        while( delta % delta > error_tol_sqr )
        {
            J   = jacobian( xi );
            det = J.determinant();
            if( det < std::numeric_limits< double >::epsilon() ) return false;
            xi -= J.inverse() * delta;
            delta = evaluate( xi ) - x;
        }
        return true;
    }

    /**\brief Shape function for trilinear hexahedron */
    class LinearHexMap : public VolMap
    {
      public:
        LinearHexMap( const CartVect* corner_coords ) : corners( corner_coords ) {}
        virtual CartVect center_xi() const;<--- Function in derived class
        virtual CartVect evaluate( const CartVect& xi ) const;<--- Function in derived class
        virtual double evaluate_scalar_field( const CartVect& xi, const double* f_vals ) const;
        virtual Matrix3 jacobian( const CartVect& xi ) const;<--- Function in derived class

      private:
        const CartVect* corners;
        static const double corner_xi[8][3];
    };

    const double LinearHexMap::corner_xi[8][3] = { { -1, -1, -1 }, { 1, -1, -1 }, { 1, 1, -1 }, { -1, 1, -1 },
                                                   { -1, -1, 1 },  { 1, -1, 1 },  { 1, 1, 1 },  { -1, 1, 1 } };
    CartVect LinearHexMap::center_xi() const
    {
        return CartVect( 0.0 );
    }

    CartVect LinearHexMap::evaluate( const CartVect& xi ) const
    {
        CartVect x( 0.0 );
        for( unsigned i = 0; i < 8; ++i )
        {
            const double N_i =
                ( 1 + xi[0] * corner_xi[i][0] ) * ( 1 + xi[1] * corner_xi[i][1] ) * ( 1 + xi[2] * corner_xi[i][2] );
            x += N_i * corners[i];
        }
        x *= 0.125;
        return x;
    }

    double LinearHexMap::evaluate_scalar_field( const CartVect& xi, const double* f_vals ) const
    {
        double f( 0.0 );
        for( unsigned i = 0; i < 8; ++i )
        {
            const double N_i =
                ( 1 + xi[0] * corner_xi[i][0] ) * ( 1 + xi[1] * corner_xi[i][1] ) * ( 1 + xi[2] * corner_xi[i][2] );
            f += N_i * f_vals[i];
        }
        f *= 0.125;
        return f;
    }

    Matrix3 LinearHexMap::jacobian( const CartVect& xi ) const
    {
        Matrix3 J( 0.0 );
        for( unsigned i = 0; i < 8; ++i )
        {
            const double xi_p      = 1 + xi[0] * corner_xi[i][0];
            const double eta_p     = 1 + xi[1] * corner_xi[i][1];
            const double zeta_p    = 1 + xi[2] * corner_xi[i][2];
            const double dNi_dxi   = corner_xi[i][0] * eta_p * zeta_p;
            const double dNi_deta  = corner_xi[i][1] * xi_p * zeta_p;
            const double dNi_dzeta = corner_xi[i][2] * xi_p * eta_p;
            J( 0, 0 ) += dNi_dxi * corners[i][0];
            J( 1, 0 ) += dNi_dxi * corners[i][1];
            J( 2, 0 ) += dNi_dxi * corners[i][2];
            J( 0, 1 ) += dNi_deta * corners[i][0];
            J( 1, 1 ) += dNi_deta * corners[i][1];
            J( 2, 1 ) += dNi_deta * corners[i][2];
            J( 0, 2 ) += dNi_dzeta * corners[i][0];
            J( 1, 2 ) += dNi_dzeta * corners[i][1];
            J( 2, 2 ) += dNi_dzeta * corners[i][2];
        }
        return J *= 0.125;
    }

    bool nat_coords_trilinear_hex( const CartVect* corner_coords, const CartVect& x, CartVect& xi, double tol )
    {
        return LinearHexMap( corner_coords ).solve_inverse( x, xi, tol );
    }
    //
    // nat_coords_trilinear_hex2
    //  Duplicate functionality of nat_coords_trilinear_hex using hex_findpt
    //
    void nat_coords_trilinear_hex2( const CartVect hex[8], const CartVect& xyz, CartVect& ncoords, double etol )<--- The function 'nat_coords_trilinear_hex2' is never used.

    {
        const int ndim            = 3;
        const int nverts          = 8;
        const int vertMap[nverts] = { 0, 1, 3, 2, 4, 5, 7, 6 };  // Map from nat to lex ordering

        const int n = 2;                 // linear
        realType coords[ndim * nverts];  // buffer

        realType* xm[ndim];
        for( int i = 0; i < ndim; i++ )
            xm[i] = coords + i * nverts;

        // stuff hex into coords
        for( int i = 0; i < nverts; i++ )
        {
            realType vcoord[ndim];
            hex[i].get( vcoord );

            for( int d = 0; d < ndim; d++ )
                coords[d * nverts + vertMap[i]] = vcoord[d];
        }

        double dist = 0.0;
        ElemUtil::hex_findpt( xm, n, xyz, ncoords, dist );
        if( 3 * MOAB_POLY_EPS < dist )
        {
            // outside element, set extremal values to something outside range
            for( int j = 0; j < 3; j++ )
            {
                if( ncoords[j] < ( -1.0 - etol ) || ncoords[j] > ( 1.0 + etol ) ) ncoords[j] *= 10;
            }
        }
    }
    bool point_in_trilinear_hex( const CartVect* hex, const CartVect& xyz, double etol )
    {
        CartVect xi;
        return nat_coords_trilinear_hex( hex, xyz, xi, etol ) && ( fabs( xi[0] - 1.0 ) < etol ) &&
               ( fabs( xi[1] - 1.0 ) < etol ) && ( fabs( xi[2] - 1.0 ) < etol );
    }

    bool point_in_trilinear_hex( const CartVect* hex,
                                 const CartVect& xyz,
                                 const CartVect& box_min,
                                 const CartVect& box_max,
                                 double etol )
    {
        // all values scaled by 2 (eliminates 3 flops)
        const CartVect mid = box_max + box_min;
        const CartVect dim = box_max - box_min;
        const CartVect pt  = 2 * xyz - mid;
        return ( fabs( pt[0] - dim[0] ) < etol ) && ( fabs( pt[1] - dim[1] ) < etol ) &&
               ( fabs( pt[2] - dim[2] ) < etol ) && point_in_trilinear_hex( hex, xyz, etol );
    }

    // Wrapper to James Lottes' findpt routines
    // hex_findpt
    // Find the parametric coordinates of an xyz point inside
    // a 3d hex spectral element with n nodes per dimension
    // xm: coordinates fields, value of x,y,z for each of then n*n*n gauss-lobatto nodes. Nodes are
    // in lexicographical order (x is fastest-changing) n: number of nodes per dimension -- n=2 for
    // a linear element xyz: input, point to find rst: output: parametric coords of xyz inside the
    // element. If xyz is outside the element, rst will be the coords of the closest point dist:
    // output: distance between xyz and the point with parametric coords rst
    /*extern "C"{
    #include "types.h"
    #include "poly.h"
    #include "tensor.h"
    #include "findpt.h"
    #include "extrafindpt.h"
    #include "errmem.h"
    }*/

    void hex_findpt( realType* xm[3], int n, CartVect xyz, CartVect& rst, double& dist )
    {

        // compute stuff that only depends on the order -- could be cached
        realType* z[3];
        lagrange_data ld[3];
        opt_data_3 data;

        // triplicates
        for( int d = 0; d < 3; d++ )
        {
            z[d] = tmalloc( realType, n );
            lobatto_nodes( z[d], n );
            lagrange_setup( &ld[d], z[d], n );
        }

        opt_alloc_3( &data, ld );

        // find nearest point
        realType x_star[3];
        xyz.get( x_star );

        realType r[3] = { 0, 0, 0 };  // initial guess for parametric coords
        unsigned c    = opt_no_constraints_3;
        dist          = opt_findpt_3( &data, (const realType**)xm, x_star, r, &c );
        // c tells us if we landed inside the element or exactly on a face, edge, or node

        // copy parametric coords back
        rst = r;

        // Clean-up (move to destructor if we decide to cache)
        opt_free_3( &data );
        for( int d = 0; d < 3; ++d )
            lagrange_free( &ld[d] );
        for( int d = 0; d < 3; ++d )
            free( z[d] );
    }

    // hex_eval
    // Evaluate a field in a 3d hex spectral element with n nodes per dimension, at some given
    // parametric coordinates field: field values for each of then n*n*n gauss-lobatto nodes. Nodes
    // are in lexicographical order (x is fastest-changing) n: number of nodes per dimension -- n=2
    // for a linear element rst: input: parametric coords of the point where we want to evaluate the
    // field value: output: value of field at rst

    void hex_eval( realType* field, int n, CartVect rstCartVec, double& value )<--- The function 'hex_eval' is never used.
    {
        int d;
        realType rst[3];
        rstCartVec.get( rst );

        // can cache stuff below
        lagrange_data ld[3];
        realType* z[3];
        for( d = 0; d < 3; ++d )
        {
            z[d] = tmalloc( realType, n );
            lobatto_nodes( z[d], n );
            lagrange_setup( &ld[d], z[d], n );
        }

        // cut and paste -- see findpt.c
        const unsigned nf = n * n, ne = n, nw = 2 * n * n + 3 * n;
        realType* od_work = tmalloc( realType, 6 * nf + 9 * ne + nw );

        // piece that we shouldn't want to cache
        for( d = 0; d < 3; d++ )
        {
            lagrange_0( &ld[d], rst[d] );
        }

        value = tensor_i3( ld[0].J, ld[0].n, ld[1].J, ld[1].n, ld[2].J, ld[2].n, field, od_work );

        // all this could be cached
        for( d = 0; d < 3; d++ )
        {
            free( z[d] );
            lagrange_free( &ld[d] );
        }
        free( od_work );
    }

    // Gaussian quadrature points for a trilinear hex element.
    // Five 2d arrays are defined.
    // One for the single gaussian point solution, 2 point solution,
    // 3 point solution, 4 point solution and 5 point solution.
    // There are 2 columns, one for Weights and the other for Locations
    //                                Weight         Location

    const double gauss_1[1][2] = { { 2.0, 0.0 } };

    const double gauss_2[2][2] = { { 1.0, -0.5773502691 }, { 1.0, 0.5773502691 } };

    const double gauss_3[3][2] = { { 0.5555555555, -0.7745966692 },
                                   { 0.8888888888, 0.0 },
                                   { 0.5555555555, 0.7745966692 } };

    const double gauss_4[4][2] = { { 0.3478548451, -0.8611363116 },
                                   { 0.6521451549, -0.3399810436 },
                                   { 0.6521451549, 0.3399810436 },
                                   { 0.3478548451, 0.8611363116 } };

    const double gauss_5[5][2] = { { 0.2369268851, -0.9061798459 },
                                   { 0.4786286705, -0.5384693101 },
                                   { 0.5688888889, 0.0 },
                                   { 0.4786286705, 0.5384693101 },
                                   { 0.2369268851, 0.9061798459 } };

    // Function to integrate the field defined by field_fn function
    // over the volume of the trilinear hex defined by the hex_corners

    bool integrate_trilinear_hex( const CartVect* hex_corners, double* corner_fields, double& field_val, int num_pts )<--- The function 'integrate_trilinear_hex' is never used.
    {
        // Create the LinearHexMap object using the hex_corners array of CartVects
        LinearHexMap hex( hex_corners );

        // Use the correct table of points and locations based on the num_pts parameter
        const double( *g_pts )[2] = 0;
        switch( num_pts )
        {
            case 1:
                g_pts = gauss_1;
                break;

            case 2:
                g_pts = gauss_2;
                break;

            case 3:
                g_pts = gauss_3;
                break;

            case 4:
                g_pts = gauss_4;
                break;

            case 5:
                g_pts = gauss_5;
                break;

            default:  // value out of range
                return false;
        }

        // Test code - print Gaussian Quadrature data
        if( debug )
        {
            for( int r = 0; r < num_pts; r++ )
                for( int c = 0; c < 2; c++ )
                    std::cout << "g_pts[" << r << "][" << c << "]=" << g_pts[r][c] << std::endl;
        }
        // End Test code

        double soln = 0.0;

        for( int i = 0; i < num_pts; i++ )
        {  // Loop for xi direction
            double w_i  = g_pts[i][0];
            double xi_i = g_pts[i][1];
            for( int j = 0; j < num_pts; j++ )
            {  // Loop for eta direction
                double w_j   = g_pts[j][0];
                double eta_j = g_pts[j][1];
                for( int k = 0; k < num_pts; k++ )
                {  // Loop for zeta direction
                    double w_k    = g_pts[k][0];
                    double zeta_k = g_pts[k][1];

                    // Calculate the "realType" space point given the "normal" point
                    CartVect normal_pt( xi_i, eta_j, zeta_k );

                    // Calculate the value of F(x(xi,eta,zeta),y(xi,eta,zeta),z(xi,eta,zeta)
                    double field = hex.evaluate_scalar_field( normal_pt, corner_fields );

                    // Calculate the Jacobian for this "normal" point and its determinant
                    Matrix3 J  = hex.jacobian( normal_pt );
                    double det = J.determinant();

                    // Calculate integral and update the solution
                    soln = soln + ( w_i * w_j * w_k * field * det );
                }
            }
        }

        // Set the output parameter
        field_val = soln;

        return true;
    }

}  // namespace ElemUtil

namespace Element
{

    Map::~Map() {}

    inline const std::vector< CartVect >& Map::get_vertices()
    {
        return this->vertex;
    }
    //
    void Map::set_vertices( const std::vector< CartVect >& v )
    {
        if( v.size() != this->vertex.size() )
        {
            throw ArgError();
        }
        this->vertex = v;
    }

    bool Map::inside_box( const CartVect& xi, double& tol ) const
    {
        // bail out early, before doing an expensive NR iteration
        // compute box
        BoundBox box( this->vertex );
        return box.contains_point( xi.array(), tol );
    }

    //
    CartVect Map::ievaluate( const CartVect& x, double tol, const CartVect& x0 ) const
    {
        // TODO: should differentiate between epsilons used for
        // Newton Raphson iteration, and epsilons used for curved boundary geometry errors
        // right now, fix the tolerance used for NR
        tol                        = 1.0e-10;
        const double error_tol_sqr = tol * tol;
        double det;
        CartVect xi    = x0;
        CartVect delta = evaluate( xi ) - x;
        Matrix3 J;

        int iters = 0;
        while( delta % delta > error_tol_sqr )
        {
            if( ++iters > 10 ) throw Map::EvaluationError( x, vertex );

            J   = jacobian( xi );
            det = J.determinant();
            if( det < std::numeric_limits< double >::epsilon() ) throw Map::EvaluationError( x, vertex );
            xi -= J.inverse() * delta;
            delta = evaluate( xi ) - x;
        }
        return xi;
    }  // Map::ievaluate()

    SphericalQuad::SphericalQuad( const std::vector< CartVect >& vertices ) : LinearQuad( vertices )
    {
        // project the vertices to the plane tangent at first vertex
        v1          = vertex[0];  // member data
        double v1v1 = v1 % v1;    // this is 1, in general, for unit sphere meshes
        for( int j = 1; j < 4; j++ )
        {
            // first, bring all vertices in the gnomonic plane
            //  the new vertex will intersect the plane at vnew
            //   so that (vnew-v1)%v1 is 0 ( vnew is in the tangent plane, i.e. normal to v1 )
            // pos is the old position of the vertex, and it is in general on the sphere
            // vnew = alfa*pos;  (alfa*pos-v1)%v1 = 0  <=> alfa*(pos%v1)=v1%v1 <=> alfa =
            // v1v1/(pos%v1)
            //  <=> vnew = ( v1v1/(pos%v1) )*pos
            CartVect vnew = v1v1 / ( vertex[j] % v1 ) * vertex[j];
            vertex[j]     = vnew;
        }
        // will compute a transf matrix, such that a new point will be transformed with
        // newpos =  transf * (vnew-v1), and it will be a point in the 2d plane
        // the transformation matrix will be oriented in such a way that orientation will be
        // positive
        CartVect vx = vertex[1] - v1;  // this will become Ox axis
        // z axis will be along v1, in such a way that orientation of the quad is positive
        // look at the first 2 edges
        CartVect vz = vx * ( vertex[2] - vertex[1] );
        vz          = vz / vz.length();

        vx = vx / vx.length();

        CartVect vy = vz * vx;
        transf      = Matrix3( vx[0], vx[1], vx[2], vy[0], vy[1], vy[2], vz[0], vz[1], vz[2] );
        vertex[0]   = CartVect( 0. );
        for( int j = 1; j < 4; j++ )
            vertex[j] = transf * ( vertex[j] - v1 );
    }

    CartVect SphericalQuad::ievaluate( const CartVect& x, double tol, const CartVect& x0 ) const
    {
        // project to the plane tangent at first vertex (gnomonic projection)
        double v1v1   = v1 % v1;
        CartVect vnew = v1v1 / ( x % v1 ) * x;  // so that (vnew-v1)%v1 is 0
        vnew          = transf * ( vnew - v1 );
        // det will be positive now
        return Map::ievaluate( vnew, tol, x0 );
    }

    bool SphericalQuad::inside_box( const CartVect& pos, double& tol ) const
    {
        // project to the plane tangent at first vertex
        // CartVect v1=vertex[0];
        double v1v1   = v1 % v1;
        CartVect vnew = v1v1 / ( pos % v1 ) * pos;  // so that (x-v1)%v1 is 0
        vnew          = transf * ( vnew - v1 );
        return Map::inside_box( vnew, tol );
    }

    const double LinearTri::corner[3][3] = { { 0, 0, 0 }, { 1, 0, 0 }, { 0, 1, 0 } };

    LinearTri::LinearTri() : Map( 0 ), det_T( 0.0 ), det_T_inverse( 0.0 ) {}  // LinearTri::LinearTri()

    LinearTri::~LinearTri() {}

    void LinearTri::set_vertices( const std::vector< CartVect >& v )
    {
        this->Map::set_vertices( v );
        this->T             = Matrix3( v[1][0] - v[0][0], v[2][0] - v[0][0], 0, v[1][1] - v[0][1], v[2][1] - v[0][1], 0,
                                       v[1][2] - v[0][2], v[2][2] - v[0][2], 1 );
        this->T_inverse     = this->T.inverse();
        this->det_T         = this->T.determinant();
        this->det_T_inverse = ( this->det_T < 1e-12 ? std::numeric_limits< double >::max() : 1.0 / this->det_T );
    }  // LinearTri::set_vertices()

    bool LinearTri::inside_nat_space( const CartVect& xi, double& tol ) const
    {
        // linear tri space is a triangle with vertices (0,0,0), (1,0,0), (0,1,0)
        // first check if outside bigger box, then below the line x+y=1
        return ( xi[0] >= -tol ) && ( xi[1] >= -tol ) && ( xi[2] >= -tol ) && ( xi[2] <= tol ) &&
               ( xi[0] + xi[1] < 1.0 + tol );
    }
    CartVect LinearTri::ievaluate( const CartVect& x, double /*tol*/, const CartVect& /*x0*/ ) const
    {
        return this->T_inverse * ( x - this->vertex[0] );
    }  // LinearTri::ievaluate

    double LinearTri::evaluate_scalar_field( const CartVect& xi, const double* field_vertex_value ) const
    {
        double f0 = field_vertex_value[0];
        double f  = f0;
        for( unsigned i = 1; i < 3; ++i )
        {
            f += ( field_vertex_value[i] - f0 ) * xi[i - 1];
        }
        return f;
    }  // LinearTri::evaluate_scalar_field()

    double LinearTri::integrate_scalar_field( const double* field_vertex_values ) const
    {
        double I( 0.0 );
        for( unsigned int i = 0; i < 3; ++i )
        {
            I += field_vertex_values[i];
        }
        I *= this->det_T / 6.0;  // TODO
        return I;
    }  // LinearTri::integrate_scalar_field()

    SphericalTri::SphericalTri( const std::vector< CartVect >& vertices )
    {
        vertex.resize( vertices.size() );
        vertex = vertices;
        // project the vertices to the plane tangent at first vertex
        v1          = vertex[0];  // member data
        double v1v1 = v1 % v1;    // this is 1, in general, for unit sphere meshes
        for( int j = 1; j < 3; j++ )
        {
            // first, bring all vertices in the gnomonic plane
            //  the new vertex will intersect the plane at vnew
            //   so that (vnew-v1)%v1 is 0 ( vnew is in the tangent plane, i.e. normal to v1 )
            // pos is the old position of the vertex, and it is in general on the sphere
            // vnew = alfa*pos;  (alfa*pos-v1)%v1 = 0  <=> alfa*(pos%v1)=v1%v1 <=> alfa =
            // v1v1/(pos%v1)
            //  <=> vnew = ( v1v1/(pos%v1) )*pos
            CartVect vnew = v1v1 / ( vertex[j] % v1 ) * vertex[j];
            vertex[j]     = vnew;
        }
        // will compute a transf matrix, such that a new point will be transformed with
        // newpos =  transf * (vnew-v1), and it will be a point in the 2d plane
        // the transformation matrix will be oriented in such a way that orientation will be
        // positive
        CartVect vx = vertex[1] - v1;  // this will become Ox axis
        // z axis will be along v1, in such a way that orientation of the quad is positive
        // look at the first 2 edges
        CartVect vz = vx * ( vertex[2] - vertex[1] );
        vz          = vz / vz.length();

        vx = vx / vx.length();

        CartVect vy = vz * vx;
        transf      = Matrix3( vx[0], vx[1], vx[2], vy[0], vy[1], vy[2], vz[0], vz[1], vz[2] );
        vertex[0]   = CartVect( 0. );
        for( int j = 1; j < 3; j++ )
            vertex[j] = transf * ( vertex[j] - v1 );

        LinearTri::set_vertices( vertex );
    }

    CartVect SphericalTri::ievaluate( const CartVect& x, double /*tol*/, const CartVect& /*x0*/ ) const
    {
        // project to the plane tangent at first vertex (gnomonic projection)
        double v1v1   = v1 % v1;
        CartVect vnew = v1v1 / ( x % v1 ) * x;  // so that (vnew-v1)%v1 is 0
        vnew          = transf * ( vnew - v1 );
        // det will be positive now
        return LinearTri::ievaluate( vnew );
    }

    bool SphericalTri::inside_box( const CartVect& pos, double& tol ) const
    {
        // project to the plane tangent at first vertex
        // CartVect v1=vertex[0];
        double v1v1   = v1 % v1;
        CartVect vnew = v1v1 / ( pos % v1 ) * pos;  // so that (x-v1)%v1 is 0
        vnew          = transf * ( vnew - v1 );
        return Map::inside_box( vnew, tol );
    }

    // filescope for static member data that is cached
    const double LinearEdge::corner[2][3] = { { -1, 0, 0 }, { 1, 0, 0 } };

    LinearEdge::LinearEdge() : Map( 0 ) {}  // LinearEdge::LinearEdge()

    /* For each point, its weight and location are stored as an array.
       Hence, the inner dimension is 2, the outer dimension is gauss_count.
       We use a one-point Gaussian quadrature, since it integrates linear functions exactly.
    */
    const double LinearEdge::gauss[1][2] = { { 2.0, 0.0 } };

    CartVect LinearEdge::evaluate( const CartVect& xi ) const
    {
        CartVect x( 0.0 );
        for( unsigned i = 0; i < LinearEdge::corner_count; ++i )
        {
            const double N_i = ( 1.0 + xi[0] * corner[i][0] );
            x += N_i * this->vertex[i];
        }
        x /= LinearEdge::corner_count;
        return x;
    }  // LinearEdge::evaluate

    Matrix3 LinearEdge::jacobian( const CartVect& xi ) const
    {
        Matrix3 J( 0.0 );
        for( unsigned i = 0; i < LinearEdge::corner_count; ++i )
        {
            const double xi_p    = 1.0 + xi[0] * corner[i][0];
            const double dNi_dxi = corner[i][0] * xi_p;
            J( 0, 0 ) += dNi_dxi * vertex[i][0];
        }
        J( 1, 1 ) = 1.0; /* to make sure the Jacobian determinant is non-zero */
        J( 2, 2 ) = 1.0; /* to make sure the Jacobian determinant is non-zero */
        J /= LinearEdge::corner_count;
        return J;
    }  // LinearEdge::jacobian()

    double LinearEdge::evaluate_scalar_field( const CartVect& xi, const double* field_vertex_value ) const
    {
        double f( 0.0 );
        for( unsigned i = 0; i < LinearEdge::corner_count; ++i )
        {
            const double N_i = ( 1 + xi[0] * corner[i][0] ) * ( 1.0 + xi[1] * corner[i][1] );
            f += N_i * field_vertex_value[i];
        }
        f /= LinearEdge::corner_count;
        return f;
    }  // LinearEdge::evaluate_scalar_field()

    double LinearEdge::integrate_scalar_field( const double* field_vertex_values ) const
    {
        double I( 0.0 );
        for( unsigned int j1 = 0; j1 < this->gauss_count; ++j1 )
        {
            double x1 = this->gauss[j1][1];
            double w1 = this->gauss[j1][0];
            CartVect x( x1, 0.0, 0.0 );
            I += this->evaluate_scalar_field( x, field_vertex_values ) * w1 * this->det_jacobian( x );
        }
        return I;
    }  // LinearEdge::integrate_scalar_field()

    bool LinearEdge::inside_nat_space( const CartVect& xi, double& tol ) const
    {
        // just look at the box+tol here
        return ( xi[0] >= -1. - tol ) && ( xi[0] <= 1. + tol );
    }

    const double LinearHex::corner[8][3] = { { -1, -1, -1 }, { 1, -1, -1 }, { 1, 1, -1 }, { -1, 1, -1 },
                                             { -1, -1, 1 },  { 1, -1, 1 },  { 1, 1, 1 },  { -1, 1, 1 } };

    LinearHex::LinearHex() : Map( 0 ) {}  // LinearHex::LinearHex()

    LinearHex::~LinearHex() {}
    /* For each point, its weight and location are stored as an array.
       Hence, the inner dimension is 2, the outer dimension is gauss_count.
       We use a one-point Gaussian quadrature, since it integrates linear functions exactly.
    */
    // const double LinearHex::gauss[1][2] = { {  2.0,           0.0          } };
    const double LinearHex::gauss[2][2] = { { 1.0, -0.5773502691 }, { 1.0, 0.5773502691 } };
    // const double LinearHex::gauss[4][2] = { {  0.3478548451, -0.8611363116 },
    //                             {  0.6521451549, -0.3399810436 },
    //                             {  0.6521451549,  0.3399810436 },
    //                             {  0.3478548451,  0.8611363116 } };

    CartVect LinearHex::evaluate( const CartVect& xi ) const
    {
        CartVect x( 0.0 );
        for( unsigned i = 0; i < 8; ++i )
        {
            const double N_i =
                ( 1 + xi[0] * corner[i][0] ) * ( 1 + xi[1] * corner[i][1] ) * ( 1 + xi[2] * corner[i][2] );
            x += N_i * this->vertex[i];
        }
        x *= 0.125;
        return x;
    }  // LinearHex::evaluate

    Matrix3 LinearHex::jacobian( const CartVect& xi ) const
    {
        Matrix3 J( 0.0 );
        for( unsigned i = 0; i < 8; ++i )
        {
            const double xi_p      = 1 + xi[0] * corner[i][0];
            const double eta_p     = 1 + xi[1] * corner[i][1];
            const double zeta_p    = 1 + xi[2] * corner[i][2];
            const double dNi_dxi   = corner[i][0] * eta_p * zeta_p;
            const double dNi_deta  = corner[i][1] * xi_p * zeta_p;
            const double dNi_dzeta = corner[i][2] * xi_p * eta_p;
            J( 0, 0 ) += dNi_dxi * vertex[i][0];
            J( 1, 0 ) += dNi_dxi * vertex[i][1];
            J( 2, 0 ) += dNi_dxi * vertex[i][2];
            J( 0, 1 ) += dNi_deta * vertex[i][0];
            J( 1, 1 ) += dNi_deta * vertex[i][1];
            J( 2, 1 ) += dNi_deta * vertex[i][2];
            J( 0, 2 ) += dNi_dzeta * vertex[i][0];
            J( 1, 2 ) += dNi_dzeta * vertex[i][1];
            J( 2, 2 ) += dNi_dzeta * vertex[i][2];
        }
        return J *= 0.125;
    }  // LinearHex::jacobian()

    double LinearHex::evaluate_scalar_field( const CartVect& xi, const double* field_vertex_value ) const
    {
        double f( 0.0 );
        for( unsigned i = 0; i < 8; ++i )
        {
            const double N_i =
                ( 1 + xi[0] * corner[i][0] ) * ( 1 + xi[1] * corner[i][1] ) * ( 1 + xi[2] * corner[i][2] );
            f += N_i * field_vertex_value[i];
        }
        f *= 0.125;
        return f;
    }  // LinearHex::evaluate_scalar_field()

    double LinearHex::integrate_scalar_field( const double* field_vertex_values ) const
    {
        double I( 0.0 );
        for( unsigned int j1 = 0; j1 < this->gauss_count; ++j1 )
        {
            double x1 = this->gauss[j1][1];
            double w1 = this->gauss[j1][0];
            for( unsigned int j2 = 0; j2 < this->gauss_count; ++j2 )
            {
                double x2 = this->gauss[j2][1];
                double w2 = this->gauss[j2][0];
                for( unsigned int j3 = 0; j3 < this->gauss_count; ++j3 )
                {
                    double x3 = this->gauss[j3][1];
                    double w3 = this->gauss[j3][0];
                    CartVect x( x1, x2, x3 );
                    I += this->evaluate_scalar_field( x, field_vertex_values ) * w1 * w2 * w3 * this->det_jacobian( x );
                }
            }
        }
        return I;
    }  // LinearHex::integrate_scalar_field()

    bool LinearHex::inside_nat_space( const CartVect& xi, double& tol ) const
    {
        // just look at the box+tol here
        return ( xi[0] >= -1. - tol ) && ( xi[0] <= 1. + tol ) && ( xi[1] >= -1. - tol ) && ( xi[1] <= 1. + tol ) &&
               ( xi[2] >= -1. - tol ) && ( xi[2] <= 1. + tol );
    }

    // those are not just the corners, but for simplicity, keep this name
    //
    const int QuadraticHex::corner[27][3] = {
        { -1, -1, -1 }, { 1, -1, -1 }, { 1, 1, -1 },  // corner nodes: 0-7
        { -1, 1, -1 },                                // mid-edge nodes: 8-19
        { -1, -1, 1 },                                // center-face nodes 20-25  center node  26
        { 1, -1, 1 },                                 //
        { 1, 1, 1 },    { -1, 1, 1 },                 //                    4   ----- 19   -----  7
        { 0, -1, -1 },                                //                .   |                 .   |
        { 1, 0, -1 },                                 //            16         25         18      |
        { 0, 1, -1 },                                 //         .          |          .          |
        { -1, 0, -1 },                                //      5   ----- 17   -----  6             |
        { -1, -1, 0 },                                //      |            12       | 23         15
        { 1, -1, 0 },                                 //      |                     |             |
        { 1, 1, 0 },                                  //      |     20      |  26   |     22      |
        { -1, 1, 0 },                                 //      |                     |             |
        { 0, -1, 1 },                                 //     13         21  |      14             |
        { 1, 0, 1 },                                  //      |             0   ----- 11   -----  3
        { 0, 1, 1 },                                  //      |         .           |         .
        { -1, 0, 1 },                                 //      |      8         24   |     10
        { 0, -1, 0 },                                 //      |  .                  |  .
        { 1, 0, 0 },                                  //      1   -----  9   -----  2
        { 0, 1, 0 },                                  //
        { -1, 0, 0 },   { 0, 0, -1 },  { 0, 0, 1 },  { 0, 0, 0 } };
    // QuadraticHex::QuadraticHex(const std::vector<CartVect>& vertices) : Map(vertices){};
    QuadraticHex::QuadraticHex() : Map( 0 ) {}

    QuadraticHex::~QuadraticHex() {}
    double SH( const int i, const double xi )
    {
        switch( i )
        {
            case -1:
                return ( xi * xi - xi ) / 2;
            case 0:
                return 1 - xi * xi;
            case 1:
                return ( xi * xi + xi ) / 2;
            default:
                return 0.;
        }
    }
    double DSH( const int i, const double xi )
    {
        switch( i )
        {
            case -1:
                return xi - 0.5;
            case 0:
                return -2 * xi;
            case 1:
                return xi + 0.5;
            default:
                return 0.;
        }
    }

    CartVect QuadraticHex::evaluate( const CartVect& xi ) const
    {

        CartVect x( 0.0 );
        for( int i = 0; i < 27; i++ )
        {
            const double sh = SH( corner[i][0], xi[0] ) * SH( corner[i][1], xi[1] ) * SH( corner[i][2], xi[2] );
            x += sh * vertex[i];
        }

        return x;
    }

    bool QuadraticHex::inside_nat_space( const CartVect& xi, double& tol ) const
    {  // just look at the box+tol here
        return ( xi[0] >= -1. - tol ) && ( xi[0] <= 1. + tol ) && ( xi[1] >= -1. - tol ) && ( xi[1] <= 1. + tol ) &&
               ( xi[2] >= -1. - tol ) && ( xi[2] <= 1. + tol );
    }

    Matrix3 QuadraticHex::jacobian( const CartVect& xi ) const
    {
        Matrix3 J( 0.0 );
        for( int i = 0; i < 27; i++ )
        {
            const double sh[3]  = { SH( corner[i][0], xi[0] ), SH( corner[i][1], xi[1] ), SH( corner[i][2], xi[2] ) };
            const double dsh[3] = { DSH( corner[i][0], xi[0] ), DSH( corner[i][1], xi[1] ),
                                    DSH( corner[i][2], xi[2] ) };

            for( int j = 0; j < 3; j++ )
            {
                J( j, 0 ) += dsh[0] * sh[1] * sh[2] * vertex[i][j];  // dxj/dr first column
                J( j, 1 ) += sh[0] * dsh[1] * sh[2] * vertex[i][j];  // dxj/ds
                J( j, 2 ) += sh[0] * sh[1] * dsh[2] * vertex[i][j];  // dxj/dt
            }
        }

        return J;
    }
    double QuadraticHex::evaluate_scalar_field( const CartVect& xi, const double* field_vertex_values ) const
    {
        double x = 0.0;
        for( int i = 0; i < 27; i++ )
        {
            const double sh = SH( corner[i][0], xi[0] ) * SH( corner[i][1], xi[1] ) * SH( corner[i][2], xi[2] );
            x += sh * field_vertex_values[i];
        }

        return x;
    }
    double QuadraticHex::integrate_scalar_field( const double* /*field_vertex_values*/ ) const
    {
        return 0.;  // TODO: gaussian integration , probably 2x2x2
    }

    const double LinearTet::corner[4][3] = { { 0, 0, 0 }, { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } };

    LinearTet::LinearTet() : Map( 0 ), det_T( 0.0 ), det_T_inverse( 0.0 ) {}  // LinearTet::LinearTet()

    LinearTet::~LinearTet() {}

    void LinearTet::set_vertices( const std::vector< CartVect >& v )
    {
        this->Map::set_vertices( v );
        this->T =
            Matrix3( v[1][0] - v[0][0], v[2][0] - v[0][0], v[3][0] - v[0][0], v[1][1] - v[0][1], v[2][1] - v[0][1],
                     v[3][1] - v[0][1], v[1][2] - v[0][2], v[2][2] - v[0][2], v[3][2] - v[0][2] );
        this->T_inverse     = this->T.inverse();
        this->det_T         = this->T.determinant();
        this->det_T_inverse = ( this->det_T < 1e-12 ? std::numeric_limits< double >::max() : 1.0 / this->det_T );
    }  // LinearTet::set_vertices()

    double LinearTet::evaluate_scalar_field( const CartVect& xi, const double* field_vertex_value ) const
    {
        double f0 = field_vertex_value[0];
        double f  = f0;
        for( unsigned i = 1; i < 4; ++i )
        {
            f += ( field_vertex_value[i] - f0 ) * xi[i - 1];
        }
        return f;
    }  // LinearTet::evaluate_scalar_field()

    CartVect LinearTet::ievaluate( const CartVect& x, double /*tol*/, const CartVect& /*x0*/ ) const
    {
        return this->T_inverse * ( x - this->vertex[0] );
    }  // LinearTet::ievaluate

    double LinearTet::integrate_scalar_field( const double* field_vertex_values ) const
    {
        double I( 0.0 );
        for( unsigned int i = 0; i < 4; ++i )
        {
            I += field_vertex_values[i];
        }
        I *= this->det_T / 24.0;
        return I;
    }  // LinearTet::integrate_scalar_field()
    bool LinearTet::inside_nat_space( const CartVect& xi, double& tol ) const
    {
        // linear tet space is a tetra with vertices (0,0,0), (1,0,0), (0,1,0), (0, 0, 1)
        // first check if outside bigger box, then below the plane x+y+z=1
        return ( xi[0] >= -tol ) && ( xi[1] >= -tol ) && ( xi[2] >= -tol ) && ( xi[0] + xi[1] + xi[2] < 1.0 + tol );
    }
    // SpectralHex

    // filescope for static member data that is cached
    int SpectralHex::_n;
    realType* SpectralHex::_z[3];
    lagrange_data SpectralHex::_ld[3];
    opt_data_3 SpectralHex::_data;
    realType* SpectralHex::_odwork;

    bool SpectralHex::_init = false;

    SpectralHex::SpectralHex() : Map( 0 )
    {
        _xyz[0] = _xyz[1] = _xyz[2] = NULL;
    }
    // the preferred constructor takes pointers to GL blocked positions
    SpectralHex::SpectralHex( int order, double* x, double* y, double* z ) : Map( 0 )
    {
        Init( order );
        _xyz[0] = x;
        _xyz[1] = y;
        _xyz[2] = z;
    }
    SpectralHex::SpectralHex( int order ) : Map( 0 )
    {
        Init( order );
        _xyz[0] = _xyz[1] = _xyz[2] = NULL;
    }
    SpectralHex::~SpectralHex()
    {
        if( _init ) freedata();
        _init = false;
    }
    void SpectralHex::Init( int order )
    {
        if( _init && _n == order ) return;
        if( _init && _n != order )
        {
            // TODO: free data cached
            freedata();
        }
        // compute stuff that depends only on order
        _init = true;
        _n    = order;
        // triplicates! n is the same in all directions !!!
        for( int d = 0; d < 3; d++ )
        {
            _z[d] = tmalloc( realType, _n );
            lobatto_nodes( _z[d], _n );
            lagrange_setup( &_ld[d], _z[d], _n );
        }
        opt_alloc_3( &_data, _ld );

        unsigned int nf = _n * _n, ne = _n, nw = 2 * _n * _n + 3 * _n;
        _odwork = tmalloc( realType, 6 * nf + 9 * ne + nw );
    }
    void SpectralHex::freedata()
    {
        for( int d = 0; d < 3; d++ )
        {
            free( _z[d] );
            lagrange_free( &_ld[d] );
        }
        opt_free_3( &_data );
        free( _odwork );
    }

    void SpectralHex::set_gl_points( double* x, double* y, double* z )
    {
        _xyz[0] = x;
        _xyz[1] = y;
        _xyz[2] = z;
    }
    CartVect SpectralHex::evaluate( const CartVect& xi ) const
    {
        // piece that we shouldn't want to cache
        int d = 0;
        for( d = 0; d < 3; d++ )
        {
            lagrange_0( &_ld[d], xi[d] );
        }
        CartVect result;
        for( d = 0; d < 3; d++ )
        {
            result[d] = tensor_i3( _ld[0].J, _ld[0].n, _ld[1].J, _ld[1].n, _ld[2].J, _ld[2].n,
                                   _xyz[d],  // this is the "field"
                                   _odwork );
        }
        return result;
    }
    // replicate the functionality of hex_findpt
    CartVect SpectralHex::ievaluate( CartVect const& xyz, double tol, const CartVect& x0 ) const
    {
        // find nearest point
        realType x_star[3];
        xyz.get( x_star );

        realType r[3] = { 0, 0, 0 };  // initial guess for parametric coords
        x0.get( r );
        unsigned c    = opt_no_constraints_3;
        realType dist = opt_findpt_3( &_data, (const realType**)_xyz, x_star, r, &c );
        // if it did not converge, get out with throw...
        if( dist > 10 * tol )  // outside the element
        {
            std::vector< CartVect > dummy;
            throw Map::EvaluationError( xyz, dummy );
        }
        // c tells us if we landed inside the element or exactly on a face, edge, or node
        // also, dist shows the distance to the computed point.
        // copy parametric coords back
        return CartVect( r );
    }
    Matrix3 SpectralHex::jacobian( const CartVect& xi ) const
    {
        realType x_i[3];
        xi.get( x_i );
        // set the positions of GL nodes, before evaluations
        _data.elx[0] = _xyz[0];
        _data.elx[1] = _xyz[1];
        _data.elx[2] = _xyz[2];
        opt_vol_set_intp_3( &_data, x_i );
        Matrix3 J( 0. );
        // it is organized differently
        J( 0, 0 ) = _data.jac[0];  // dx/dr
        J( 0, 1 ) = _data.jac[1];  // dx/ds
        J( 0, 2 ) = _data.jac[2];  // dx/dt
        J( 1, 0 ) = _data.jac[3];  // dy/dr
        J( 1, 1 ) = _data.jac[4];  // dy/ds
        J( 1, 2 ) = _data.jac[5];  // dy/dt
        J( 2, 0 ) = _data.jac[6];  // dz/dr
        J( 2, 1 ) = _data.jac[7];  // dz/ds
        J( 2, 2 ) = _data.jac[8];  // dz/dt
        return J;
    }
    double SpectralHex::evaluate_scalar_field( const CartVect& xi, const double* field ) const
    {
        // piece that we shouldn't want to cache
        int d;
        for( d = 0; d < 3; d++ )
        {
            lagrange_0( &_ld[d], xi[d] );
        }

        double value = tensor_i3( _ld[0].J, _ld[0].n, _ld[1].J, _ld[1].n, _ld[2].J, _ld[2].n, field, _odwork );
        return value;
    }
    double SpectralHex::integrate_scalar_field( const double* field_vertex_values ) const
    {
        // set the position of GL points
        // set the positions of GL nodes, before evaluations
        _data.elx[0] = _xyz[0];
        _data.elx[1] = _xyz[1];
        _data.elx[2] = _xyz[2];
        double xi[3];
        // triple loop; the most inner loop is in r direction, then s, then t
        double integral = 0.;
        // double volume = 0;
        int index = 0;  // used fr the inner loop
        for( int k = 0; k < _n; k++ )
        {
            xi[2] = _ld[2].z[k];
            // double wk= _ld[2].w[k];
            for( int j = 0; j < _n; j++ )
            {
                xi[1] = _ld[1].z[j];
                // double wj= _ld[1].w[j];
                for( int i = 0; i < _n; i++ )
                {
                    xi[0] = _ld[0].z[i];
                    // double wi= _ld[0].w[i];
                    opt_vol_set_intp_3( &_data, xi );
                    double wk = _ld[2].J[k];
                    double wj = _ld[1].J[j];
                    double wi = _ld[0].J[i];
                    Matrix3 J( 0. );
                    // it is organized differently
                    J( 0, 0 ) = _data.jac[0];  // dx/dr
                    J( 0, 1 ) = _data.jac[1];  // dx/ds
                    J( 0, 2 ) = _data.jac[2];  // dx/dt
                    J( 1, 0 ) = _data.jac[3];  // dy/dr
                    J( 1, 1 ) = _data.jac[4];  // dy/ds
                    J( 1, 2 ) = _data.jac[5];  // dy/dt
                    J( 2, 0 ) = _data.jac[6];  // dz/dr
                    J( 2, 1 ) = _data.jac[7];  // dz/ds
                    J( 2, 2 ) = _data.jac[8];  // dz/dt
                    double bm = wk * wj * wi * J.determinant();
                    integral += bm * field_vertex_values[index++];
                    // volume +=bm;
                }
            }
        }
        // std::cout << "volume: " << volume << "\n";
        return integral;
    }
    // this is the same as a linear hex, although we should not need it
    bool SpectralHex::inside_nat_space( const CartVect& xi, double& tol ) const
    {
        // just look at the box+tol here
        return ( xi[0] >= -1. - tol ) && ( xi[0] <= 1. + tol ) && ( xi[1] >= -1. - tol ) && ( xi[1] <= 1. + tol ) &&
               ( xi[2] >= -1. - tol ) && ( xi[2] <= 1. + tol );
    }

    // SpectralHex

    // filescope for static member data that is cached
    const double LinearQuad::corner[4][3] = { { -1, -1, 0 }, { 1, -1, 0 }, { 1, 1, 0 }, { -1, 1, 0 } };

    LinearQuad::LinearQuad() : Map( 0 ) {}  // LinearQuad::LinearQuad()

    LinearQuad::~LinearQuad() {}

    /* For each point, its weight and location are stored as an array.
       Hence, the inner dimension is 2, the outer dimension is gauss_count.
       We use a one-point Gaussian quadrature, since it integrates linear functions exactly.
    */
    const double LinearQuad::gauss[1][2] = { { 2.0, 0.0 } };

    CartVect LinearQuad::evaluate( const CartVect& xi ) const
    {
        CartVect x( 0.0 );
        for( unsigned i = 0; i < LinearQuad::corner_count; ++i )
        {
            const double N_i = ( 1 + xi[0] * corner[i][0] ) * ( 1 + xi[1] * corner[i][1] );
            x += N_i * this->vertex[i];
        }
        x /= LinearQuad::corner_count;
        return x;
    }  // LinearQuad::evaluate

    Matrix3 LinearQuad::jacobian( const CartVect& xi ) const
    {
        // this basically ignores the z component: xi[2] or vertex[][2]
        Matrix3 J( 0.0 );
        for( unsigned i = 0; i < LinearQuad::corner_count; ++i )
        {
            const double xi_p     = 1 + xi[0] * corner[i][0];
            const double eta_p    = 1 + xi[1] * corner[i][1];
            const double dNi_dxi  = corner[i][0] * eta_p;
            const double dNi_deta = corner[i][1] * xi_p;
            J( 0, 0 ) += dNi_dxi * vertex[i][0];
            J( 1, 0 ) += dNi_dxi * vertex[i][1];
            J( 0, 1 ) += dNi_deta * vertex[i][0];
            J( 1, 1 ) += dNi_deta * vertex[i][1];
        }
        J( 2, 2 ) = 1.0; /* to make sure the Jacobian determinant is non-zero */
        J /= LinearQuad::corner_count;
        return J;
    }  // LinearQuad::jacobian()

    double LinearQuad::evaluate_scalar_field( const CartVect& xi, const double* field_vertex_value ) const
    {
        double f( 0.0 );
        for( unsigned i = 0; i < LinearQuad::corner_count; ++i )
        {
            const double N_i = ( 1 + xi[0] * corner[i][0] ) * ( 1 + xi[1] * corner[i][1] );
            f += N_i * field_vertex_value[i];
        }
        f /= LinearQuad::corner_count;
        return f;
    }  // LinearQuad::evaluate_scalar_field()

    double LinearQuad::integrate_scalar_field( const double* field_vertex_values ) const
    {
        double I( 0.0 );
        for( unsigned int j1 = 0; j1 < this->gauss_count; ++j1 )
        {
            double x1 = this->gauss[j1][1];
            double w1 = this->gauss[j1][0];
            for( unsigned int j2 = 0; j2 < this->gauss_count; ++j2 )
            {
                double x2 = this->gauss[j2][1];
                double w2 = this->gauss[j2][0];
                CartVect x( x1, x2, 0.0 );
                I += this->evaluate_scalar_field( x, field_vertex_values ) * w1 * w2 * this->det_jacobian( x );
            }
        }
        return I;
    }  // LinearQuad::integrate_scalar_field()

    bool LinearQuad::inside_nat_space( const CartVect& xi, double& tol ) const
    {
        // just look at the box+tol here
        return ( xi[0] >= -1. - tol ) && ( xi[0] <= 1. + tol ) && ( xi[1] >= -1. - tol ) && ( xi[1] <= 1. + tol );
    }

    // filescope for static member data that is cached
    int SpectralQuad::_n;
    realType* SpectralQuad::_z[2];
    lagrange_data SpectralQuad::_ld[2];
    opt_data_2 SpectralQuad::_data;
    realType* SpectralQuad::_odwork;
    realType* SpectralQuad::_glpoints;
    bool SpectralQuad::_init = false;

    SpectralQuad::SpectralQuad() : Map( 0 )
    {
        _xyz[0] = _xyz[1] = _xyz[2] = NULL;
    }
    // the preferred constructor takes pointers to GL blocked positions
    SpectralQuad::SpectralQuad( int order, double* x, double* y, double* z ) : Map( 0 )
    {
        Init( order );
        _xyz[0] = x;
        _xyz[1] = y;
        _xyz[2] = z;
    }
    SpectralQuad::SpectralQuad( int order ) : Map( 4 )
    {
        Init( order );
        _xyz[0] = _xyz[1] = _xyz[2] = NULL;
    }
    SpectralQuad::~SpectralQuad()
    {
        if( _init ) freedata();
        _init = false;
    }
    void SpectralQuad::Init( int order )
    {
        if( _init && _n == order ) return;
        if( _init && _n != order )
        {
            // TODO: free data cached
            freedata();
        }
        // compute stuff that depends only on order
        _init = true;
        _n    = order;
        // duplicates! n is the same in all directions !!!
        for( int d = 0; d < 2; d++ )
        {
            _z[d] = tmalloc( realType, _n );
            lobatto_nodes( _z[d], _n );
            lagrange_setup( &_ld[d], _z[d], _n );
        }
        opt_alloc_2( &_data, _ld );

        unsigned int nf = _n * _n, ne = _n, nw = 2 * _n * _n + 3 * _n;
        _odwork   = tmalloc( realType, 6 * nf + 9 * ne + nw );
        _glpoints = tmalloc( realType, 3 * nf );
    }

    void SpectralQuad::freedata()
    {
        for( int d = 0; d < 2; d++ )
        {
            free( _z[d] );
            lagrange_free( &_ld[d] );
        }
        opt_free_2( &_data );
        free( _odwork );
        free( _glpoints );
    }

    void SpectralQuad::set_gl_points( double* x, double* y, double* z )
    {
        _xyz[0] = x;
        _xyz[1] = y;
        _xyz[2] = z;
    }
    CartVect SpectralQuad::evaluate( const CartVect& xi ) const
    {
        // piece that we shouldn't want to cache
        int d = 0;
        for( d = 0; d < 2; d++ )
        {
            lagrange_0( &_ld[d], xi[d] );
        }
        CartVect result;
        for( d = 0; d < 3; d++ )
        {
            result[d] = tensor_i2( _ld[0].J, _ld[0].n, _ld[1].J, _ld[1].n, _xyz[d], _odwork );
        }
        return result;
    }
    // replicate the functionality of hex_findpt
    CartVect SpectralQuad::ievaluate( CartVect const& xyz, double /*tol*/, const CartVect& /*x0*/ ) const
    {
        // find nearest point
        realType x_star[3];
        xyz.get( x_star );

        realType r[2] = { 0, 0 };  // initial guess for parametric coords
        unsigned c    = opt_no_constraints_3;
        realType dist = opt_findpt_2( &_data, (const realType**)_xyz, x_star, r, &c );
        // if it did not converge, get out with throw...
        if( dist > 0.9e+30 )
        {
            std::vector< CartVect > dummy;
            throw Map::EvaluationError( xyz, dummy );
        }

        // c tells us if we landed inside the element or exactly on a face, edge, or node
        // also, dist shows the distance to the computed point.
        // copy parametric coords back
        return CartVect( r[0], r[1], 0. );
    }

    Matrix3 SpectralQuad::jacobian( const CartVect& /*xi*/ ) const
    {
        // not implemented
        Matrix3 J( 0. );
        return J;
    }

    double SpectralQuad::evaluate_scalar_field( const CartVect& xi, const double* field ) const
    {
        // piece that we shouldn't want to cache
        int d;
        for( d = 0; d < 2; d++ )
        {
            lagrange_0( &_ld[d], xi[d] );
        }

        double value = tensor_i2( _ld[0].J, _ld[0].n, _ld[1].J, _ld[1].n, field, _odwork );
        return value;
    }
    double SpectralQuad::integrate_scalar_field( const double* /*field_vertex_values*/ ) const
    {
        return 0.;  // not implemented
    }
    // this is the same as a linear hex, although we should not need it
    bool SpectralQuad::inside_nat_space( const CartVect& xi, double& tol ) const
    {
        // just look at the box+tol here
        return ( xi[0] >= -1. - tol ) && ( xi[0] <= 1. + tol ) && ( xi[1] >= -1. - tol ) && ( xi[1] <= 1. + tol );
    }
    // something we don't do for spectral hex; we do it here because
    //       we do not store the position of gl points in a tag yet
    void SpectralQuad::compute_gl_positions()<--- The function 'compute_gl_positions' is never used.
    {
        // will need to use shape functions on a simple linear quad to compute gl points
        // so we know the position of gl points in parametric space, we will just compute those
        // from the 3d vertex position (corner nodes of the quad), using simple mapping
        assert( this->vertex.size() == 4 );
        static double corner_xi[4][2] = { { -1., -1. }, { 1., -1. }, { 1., 1. }, { -1., 1. } };
        // we will use the cached lobatto nodes in parametric space _z[d] (the same in both
        // directions)
        int indexGL = 0;
        int n2      = _n * _n;
        for( int i = 0; i < _n; i++ )
        {
            double eta = _z[0][i];
            for( int j = 0; j < _n; j++ )
            {
                double csi = _z[1][j];  // we could really use the same _z[0] array of lobatto nodes
                CartVect pos( 0.0 );
                for( int k = 0; k < 4; k++ )
                {
                    const double N_k = ( 1 + csi * corner_xi[k][0] ) * ( 1 + eta * corner_xi[k][1] );
                    pos += N_k * vertex[k];
                }
                pos *= 0.25;                           // these are x, y, z of gl points; reorder them
                _glpoints[indexGL]          = pos[0];  // x
                _glpoints[indexGL + n2]     = pos[1];  // y
                _glpoints[indexGL + 2 * n2] = pos[2];  // z
                indexGL++;
            }
        }
        // now, we can set the _xyz pointers to internal memory allocated to these!
        _xyz[0] = &( _glpoints[0] );
        _xyz[1] = &( _glpoints[n2] );
        _xyz[2] = &( _glpoints[2 * n2] );
    }
    void SpectralQuad::get_gl_points( double*& x, double*& y, double*& z, int& psize )<--- The function 'get_gl_points' is never used.
    {
        x     = (double*)_xyz[0];
        y     = (double*)_xyz[1];
        z     = (double*)_xyz[2];
        psize = _n * _n;
    }
}  // namespace Element

}  // namespace moab